Multiscale Combinatorial Grouping for Image Segmentation and Object Proposal Generation
We propose a unified approach for bottom-up hierarchical image segmentation and object proposal generation for recognition, called Multiscale Combinatorial Grouping (MCG). For this purpose, we first develop a fast normalized cuts algorithm. We then propose a high-performance hierarchical segmenter t...
Uložené v:
| Vydané v: | IEEE transactions on pattern analysis and machine intelligence Ročník 39; číslo 1; s. 128 - 140 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article Publikácia |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0162-8828, 2160-9292, 1939-3539 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We propose a unified approach for bottom-up hierarchical image segmentation and object proposal generation for recognition, called Multiscale Combinatorial Grouping (MCG). For this purpose, we first develop a fast normalized cuts algorithm. We then propose a high-performance hierarchical segmenter that makes effective use of multiscale information. Finally, we propose a grouping strategy that combines our multiscale regions into highly-accurate object proposals by exploring efficiently their combinatorial space. We also present Single-scale Combinatorial Grouping (SCG), a faster version of MCG that produces competitive proposals in under five seconds per image. We conduct an extensive and comprehensive empirical validation on the BSDS500, SegVOC12, SBD, and COCO datasets, showing that MCG produces state-of-the-art contours, hierarchical regions, and object proposals. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0162-8828 2160-9292 1939-3539 |
| DOI: | 10.1109/TPAMI.2016.2537320 |