Scikit-Dimension: A Python Package for Intrinsic Dimension Estimation
Dealing with uncertainty in applications of machine learning to real-life data critically depends on the knowledge of intrinsic dimensionality (ID). A number of methods have been suggested for the purpose of estimating ID, but no standard package to easily apply them one by one or all at once has be...
Saved in:
| Published in: | Entropy (Basel, Switzerland) Vol. 23; no. 10; p. 1368 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
19.10.2021
MDPI |
| Subjects: | |
| ISSN: | 1099-4300, 1099-4300 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Dealing with uncertainty in applications of machine learning to real-life data critically depends on the knowledge of intrinsic dimensionality (ID). A number of methods have been suggested for the purpose of estimating ID, but no standard package to easily apply them one by one or all at once has been implemented in Python. This technical note introduces scikit-dimension, an open-source Python package for intrinsic dimension estimation. The scikit-dimension package provides a uniform implementation of most of the known ID estimators based on the scikit-learn application programming interface to evaluate the global and local intrinsic dimension, as well as generators of synthetic toy and benchmark datasets widespread in the literature. The package is developed with tools assessing the code quality, coverage, unit testing and continuous integration. We briefly describe the package and demonstrate its use in a large-scale (more than 500 datasets) benchmarking of methods for ID estimation for real-life and synthetic data. |
|---|---|
| AbstractList | Dealing with uncertainty in applications of machine learning to real-life data critically depends on the knowledge of intrinsic dimensionality (ID). A number of methods have been suggested for the purpose of estimating ID, but no standard package to easily apply them one by one or all at once has been implemented in Python. This technical note introduces scikit-dimension, an open-source Python package for intrinsic dimension estimation. The scikit-dimension package provides a uniform implementation of most of the known ID estimators based on the scikit-learn application programming interface to evaluate the global and local intrinsic dimension, as well as generators of synthetic toy and benchmark datasets widespread in the literature. The package is developed with tools assessing the code quality, coverage, unit testing and continuous integration. We briefly describe the package and demonstrate its use in a large-scale (more than 500 datasets) benchmarking of methods for ID estimation for real-life and synthetic data. Dealing with uncertainty in applications of machine learning to real-life data critically depends on the knowledge of intrinsic dimensionality (ID). A number of methods have been suggested for the purpose of estimating ID, but no standard package to easily apply them one by one or all at once has been implemented in Python. This technical note introduces scikit-dimension, an open-source Python package for intrinsic dimension estimation. The scikit-dimension package provides a uniform implementation of most of the known ID estimators based on the scikit-learn application programming interface to evaluate the global and local intrinsic dimension, as well as generators of synthetic toy and benchmark datasets widespread in the literature. The package is developed with tools assessing the code quality, coverage, unit testing and continuous integration. We briefly describe the package and demonstrate its use in a large-scale (more than 500 datasets) benchmarking of methods for ID estimation for real-life and synthetic data.Dealing with uncertainty in applications of machine learning to real-life data critically depends on the knowledge of intrinsic dimensionality (ID). A number of methods have been suggested for the purpose of estimating ID, but no standard package to easily apply them one by one or all at once has been implemented in Python. This technical note introduces scikit-dimension, an open-source Python package for intrinsic dimension estimation. The scikit-dimension package provides a uniform implementation of most of the known ID estimators based on the scikit-learn application programming interface to evaluate the global and local intrinsic dimension, as well as generators of synthetic toy and benchmark datasets widespread in the literature. The package is developed with tools assessing the code quality, coverage, unit testing and continuous integration. We briefly describe the package and demonstrate its use in a large-scale (more than 500 datasets) benchmarking of methods for ID estimation for real-life and synthetic data. |
| Author | Zinovyev, Andrei Bac, Jonathan Gorban, Alexander N. Mirkes, Evgeny M. Tyukin, Ivan |
| AuthorAffiliation | 2 INSERM, U900, 75248 Paris, France 3 CBIO-Centre for Computational Biology, Mines ParisTech, PSL Research University, 75272 Paris, France 5 Laboratory of Advanced Methods for High-Dimensional Data Analysis, Lobachevsky University, 603105 Nizhniy Novgorod, Russia 4 Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK; em322@leicester.ac.uk (E.M.M.); a.n.gorban@leicester.ac.uk (A.N.G.); i.tyukin@leicester.ac.uk (I.T.) 1 Institut Curie, PSL Research University, 75248 Paris, France |
| AuthorAffiliation_xml | – name: 5 Laboratory of Advanced Methods for High-Dimensional Data Analysis, Lobachevsky University, 603105 Nizhniy Novgorod, Russia – name: 3 CBIO-Centre for Computational Biology, Mines ParisTech, PSL Research University, 75272 Paris, France – name: 1 Institut Curie, PSL Research University, 75248 Paris, France – name: 4 Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK; em322@leicester.ac.uk (E.M.M.); a.n.gorban@leicester.ac.uk (A.N.G.); i.tyukin@leicester.ac.uk (I.T.) – name: 2 INSERM, U900, 75248 Paris, France |
| Author_xml | – sequence: 1 givenname: Jonathan surname: Bac fullname: Bac, Jonathan – sequence: 2 givenname: Evgeny M. orcidid: 0000-0003-1474-1734 surname: Mirkes fullname: Mirkes, Evgeny M. – sequence: 3 givenname: Alexander N. orcidid: 0000-0001-6224-1430 surname: Gorban fullname: Gorban, Alexander N. – sequence: 4 givenname: Ivan orcidid: 0000-0002-7359-7966 surname: Tyukin fullname: Tyukin, Ivan – sequence: 5 givenname: Andrei orcidid: 0000-0002-9517-7284 surname: Zinovyev fullname: Zinovyev, Andrei |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34682092$$D View this record in MEDLINE/PubMed https://hal.science/hal-03445133$$DView record in HAL |
| BookMark | eNptkk1vEzEQhi1URD_gwB9AK3Ghh1DbY-_aHJCiktJIkagEnC2vPxKnm3Vrbyr13-MkJbQRJ4_Gz7zvjD2n6KiPvUPoPcGfASS-cBQIJlCLV-iEYClHDDA-ehYfo9OclxhToKR-g46B1YJiSU_Q5KcJt2EYfQsr1-cQ-y_VuLp5HBaxr260udVzV_mYqmk_pFAAU-3JapKHsNJDCd-i11532b17Os_Q76vJr8vr0ezH9-nleDYyHMMwsr4F8Jq20riWGeBa-BbX2FtKjRWN8a3nTAjXCNMIXzNg3mBaM8m5tZ7DGZrudG3US3WXin16VFEHtU3ENFc6DcF0TrWt5GBr76R1DAsvKWHSiBYaZpvakKL1dad1t25XzhpXJtTdC9GXN31YqHl8UIID45wVgfOdwOKg7Ho8U5scBsY4AXjYmH16Mkvxfu3yoFYhG9d1undxnRXlgjWSEL6Z8eMBuozr1Jdn3VLQUC5loT48737v__dn_3VnUsw5Ob9HCFabrVH7rSnsxQFrwrD92DJ46P5T8QeW0MGb |
| CitedBy_id | crossref_primary_10_3390_data10050070 crossref_primary_10_1016_j_ecoinf_2025_103322 crossref_primary_10_1016_j_neuron_2025_01_022 crossref_primary_10_1088_2632_2153_ade94d crossref_primary_10_1162_neco_a_23 crossref_primary_10_3389_fmolb_2021_793912 crossref_primary_10_1016_j_patcog_2023_109580 crossref_primary_10_1038_s41598_023_43821_4 crossref_primary_10_1088_2632_2153_add3bc crossref_primary_10_1109_TNNLS_2022_3172276 crossref_primary_10_1016_j_jksuci_2024_102219 crossref_primary_10_1371_journal_pcbi_1012892 crossref_primary_10_1145_3709729 crossref_primary_10_1051_epjn_2025025 crossref_primary_10_3390_e25050801 crossref_primary_10_3390_jcm11072061 crossref_primary_10_1186_s13244_023_01564_w crossref_primary_10_3390_e24111597 crossref_primary_10_3389_fnhum_2023_1134012 crossref_primary_10_3892_ol_2022_13270 crossref_primary_10_3390_ijms231710169 crossref_primary_10_1002_minf_202400265 crossref_primary_10_1002_jcc_27295 crossref_primary_10_1029_2023MS003918 crossref_primary_10_1109_LSENS_2024_3425760 crossref_primary_10_1186_s12967_023_04443_6 crossref_primary_10_3390_en16031437 crossref_primary_10_3389_fneur_2022_1005650 crossref_primary_10_1099_jgv_0_001802 crossref_primary_10_1038_s41598_025_91676_8 crossref_primary_10_1109_TKDE_2024_3468629 crossref_primary_10_1186_s12884_023_05819_8 crossref_primary_10_1021_acs_jpcc_3c07398 crossref_primary_10_1186_s40537_024_00898_6 crossref_primary_10_3390_e25010033 crossref_primary_10_1186_s40644_023_00549_8 crossref_primary_10_1016_j_heliyon_2024_e34410 crossref_primary_10_3389_fmolb_2022_967510 crossref_primary_10_1016_j_ijbiomac_2022_09_151 crossref_primary_10_1111_2041_210X_70066 crossref_primary_10_1038_s41392_023_01515_3 crossref_primary_10_1186_s13321_025_01045_w crossref_primary_10_1016_j_ejca_2025_115608 crossref_primary_10_1016_j_swevo_2025_102058 crossref_primary_10_3389_fnbot_2022_1120167 crossref_primary_10_3389_fnhum_2023_1111645 |
| Cites_doi | 10.1155/2015/759567 10.1109/IJCNN48605.2020.9207096 10.1101/2021.06.14.448414 10.1038/s41598-017-11873-y 10.1145/2833157.2833162 10.1145/1102351.1102388 10.3390/e22030296 10.1109/TSP.2009.2031722 10.1016/j.drudis.2017.01.005 10.1038/s41598-020-72222-0 10.1016/j.ins.2018.07.040 10.1142/S0129065710002383 10.1109/SSP.2009.5278634 10.1016/j.patcog.2014.02.013 10.3390/e22101105 10.1016/0893-9659(93)90023-G 10.32614/RJ-2017-054 10.1016/j.ins.2015.08.029 10.1007/s10994-012-5294-7 10.1186/1752-0509-2-86 10.1038/s41592-019-0686-2 10.1007/s10618-018-0578-6 10.1137/1.9781611975673.21 10.1109/IJCNN48605.2020.9207472 10.1016/j.aml.2006.04.022 10.1145/1081870.1081880 10.1038/s41586-020-2649-2 10.1145/2641190.2641198 10.1109/MCSE.2007.55 10.1016/S0169-7161(82)02018-5 10.1109/TPAMI.2014.2343220 10.1101/2021.03.18.435808 10.1145/1273496.1273530 10.1007/s11263-008-0144-6 10.1016/0022-0981(76)90076-9 10.1109/T-C.1971.223208 10.1186/1745-6150-2-2 10.1016/0167-2789(83)90298-1 10.1109/IJCNN.2019.8852450 10.2307/1939574 10.1016/S0006-3495(00)76580-5 10.1098/rsta.2017.0237 10.20944/preprints202106.0718.v1 10.1214/aos/1176343247 10.1177/001316446002000116 10.1126/science.aax0249 10.3389/fnbot.2019.00110 10.1093/oso/9780198538493.001.0001 10.1016/j.plrev.2018.09.005 10.1016/j.neunet.2021.01.034 10.1093/gigascience/giaa128 10.1073/pnas.2100473118 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 1XC 5PM DOA |
| DOI | 10.3390/e23101368 |
| DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1099-4300 |
| ExternalDocumentID | oai_doaj_org_article_bb953d6fe9de408f92149c8b374d76c1 PMC8534554 oai:HAL:hal-03445133v1 34682092 10_3390_e23101368 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Institut de Recherches Internationales Servier grantid: N/A – fundername: UKRI Turing AI Acceleration Fellowship grantid: EP/V025295/1 – fundername: Agence Nationale de la Recherche grantid: ANR-19-P3IA-0001 – fundername: Ministry of Science and Higher Education of the Russian Federation grantid: 075-15-2021-634 |
| GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 1XC C1A CH8 IPNFZ RIG 5PM |
| ID | FETCH-LOGICAL-c503t-dfb33fa2b9ceb4c35a8fb060fd22cd87cfbf5488e78c78f6434fc0264955ddf53 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 58 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000714951100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1099-4300 |
| IngestDate | Fri Oct 03 12:44:21 EDT 2025 Tue Nov 04 01:56:11 EST 2025 Sat Nov 01 11:33:47 EDT 2025 Wed Oct 01 14:45:13 EDT 2025 Fri Jul 25 11:52:24 EDT 2025 Thu Apr 03 06:53:21 EDT 2025 Tue Nov 18 21:49:50 EST 2025 Sat Nov 29 07:20:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | method benchmarking effective dimension Python package intrinsic dimension |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c503t-dfb33fa2b9ceb4c35a8fb060fd22cd87cfbf5488e78c78f6434fc0264955ddf53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PMCID: PMC8534554 |
| ORCID | 0000-0002-9517-7284 0000-0003-1474-1734 0000-0001-6224-1430 0000-0002-7359-7966 |
| OpenAccessLink | https://doaj.org/article/bb953d6fe9de408f92149c8b374d76c1 |
| PMID | 34682092 |
| PQID | 2584372599 |
| PQPubID | 2032401 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bb953d6fe9de408f92149c8b374d76c1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8534554 hal_primary_oai_HAL_hal_03445133v1 proquest_miscellaneous_2584791155 proquest_journals_2584372599 pubmed_primary_34682092 crossref_primary_10_3390_e23101368 crossref_citationtrail_10_3390_e23101368 |
| PublicationCentury | 2000 |
| PublicationDate | 20211019 |
| PublicationDateYYYYMMDD | 2021-10-19 |
| PublicationDate_xml | – month: 10 year: 2021 text: 20211019 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Entropy (Basel, Switzerland) |
| PublicationTitleAlternate | Entropy (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_50 Gorban (ref_51) 2019; 29 Gorban (ref_68) 2018; 376 ref_14 Gorban (ref_60) 2007; 20 ref_13 ref_57 Golovenkin (ref_16) 2020; 9 Palla (ref_6) 2012; Volume 4 Giuliani (ref_54) 2017; 22 ref_19 ref_17 Facco (ref_31) 2017; 7 ref_15 Chen (ref_63) 2019; 10 Bac (ref_9) 2020; 13 ref_61 Haro (ref_26) 2008; 80 ref_25 ref_24 ref_23 Johnsson (ref_56) 2015; 37 ref_65 Ceruti (ref_29) 2014; 47 Szczurek (ref_62) 2020; 21 Jackson (ref_21) 1993; 74 Gorban (ref_66) 2010; 20 Pedregosa (ref_1) 2011; 12 Carter (ref_27) 2010; 58 Gulati (ref_53) 2020; 24 Camastra (ref_12) 2016; 328 Frontier (ref_59) 1976; 25 ref_72 ref_71 ref_70 Harris (ref_34) 2020; 585 Krishnaiah (ref_3) 1982; Volume 2 Grassberger (ref_18) 1983; 9 ref_36 Giuliani (ref_7) 2000; 78 ref_33 ref_30 ref_73 Kaiser (ref_58) 1960; 20 ref_39 ref_37 Vanschoren (ref_52) 2013; 15 Grechuk (ref_75) 2021; 138 Campadelli (ref_11) 2015; 2015 Cangelosi (ref_55) 2007; 2 Allegra (ref_74) 2020; 10 Gorban (ref_32) 2018; 466 Hunter (ref_35) 2007; 9 ref_47 Hino (ref_10) 2017; 9 ref_46 ref_45 ref_44 ref_43 Virtanen (ref_38) 2020; 17 ref_42 ref_41 ref_40 Donoho (ref_67) 2000; 1 ref_2 Sritharan (ref_64) 2021; 118 Amsaleg (ref_20) 2018; 32 ref_49 Fukunaga (ref_22) 1971; C-20 ref_48 ref_8 ref_5 ref_4 Rozza (ref_28) 2012; 89 Kainen (ref_69) 1993; 6 |
| References_xml | – volume: 2015 start-page: 759567 year: 2015 ident: ref_11 article-title: Intrinsic Dimension Estimation: Relevant Techniques and a Benchmark Framework publication-title: Math. Probl. Eng. doi: 10.1155/2015/759567 – ident: ref_50 doi: 10.1109/IJCNN48605.2020.9207096 – ident: ref_17 doi: 10.1101/2021.06.14.448414 – ident: ref_49 – ident: ref_5 – volume: 7 start-page: 12140 year: 2017 ident: ref_31 article-title: Estimating the intrinsic dimension of datasets by a minimal neighborhood information publication-title: Sci. Rep. doi: 10.1038/s41598-017-11873-y – ident: ref_37 doi: 10.1145/2833157.2833162 – volume: 12 start-page: 2825 year: 2011 ident: ref_1 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – ident: ref_39 – ident: ref_14 doi: 10.1145/1102351.1102388 – ident: ref_42 – ident: ref_61 doi: 10.3390/e22030296 – ident: ref_23 – volume: 58 start-page: 650 year: 2010 ident: ref_27 article-title: On Local Intrinsic Dimension Estimation and Its Applications publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2031722 – volume: 22 start-page: 1069 year: 2017 ident: ref_54 article-title: The application of principal component analysis to drug discovery and biomedical data publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2017.01.005 – volume: 10 start-page: 1 year: 2020 ident: ref_74 article-title: Data segmentation based on the local intrinsic dimension publication-title: Sci. Rep. doi: 10.1038/s41598-020-72222-0 – volume: 466 start-page: 303 year: 2018 ident: ref_32 article-title: Correction of AI systems by linear discriminants: Probabilistic foundations publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.07.040 – ident: ref_8 – ident: ref_48 – volume: 20 start-page: 219 year: 2010 ident: ref_66 article-title: Principal manifolds and graphs in practice: From molecular biology to dynamical systems publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065710002383 – ident: ref_41 – ident: ref_13 doi: 10.1109/SSP.2009.5278634 – ident: ref_45 – volume: 47 start-page: 2569 year: 2014 ident: ref_29 article-title: DANCo: An intrinsic dimensionality estimator exploiting angle and norm concentration publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.02.013 – volume: 21 start-page: 1 year: 2020 ident: ref_62 article-title: Eleven grand challenges in single-cell data science publication-title: Genome Biol. – ident: ref_15 doi: 10.3390/e22101105 – volume: 6 start-page: 7 year: 1993 ident: ref_69 article-title: Quasiorthogonal dimension of euclidean spaces publication-title: Appl. Math. Lett. doi: 10.1016/0893-9659(93)90023-G – volume: 9 start-page: 329 year: 2017 ident: ref_10 article-title: ider: Intrinsic Dimension Estimation with R publication-title: R J. doi: 10.32614/RJ-2017-054 – volume: 328 start-page: 26 year: 2016 ident: ref_12 article-title: Intrinsic dimension estimation: Advances and open problems publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.08.029 – volume: 89 start-page: 37 year: 2012 ident: ref_28 article-title: Novel high intrinsic dimensionality estimators publication-title: Mach. Learn. doi: 10.1007/s10994-012-5294-7 – ident: ref_65 doi: 10.1186/1752-0509-2-86 – ident: ref_30 – volume: 17 start-page: 261 year: 2020 ident: ref_38 article-title: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – volume: 32 start-page: 1768 year: 2018 ident: ref_20 article-title: Extreme-value-theoretic estimation of local intrinsic dimensionality publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-018-0578-6 – ident: ref_33 doi: 10.1137/1.9781611975673.21 – ident: ref_70 doi: 10.1109/IJCNN48605.2020.9207472 – ident: ref_47 – volume: Volume 4 start-page: 2987 year: 2012 ident: ref_6 article-title: A nonparametric variable clustering model publication-title: Advances in Neural Information Processing Systems – volume: 20 start-page: 382 year: 2007 ident: ref_60 article-title: Topological grammars for data approximation publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2006.04.022 – ident: ref_73 doi: 10.1145/1081870.1081880 – volume: 585 start-page: 357 year: 2020 ident: ref_34 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 15 start-page: 49 year: 2013 ident: ref_52 article-title: OpenML: Networked Science in Machine Learning publication-title: SIGKDD Explor. doi: 10.1145/2641190.2641198 – volume: 9 start-page: 90 year: 2007 ident: ref_35 article-title: Matplotlib: A 2D graphics environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: Volume 2 start-page: 347 year: 1982 ident: ref_3 article-title: Intrinsic dimensionality extraction publication-title: Pattern Recognition and Reduction of Dimensionality, Handbook of Statistics doi: 10.1016/S0169-7161(82)02018-5 – ident: ref_40 – volume: 37 start-page: 196 year: 2015 ident: ref_56 article-title: Low Bias Local Intrinsic Dimension Estimation from Expected Simplex Skewness publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2343220 – ident: ref_72 doi: 10.1101/2021.03.18.435808 – ident: ref_19 doi: 10.1145/1273496.1273530 – volume: 80 start-page: 358 year: 2008 ident: ref_26 article-title: Translated poisson mixture model for stratification learning publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-008-0144-6 – ident: ref_44 – volume: 25 start-page: 67 year: 1976 ident: ref_59 article-title: Étude de la décroissance des valeurs propres dans une analyse en composantes principales: Comparaison avec le modèle du bâton brisé publication-title: J. Exp. Mar. Biol. Ecol. doi: 10.1016/0022-0981(76)90076-9 – volume: C-20 start-page: 176 year: 1971 ident: ref_22 article-title: An Algorithm for Finding Intrinsic Dimensionality of Data publication-title: IEEE Trans. Comput. doi: 10.1109/T-C.1971.223208 – volume: 2 start-page: 2 year: 2007 ident: ref_55 article-title: Component retention in principal component analysis with application to cDNA microarray data publication-title: Biol. Direct doi: 10.1186/1745-6150-2-2 – volume: 10 start-page: 1 year: 2019 ident: ref_63 article-title: Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM publication-title: Nat. Commun. – volume: 9 start-page: 189 year: 1983 ident: ref_18 article-title: Measuring the strangeness of strange attractors publication-title: Phys. D Nonlinear Phenom. doi: 10.1016/0167-2789(83)90298-1 – ident: ref_4 doi: 10.1109/IJCNN.2019.8852450 – volume: 74 start-page: 2204 year: 1993 ident: ref_21 article-title: Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches publication-title: Ecology doi: 10.2307/1939574 – ident: ref_25 – volume: 78 start-page: 136 year: 2000 ident: ref_7 article-title: Nonlinear Methods in the Analysis of Protein Sequences: A Case Study in Rubredoxins publication-title: Biophys. J. doi: 10.1016/S0006-3495(00)76580-5 – volume: 376 start-page: 20170237 year: 2018 ident: ref_68 article-title: Blessing of dimensionality: Mathematical foundations of the statistical physics of data publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2017.0237 – ident: ref_46 – ident: ref_71 doi: 10.20944/preprints202106.0718.v1 – ident: ref_24 doi: 10.1214/aos/1176343247 – volume: 20 start-page: 141 year: 1960 ident: ref_58 article-title: The Application of Electronic Computers to Factor Analysis publication-title: Educ. Psychol. Meas. doi: 10.1177/001316446002000116 – volume: 24 start-page: 405 year: 2020 ident: ref_53 article-title: Single-cell transcriptional diversity is a hallmark of developmental potential publication-title: Science doi: 10.1126/science.aax0249 – volume: 13 start-page: 110 year: 2020 ident: ref_9 article-title: Lizard Brain: Tackling Locally Low-Dimensional Yet Globally Complex Organization of Multi-Dimensional Datasets publication-title: Front. Neurorobotics doi: 10.3389/fnbot.2019.00110 – ident: ref_36 – ident: ref_43 – ident: ref_2 doi: 10.1093/oso/9780198538493.001.0001 – volume: 29 start-page: 55 year: 2019 ident: ref_51 article-title: The unreasonable effectiveness of small neural ensembles in high-dimensional brain publication-title: Phys. Life Rev. doi: 10.1016/j.plrev.2018.09.005 – volume: 138 start-page: 33 year: 2021 ident: ref_75 article-title: General stochastic separation theorems with optimal bounds publication-title: Neural Netw. doi: 10.1016/j.neunet.2021.01.034 – ident: ref_57 – volume: 9 start-page: giaa128 year: 2020 ident: ref_16 article-title: Trajectories, bifurcations, and pseudo-time in large clinical datasets: Applications to myocardial infarction and diabetes data publication-title: GigaScience doi: 10.1093/gigascience/giaa128 – volume: 118 start-page: e2100473118 year: 2021 ident: ref_64 article-title: Computing the Riemannian curvature of image patch and single-cell RNA sequencing data manifolds using extrinsic differential geometry publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2100473118 – volume: 1 start-page: 1 year: 2000 ident: ref_67 article-title: High-dimensional data analysis: The curses and blessings of dimensionality publication-title: AMS Math Challenges Lect. |
| SSID | ssj0023216 |
| Score | 2.5656493 |
| Snippet | Dealing with uncertainty in applications of machine learning to real-life data critically depends on the knowledge of intrinsic dimensionality (ID). A number... |
| SourceID | doaj pubmedcentral hal proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1368 |
| SubjectTerms | Algorithms Application programming interface Artificial Intelligence Computer Science Datasets Documentation effective dimension Fractals intrinsic dimension Life Sciences Machine Learning method benchmarking Methods Open source software Principal components analysis Public domain Python package Quality assessment Quantitative Methods Technical Note |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOBCQbzSBzKIAxeru7YT21zQFrYqUlWtBEi9RRk_6Koo2-5uK_XfdybJhi6gXnq1R_HI43nZk28Y-xBAOwkFiCRjEtqAFugUlDAxeQcRVd03kj4yx8f25MRNugu3RVdWubKJjaEOM0935HsSPaUyGKy7z-cXgrpG0etq10LjIXtEKAnDpnTve59wKTksWjQhhan9XqRYZqgIVfWWD2qg-tGznFIh5L9R5t_Fkre8z8Hmffl-xp52cScftQflOXsQ6xdsjJp9Nl2KrwTxT9dmn_iIT64JToBPKn-GtoZjUMu_IU9TJPC8p-RjtA3tb48v2c-D8Y8vh6LrqyB8PlBLERIolSoJzkfQXuWVTTAoBilI6YM1PkHCRMZGY72xCWMWnTzmaphL5SGkXL1iG_Wsjm8Yh5hbQJVHw1Bp0KpKEq2njpZsBxjI2MfVTpe-Ax2n3he_S0w-SChlL5SMve9Jz1ukjf8R7ZO4egICx24GZvNfZadrJYDLVShSdCHqgU1OYhroLSijgyn8EFdCYa9943B0VNIYASBSx5srJNpZybPs1HpR_hFmxt7106iQ9MpS1XF22dIY3IQ8z9jr9uj0SyldYMTlZMbM2qFa42V9pp6eNqDfqEEaQ7-tu9naZk8kFd1QyY3bYRvL-WXcZY_91XK6mL9ttOMG4xoadg priority: 102 providerName: ProQuest |
| Title | Scikit-Dimension: A Python Package for Intrinsic Dimension Estimation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34682092 https://www.proquest.com/docview/2584372599 https://www.proquest.com/docview/2584791155 https://hal.science/hal-03445133 https://pubmed.ncbi.nlm.nih.gov/PMC8534554 https://doaj.org/article/bb953d6fe9de408f92149c8b374d76c1 |
| Volume | 23 |
| WOSCitedRecordID | wos000714951100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M7S dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: PIMPY dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgcOCCqPgKlJVBHLhETW0ntnvbQqpWKquID2k5RRl_qKtWKWq3lbjw2zuTZKPdgsSFSw7xKIlm8uL3kskzY-89KCuggDSKEFOlQaU4KchUh-gsBIS66yp9omczM5_bam2pL-oJ6-2B-8TtAthc-iIG64PKTLQCOb0zILXyunCd8Mm0XYmpQWpJsVf0PkISRf1uIBazJ8lPdW326Uz6cU45pRbIP_nl3TbJtXnn8Al7PBBGPu0vdJvdC-1TViIkzxbL9BN589P7rn0-5dUv8gHgVePO8CHBkY3yYzzkAgMcHyN5iaDu_1d8xr4flt8-HqXDggipyzO5TH0EKWMjwLoAysm8MRGyIoteCOeNdhEiKhATtHHaRCQbKjoUWSiCcu9jLp-zrfaiDS8Zh5AbQKwiohsFSjZR4GNPBUOgBw0J-7BKVO0Gt3BatOK8RtVAOa3HnCbs3Rj6s7fI-FvQAWV7DCBX624H1roeal3_q9Z4JqzVxjGOpic17SPnQlqq5gaDdlalrAc8XtUCeZbUKPVswt6Ow4gk-jzStOHiuo_RmIQ8T9iLvvLjqaQqkCpZkTC9cU9sXMvmSLs47dy68dZXyNle_Y8EvGaPBPXUUEeN3WFby8vr8IY9dDfLxdXlhN3XczNhDw7KWfVl0gFiQr2sX2n7u8SR6vhz9eMWe5YS3A |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqggQXHuKVUsAgkLhEzdpObCMhtNCtdtVltRJF6i3EL7oqyra726L-KX4jM3nRBcStB67JKLHsz998E09mCHnpjNDMZCYOzIdYSCNicAo8lj5YbTxsdVut9FhOJurwUE83yI_2XxhMq2w5sSJqN7f4jXyHgafkEsS6fndyGmPXKDxdbVto1LDY9xffIWRbvh3twvq-YmxvcPBhGDddBWKbJnwVu2A4DwUz2nojLE8LFUySJcExZp2SNpgAMl55qaxUATy2CBYiFYgkUucCdokAyr8GMoLpKlXwUxfgcdbL6upFnOtkx6N26nGs4nrJ51WtAcCTHWHi5Z-q9vfkzEvebu_2_zZPd8itRlfTfr0R7pINX94jA2Cu49kq3sUWBvhZ8A3t0-kFlkug08IeA5dSEO10BHMwAwNLO0s6AO6rf-u8Tz5fycgfkM1yXvpHhBqfKgOUBsRXCCN4ERh4B-EVcqORJiKv25XNbVNUHXt7fMshuEIQ5B0IIvKiMz2pK4n8zeg9wqMzwOLf1YX54mvecElujE65y4LXzotEBc0gzLXKcCmczGwP3gTgWnvGsD_O8RoWeMSOPudgtN3iJ29oa5n_Ak9Enne3gXDwFKko_fystpEwCWkakYc1VLtXcZGBotQsInINxGtjWb9Tzo6qoubAEAKk7da_h_WM3BgefBzn49Fk_zG5yTDBCNOL9DbZXC3O_BNy3Z6vZsvF02pnUvLlqiH-EzsqeiI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VKUJceIiXocCCQOJixdlde71ICAWSqFFD5ANI5WS8LxoVOSVJi_rX-HXM-EUDiFsPXO2Rvdr99ptvvOMZQp5bLRTTiQ49cz4UUosQnAIPpfNGaQdb3VQrPZPzeXp4qLId8qP9FwbTKltOrIjaLg1-I-8z8JRcglhXfd-kRWSjyZuTbyF2kMKT1radRg2RA3f-HcK39evpCNb6BWOT8Yd3-2HTYSA0ccQ3ofWac18wrYzTwvC4SL2OkshbxoxNpfHag6RPnUyNTD14b-ENRC0QVcTWeuwYAfS_C5JcsB7Zzabvs09duMfZIKlrGXGuor5DJTXgWNP1ggesGgWAXzvCNMw_Ne7vqZoXfN_kxv88azfJ9UZx02G9RW6RHVfeJmPgtOPFJhxhcwP8YPiKDml2joUUaFaYY2BZCnKeTmE-FmBgaGdJx8CK9Q-fd8jHSxn5XdIrl6W7T6h2caqB7IASC6EFLzwDvyFciqyppQ7Iy3aVc9OUW8euH19zCLsQEHkHiIA860xP6hojfzN6i1DpDLAseHVhufqSNyyTa61ibhPvlHUiSr1iEACbVHMprEzMAN4EQNt6xv5wluM1LP2IvX7OwGivxVLeENo6_wWkgDztbgMV4flSUbrlaW0jYRLiOCD3ath2r-IiAa2pWEDkFqC3xrJ9p1wcVeXOgTsEiN4H_x7WE3IVkJ3PpvODh-Qaw8wjzDtSe6S3WZ26R-SKOdss1qvHzTal5PNlY_wnnKKEWA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scikit-Dimension%3A+A+Python+Package+for+Intrinsic+Dimension+Estimation&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Bac%2C+Jonathan&rft.au=Mirkes%2C+Evgeny+M&rft.au=Gorban%2C+Alexander+N&rft.au=Tyukin%2C+Ivan&rft.date=2021-10-19&rft.eissn=1099-4300&rft.volume=23&rft.issue=10&rft_id=info:doi/10.3390%2Fe23101368&rft_id=info%3Apmid%2F34682092&rft.externalDocID=34682092 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |