Conditional Choice Probability Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity

We adapt the expectation-maximization algorithm to incorporate unobserved heterogeneity into conditional choice probability (CCP) estimators of dynamic discrete choice problems. The unobserved heterogeneity can be time-invariant or follow a Markov chain. By developing a class of problems where the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometrica Jg. 79; H. 6; S. 1823 - 1867
Hauptverfasser: Arcidiacono, Peter, Miller, Robert A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.11.2011
Econometric Society
Wiley-Blackwell
Schlagworte:
ISSN:0012-9682, 1468-0262
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We adapt the expectation-maximization algorithm to incorporate unobserved heterogeneity into conditional choice probability (CCP) estimators of dynamic discrete choice problems. The unobserved heterogeneity can be time-invariant or follow a Markov chain. By developing a class of problems where the difference in future value terms depends on a few conditional choice probabilities, we extend the class of dynamic optimization problems where CCP estimators provide a computationally cheap alternative to full solution methods. Monte Carlo results confirm that our algorithms perform quite well, both in terms of computational time and in the precision of the parameter estimates.
Bibliographie:istex:9B539F799481D4DE98460AC6F2589DEE41E14AA0
ark:/67375/WNG-DB9LHVCJ-M
ArticleID:ECTA1167
We thank Victor Aguirregabiria, Esteban Aucejo, Lanier Benkard, Jason Blevins, Paul Ellickson, George‐Levi Gayle, Joe Hotz, Pedro Mira, three anonymous referees, and the co‐editor for their comments. We have benefited from seminars at UC Berkeley, Duke University, University College London, University of North Carolina, Northwestern University, The Ohio State University, University of Pennsylvania, University of Rochester, Stanford University, University of Texas, Vanderbilt University, University of Virginia, Washington University, University of Wisconsin, IZA, Microeconometrics Conferences at the Cowles Foundation, the MOVE Conference at Universitat Autònoma de Barcelona, and the NASM of the Econometric Society. Andrew Beauchamp, Jon James, and Josh Kinsler provided excellent research assistance. Financial support was provided for by NSF Grants SES‐0721059 and SES‐0721098.
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0012-9682
1468-0262
DOI:10.3982/ECTA7743