Forecasting realized volatility in a changing world: A dynamic model averaging approach

In this study, we forecast the realized volatility of the S&P 500 index using the heterogeneous autoregressive model for realized volatility (HAR-RV) and its various extensions. Our models take into account the time-varying property of the models’ parameters and the volatility of realized volati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of banking & finance Ročník 64; s. 136 - 149
Hlavní autoři: Wang, Yudong, Ma, Feng, Wei, Yu, Wu, Chongfeng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.03.2016
Elsevier Sequoia S.A
Témata:
ISSN:0378-4266, 1872-6372
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this study, we forecast the realized volatility of the S&P 500 index using the heterogeneous autoregressive model for realized volatility (HAR-RV) and its various extensions. Our models take into account the time-varying property of the models’ parameters and the volatility of realized volatility. A dynamic model averaging (DMA) approach is used to combine the forecasts of the individual models. Our empirical results suggest that DMA can generate more accurate forecasts than individual model in both statistical and economic senses. Models that use time-varying parameters have greater forecasting accuracy than models that use the constant coefficients. The superiority of time-varying parameter models is also found in volatility density forecasting.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0378-4266
1872-6372
DOI:10.1016/j.jbankfin.2015.12.010