Rescaling Egocentric Vision: Collection, Pipeline and Challenges for EPIC-KITCHENS-100

This paper introduces the pipeline to extend the largest dataset in egocentric vision, EPIC-KITCHENS. The effort culminates in EPIC-KITCHENS-100, a collection of 100 hours, 20M frames, 90K actions in 700 variable-length videos, capturing long-term unscripted activities in 45 environments, using head...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computer vision Ročník 130; číslo 1; s. 33 - 55
Hlavní autoři: Damen, Dima, Doughty, Hazel, Farinella, Giovanni Maria, Furnari, Antonino, Kazakos, Evangelos, Ma, Jian, Moltisanti, Davide, Munro, Jonathan, Perrett, Toby, Price, Will, Wray, Michael
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.01.2022
Springer
Springer Nature B.V
Témata:
ISSN:0920-5691, 1573-1405
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper introduces the pipeline to extend the largest dataset in egocentric vision, EPIC-KITCHENS. The effort culminates in EPIC-KITCHENS-100, a collection of 100 hours, 20M frames, 90K actions in 700 variable-length videos, capturing long-term unscripted activities in 45 environments, using head-mounted cameras. Compared to its previous version (Damen in Scaling egocentric vision: ECCV, 2018), EPIC-KITCHENS-100 has been annotated using a novel pipeline that allows denser (54% more actions per minute) and more complete annotations of fine-grained actions (+128% more action segments). This collection enables new challenges such as action detection and evaluating the “test of time”—i.e. whether models trained on data collected in 2018 can generalise to new footage collected two years later. The dataset is aligned with 6 challenges: action recognition (full and weak supervision), action detection, action anticipation, cross-modal retrieval (from captions), as well as unsupervised domain adaptation for action recognition. For each challenge, we define the task, provide baselines and evaluation metrics.
AbstractList This paper introduces the pipeline to extend the largest dataset in egocentric vision, EPIC-KITCHENS. The effort culminates in EPIC-KITCHENS-100, a collection of 100 hours, 20M frames, 90K actions in 700 variable-length videos, capturing long-term unscripted activities in 45 environments, using head-mounted cameras. Compared to its previous version (Damen in Scaling egocentric vision: ECCV, 2018), EPIC-KITCHENS-100 has been annotated using a novel pipeline that allows denser (54% more actions per minute) and more complete annotations of fine-grained actions (+128% more action segments). This collection enables new challenges such as action detection and evaluating the “test of time”—i.e. whether models trained on data collected in 2018 can generalise to new footage collected two years later. The dataset is aligned with 6 challenges: action recognition (full and weak supervision), action detection, action anticipation, cross-modal retrieval (from captions), as well as unsupervised domain adaptation for action recognition. For each challenge, we define the task, provide baselines and evaluation metrics.
This paper introduces the pipeline to extend the largest dataset in egocentric vision, EPIC-KITCHENS. The effort culminates in EPIC-KITCHENS-100, a collection of 100 hours, 20M frames, 90K actions in 700 variable-length videos, capturing long-term unscripted activities in 45 environments, using head-mounted cameras. Compared to its previous version (Damen in Scaling egocentric vision: ECCV, 2018), EPIC-KITCHENS-100 has been annotated using a novel pipeline that allows denser (54% more actions per minute) and more complete annotations of fine-grained actions (+128% more action segments). This collection enables new challenges such as action detection and evaluating the "test of time"-i.e. whether models trained on data collected in 2018 can generalise to new footage collected two years later. The dataset is aligned with 6 challenges: action recognition (full and weak supervision), action detection, action anticipation, cross-modal retrieval (from captions), as well as unsupervised domain adaptation for action recognition. For each challenge, we define the task, provide baselines and evaluation metrics.
Audience Academic
Author Doughty, Hazel
Furnari, Antonino
Damen, Dima
Ma, Jian
Price, Will
Farinella, Giovanni Maria
Munro, Jonathan
Kazakos, Evangelos
Perrett, Toby
Moltisanti, Davide
Wray, Michael
Author_xml – sequence: 1
  givenname: Dima
  surname: Damen
  fullname: Damen, Dima
  email: Dima.Damen@bristol.ac.uk
  organization: University of Bristol
– sequence: 2
  givenname: Hazel
  surname: Doughty
  fullname: Doughty, Hazel
  organization: University of Bristol, Present Address: University of Amsterdam
– sequence: 3
  givenname: Giovanni Maria
  surname: Farinella
  fullname: Farinella, Giovanni Maria
  organization: University of Catania
– sequence: 4
  givenname: Antonino
  surname: Furnari
  fullname: Furnari, Antonino
  organization: University of Catania
– sequence: 5
  givenname: Evangelos
  surname: Kazakos
  fullname: Kazakos, Evangelos
  organization: University of Bristol
– sequence: 6
  givenname: Jian
  surname: Ma
  fullname: Ma, Jian
  organization: University of Bristol
– sequence: 7
  givenname: Davide
  surname: Moltisanti
  fullname: Moltisanti, Davide
  organization: University of Bristol, NTU
– sequence: 8
  givenname: Jonathan
  surname: Munro
  fullname: Munro, Jonathan
  organization: University of Bristol
– sequence: 9
  givenname: Toby
  surname: Perrett
  fullname: Perrett, Toby
  organization: University of Bristol
– sequence: 10
  givenname: Will
  surname: Price
  fullname: Price, Will
  organization: University of Bristol
– sequence: 11
  givenname: Michael
  surname: Wray
  fullname: Wray, Michael
  organization: University of Bristol
BookMark eNp9kU1r3DAQhkVJoJukf6AnQ0-FKtWHZdm9BbNtloY0JG2uQiuPXAVH2kpeaP99JnWhJIcggYTmfWY08x6Rg5giEPKWs1POmP5YOBeNpExwyriSnIpXZMWVlpTXTB2QFesEo6rp-GtyVModY0y0Qq7I7TUUZ6cQx2o9JgdxzsFVt6GEFD9VfZomcDPeP1RXYQeog8rGoep_WozEEUrlU67WV5ueft1878_XlzcUf3RCDr2dCrz5dx6TH5_XGKYX375s-rML6hQTM_XboQbotl5tW48NNG2ra-k0DKID23YC9ABcSidlXXulW6aUg1p32g1W4j4m75a8u5x-7aHM5i7tc8SSRjRcc5xFo1F1uqhGO4EJ0ac5W4drgPvgcJI-4PsZVu9EyzqFwPsnAGpm-D2Pdl-K2dxcP9W2i9blVEoGb1yY7ePMsEiYDGfm0SKzWGTQIvPXIiMQFc_QXQ73Nv95GZILVFCMDuT_Lb9APQBv4qIJ
CitedBy_id crossref_primary_10_1007_s11831_025_10314_8
crossref_primary_10_1109_TCSVT_2024_3406546
crossref_primary_10_1109_TMM_2023_3338082
crossref_primary_10_1109_TPAMI_2022_3183112
crossref_primary_10_1007_s00221_023_06597_7
crossref_primary_10_1007_s11263_025_02478_4
crossref_primary_10_1007_s11263_022_01694_6
crossref_primary_10_1109_TIP_2024_3413599
crossref_primary_10_1145_3664815
crossref_primary_10_1007_s11042_023_17529_6
crossref_primary_10_1007_s11263_024_02095_7
crossref_primary_10_1109_TPAMI_2023_3327284
crossref_primary_10_1007_s11227_024_06138_1
crossref_primary_10_1109_TPAMI_2024_3393730
crossref_primary_10_1145_3672079
crossref_primary_10_1080_01691864_2024_2408593
crossref_primary_10_3390_s23052780
crossref_primary_10_1109_JSEN_2023_3349191
crossref_primary_10_1049_cvi2_12342
crossref_primary_10_1109_TMM_2024_3367599
crossref_primary_10_1007_s11263_024_01998_9
crossref_primary_10_1016_j_cviu_2023_103763
crossref_primary_10_1109_ACCESS_2024_3413578
crossref_primary_10_1109_JBHI_2024_3430810
crossref_primary_10_1109_TC_2025_3569173
crossref_primary_10_3390_math13091365
crossref_primary_10_1109_TPAMI_2022_3169976
crossref_primary_10_1016_j_cviu_2024_104035
crossref_primary_10_1109_RBME_2023_3296938
crossref_primary_10_1109_ACCESS_2024_3391817
crossref_primary_10_3233_WEB_220084
crossref_primary_10_1089_neu_2022_0156
crossref_primary_10_1109_ACCESS_2025_3526757
crossref_primary_10_3390_jimaging11030091
crossref_primary_10_1109_TCSVT_2025_3548515
crossref_primary_10_1109_TPAMI_2025_3552779
crossref_primary_10_1145_3587931
crossref_primary_10_1109_LRA_2023_3251843
crossref_primary_10_3390_s23156986
crossref_primary_10_3390_mti9070066
crossref_primary_10_1109_TPAMI_2024_3367412
crossref_primary_10_1109_ACCESS_2025_3583623
crossref_primary_10_1109_TMM_2024_3521658
crossref_primary_10_1109_TPAMI_2023_3330794
crossref_primary_10_1007_s11042_024_20576_2
crossref_primary_10_1016_j_patcog_2025_111846
crossref_primary_10_1145_3633333
crossref_primary_10_1016_j_cviu_2025_104371
crossref_primary_10_3390_technologies13020061
crossref_primary_10_1145_3699776
crossref_primary_10_1109_TPAMI_2023_3287208
crossref_primary_10_1109_TCSVT_2023_3281671
crossref_primary_10_1145_3699770
crossref_primary_10_1016_j_cag_2023_09_013
crossref_primary_10_1007_s00530_024_01511_9
crossref_primary_10_1007_s11263_022_01702_9
crossref_primary_10_1016_j_eswa_2023_121330
crossref_primary_10_1007_s11263_025_02523_2
crossref_primary_10_1007_s42524_025_4109_z
crossref_primary_10_1016_j_cviu_2023_103741
crossref_primary_10_1109_LSP_2024_3483009
crossref_primary_10_1109_TMM_2023_3295899
crossref_primary_10_1016_j_patcog_2024_110927
crossref_primary_10_1109_ACCESS_2025_3593474
crossref_primary_10_1007_s11263_024_02273_7
crossref_primary_10_1007_s11831_023_09986_x
crossref_primary_10_1109_JSEN_2024_3371975
crossref_primary_10_1109_JSEN_2024_3390794
crossref_primary_10_1109_MCG_2025_3549696
crossref_primary_10_1016_j_cviu_2023_103818
crossref_primary_10_1109_ACCESS_2025_3534621
crossref_primary_10_1145_3769091
crossref_primary_10_1145_3643500
Cites_doi 10.1007/s11263-017-1013-y
10.1007/978-3-319-46448-0_31
10.1109/ICCV.2019.00630
10.1109/CVPR42600.2020.01242
10.1109/CVPR.2015.7298940
10.1177/0278364915614638
10.1109/ICCV.2011.6126543
10.1007/978-3-030-01252-6_13
10.1007/978-3-030-11021-5_24
10.1109/CVPR.2012.6248074
10.1109/ICCV.2017.83
10.1109/CVPR.2011.5995347
10.1007/978-3-319-46484-8_2
10.2307/1912352
10.1109/CVPR.2018.00706
10.1109/CVPR.2018.00771
10.1109/ICCV.2017.622
10.1109/ICCV.2017.322
10.1109/CVPR.2019.01015
10.1109/WACV45572.2020.9093358
10.1109/ICCV.2017.314
10.1109/CVPR.2015.7298625
10.1109/CVPR.2017.544
10.1007/978-3-030-01225-0_44
10.1109/CVPR.2015.7298932
10.1109/CVPR42600.2020.01164
10.1145/582415.582418
10.1109/TPAMI.2020.2992889
10.1007/978-3-319-11382-1_18
10.1007/978-3-642-15561-1_16
10.1109/CVPR42600.2020.00989
10.1145/2493432.2493482
10.1007/978-3-030-01246-5_49
10.1109/CVPR.2017.113
10.1109/CVPR.2019.00139
10.1007/978-3-319-46454-1_27
10.1007/978-3-319-10602-1_41
10.1007/978-3-319-46454-1_17
10.1007/978-3-319-46466-4_5
10.1109/CVPR.2012.6247801
10.1109/ICCV.2017.381
10.1109/ICCV.2019.00560
10.1109/ICCV.2019.00559
10.1109/CVPR.2012.6248010
10.1145/2911996.2912036
10.1109/CVPR.2007.383196
10.24963/ijcai.2019/871
10.1109/ICCV.2019.00054
10.5244/C.31.128
10.1126/scirobotics.aaw6661
10.1609/aaai.v32i1.12342
10.1109/CVPRW.2018.00141
10.5244/C.28.30
10.1109/TPAMI.2019.2901464
10.5244/C.24.50
10.1007/978-3-030-01261-8_24
10.1109/ICCVW.2019.00460
10.1109/CVPRW50498.2020.00172
10.1109/CVPR.2019.00366
10.1007/s11263-019-01255-4
10.21105/joss.00861
10.1109/CVPR.2016.571
10.1109/ICCV.2019.00272
10.1145/3240508.3240633
10.1109/ICCV.2019.00718
10.1109/ICCV.2017.534
10.1007/978-3-642-33718-5_23
10.1177/0278364916679498
10.1007/978-3-642-33715-4_54
10.1109/CVPR.2014.105
10.1109/CVPR.2017.440
10.1109/CVPR.2016.85
10.1109/CVPR.2015.7298698
10.1109/ICCV.2019.00642
10.1007/978-3-319-58347-1_10
10.1007/978-3-319-10602-1_48
10.1109/ICCV.2019.00877
10.1109/CVPR.2019.00674
10.1016/j.imavis.2016.01.001
10.1007/978-3-319-46478-7_34
10.1109/TMM.2015.2390499
10.1109/CVPR.2009.5206557
10.1109/CVPR.2018.00633
10.1007/978-3-319-46493-0_9
10.1109/TPAMI.2015.2430335
10.1109/CVPR.2017.502
10.1109/CVPR.2017.572
10.1109/ICCV.2019.00149
10.1109/CVPR.2017.233
10.1109/ICCV.2019.00399
10.1109/ICCV.2019.00876
10.1109/ICCV.2019.00502
10.1109/CVPR.2016.350
10.1109/CVPR.2017.678
10.1109/ICCV.2019.00940
10.1609/aaai.v34i07.6854
10.1109/ICCV.2019.00634
10.1109/CVPR42600.2020.00020
10.1109/CVPR.2009.5206848
10.1109/ICRA.2018.8460982
ContentType Journal Article
Copyright The Author(s) 2021
COPYRIGHT 2022 Springer
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1007/s11263-021-01531-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef

ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 55
ExternalDocumentID A688928095
10_1007_s11263_021_01531_2
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: EP/N033779/1
  funderid: http://dx.doi.org/10.13039/501100000266
– fundername: Engineering and Physical Sciences Research Council
  funderid: http://dx.doi.org/10.13039/501100000266
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/T004991/1
  funderid: http://dx.doi.org/10.13039/501100000266
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c502t-fbd4ee9bf5b8f263688743c7ed29ea892e7de133c3344f578055ce4797cda3da3
IEDL.DBID M0C
ISICitedReferencesCount 269
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000709268800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-5691
IngestDate Wed Nov 05 00:58:27 EST 2025
Sat Nov 29 10:07:04 EST 2025
Wed Nov 26 10:14:11 EST 2025
Sat Nov 29 06:42:28 EST 2025
Tue Nov 18 19:39:50 EST 2025
Fri Feb 21 02:46:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Annotation quality
Egocentric vision
Multi-benchmark large-scale dataset
First-person vision
Video dataset
Action understanding
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-fbd4ee9bf5b8f263688743c7ed29ea892e7de133c3344f578055ce4797cda3da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s11263-021-01531-2
PQID 2617115367
PQPubID 1456341
PageCount 23
ParticipantIDs proquest_journals_2617115367
gale_infotracacademiconefile_A688928095
gale_incontextgauss_ISR_A688928095
crossref_citationtrail_10_1007_s11263_021_01531_2
crossref_primary_10_1007_s11263_021_01531_2
springer_journals_10_1007_s11263_021_01531_2
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Carreira J, & Zisserman A (2017) Quo Vadis, action recognition? A new model and the Kinetics dataset. In CVPR
Ding L, & Xu C (2018) Weakly-supervised action segmentation with iterative soft boundary assignment. In CVPR
Torralba A, & Efros AA (2011) Unbiased look at dataset bias. In CVPR 2011
Bojanowski P, Lajugie R, Bach F, Laptev I, Ponce J, Schmid C, & Sivic J (2014) Weakly supervised action labeling in videos under ordering constraints. In ECCV
Ioffe S, & Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In ICML
Munro J, & Damen D (2020) Multi-modal domain adaptation for fine-grained action recognition. In CVPR
Pan B, Cao Z, Adeli E, & Niebles JC (2020) Adversarial cross-domain action recognition with co-attention. In AAAI
Plizzari C, Planamente M, Alberti E, & Caputo B (2021). Polito-iit submission to the epic-kitchens-100 unsupervised domain adaptation challenge for action recognition. arXiv preprint arXiv:2107.00337
MaddernWPascoeGLinegarCNewmanP1 year, 1000 km: the Oxford RobotCar datasetInt J Robot Res201736131510.1177/0278364916679498
Rasiwasia N, Mahajan D, Mahadevan V, & Aggarwal G (2014) Cluster canonical correlation analysis. In AISTATS
Chang C, Huang DA, Sui Y, Fei-Fei L, & Niebles JC (2019) D3TW: Discriminative differentiable dynamic time warping for weakly supervised action alignment and segmentation. In CVPR
Järvelin K, & Kekäläinen J (2002) Cumulated gain-based evaluation of IR techniques. TOIS
Honnibal M, & Montani I (2017) spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing
Lea C, Flynn MD, Vidal R, Reiter A, & Hager GM (2017) Temporal convolutional networks for action segmentation and detection. In CVPR
Singh KK, & Lee YJ (2017). Hide-and-Seek: Forcing a network to be meticulous for weakly-supervised object and action localization. In ICCV
Bhattacharyya A, Fritz M, & Schiele B (2019) Bayesian prediction of future street scenes using synthetic likelihoods. In ICLR
Li J, Lei P, & Todorovic S (2019) Weakly supervised energy-based learning for action segmentation. In ICCV
Zhou L, Xu C, & Corso JJ (2017) Towards automatic learning of procedures from web instructional videos. In AAAI
Carlevaris-BiancoNUshaniAKEusticeRMUniversity of Michigan North Campus long-term vision and lidar datasetInt J Robotics Res20163591023103510.1177/0278364915614638
Weinzaepfel P, Martin X, & Schmid C (2016) Human action localization with sparse spatial supervision. arXiv
Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, & Darrell T (2018) BDD100K: A diverse driving video database with scalable annotation tooling. arXiv
Zach C, Pock T, & Bischof H (2007) A duality based approach for realtime TV-L1 optical flow. In Pattern Recognition
Kazakos E, Nagrani A, Zisserman A, & Damen D (2019) EPIC-Fusion: Audio-visual temporal binding for egocentric action recognition. In ICCV
Stein S, & McKenna SJ (2013). Combining Embedded Accelerometers with Computer Vision for Recognizing Food Preparation Activities. In International Joint Conference on Pervasive and Ubiquitous Computing
Stein S, & McKenna S (2013) Combining embedded accelerometers with computer vision for recognizing food preparation activities. In UbiComp
Goyal R, Kahou SE, Michalski V, Materzynska J, Westphal S, Kim H, Haenel V, Fründ I, Yianilos P, Mueller-Freitag M, Hoppe F, Thurau C, Bax I, Memisevic R (2017) The “Something Something” video database for learning and evaluating visual common sense. In ICCV
Gorban A, Idrees H, Jiang YG, Zamir AR, Laptev I, Shah M, & Sukthankar R (2015). THUMOS challenge: Action recognition with a large number of classes. http://www.thumos.info
Nguyen P, Ramanan D, & Fowlkes C (2019) Weakly-supervised action localization with background modeling. In ICCV
Chéron G, Alayrac J, Laptev I, & Schmid C (2018) A flexible model for training action localization with varying levels of supervision. In NeurIPS
Lee N, Choi W, Vernaza P, Choy C, Torr PHS, & Chandraker M (2017) DESIRE: Distant future prediction in dynamic scenes with interacting agents. In CVPR
Lin J, Gan C, & Han S (2019) TSM: Temporal shift module for efficient video understanding. In ICCV
Zhou B, Krähenbühl P, & Koltun V (2019) Does computer vision matter for action? Science Robotics
Zhai M, Bessinger Z, Workman S, & Jacobs N (2017) Predicting Ground-Level Scene Layout from Aerial Imagery. In Computer Vision and Pattern Recognition
Chen D, & Dolan, W (2011) Collecting highly parallel data for paraphrase evaluation. In NAACL-HLT
Heilbron FC, Lee JY, Jin H, & Ghanem B (2018) What do i annotate next?, An empirical study of active learning for action localization. In ECCV
Rohrbach, M., Amin, S., Andriluka, M., & Schiele, B. (2012). A database for fine grained activity detection of cooking activities. In CVPR
Xu J, Mei T, Yao T, & Rui Y (2016) MSR-VTT: A large video description dataset for bridging video and language. In CVPR
Heilbron FC, Escorcia V, Ghanem B, & Niebles JC (2015) ActivityNet: A large-scale video benchmark for human activity understanding. In CVPR
Cao Y, Long M, Wang J, & Yu P (2017) Correlation hashing network for efficient cross-modal retrieval. In BMVC
Narayan S, Cholakkal H, Khan F, & Shao L (2019) 3C-Net: Category count and center loss for weakly-supervised action localization. In ICCV
Saenko K, Kulis B, Fritz M, & Darrell T (2010) Adapting Visual Category Models to New Domains. In European Conference on Computer Vision
Mettes P, Van Gemert JC, & Snoek CG (2016) Spot on: Action localization from pointly-supervised proposals. In ECCV
Perazzi F, Pont-Tuset J, McWilliams B, Gool LV, Gross M, & Sorkine-Hornung A (2016) A benchmark dataset and evaluation methodology for video object segmentation. In CVPR
Li Y, Ye Z, & Rehg JM (2015) Delving into egocentric actions. In CVPR
He K, Girshick R, & Dollár P (2019) Rethinking ImageNet pre-training. In ICCV
Wulfmeier M, Bewley A, & Posner I (2018) Incremental Adversarial Domain Adaptation for Continually Changing Environments. In International Conference on Robotics and Automation. 4489–4495
Caesar H, Bankiti V, Lang AH, Vora S, Liong VE, Xu Q, Krishnan A, Pan Y, Baldan G, & Beijbom O (2019) nuScenes: A multimodal dataset for autonomous driving. arXiv
Shan D, Geng J, Shu M, & Fouhey DF (2020) Understanding human hands in contact at internet scale. In CVPR
Damen D, Leelasawassuk T, Haines O, Calway A, & Mayol-Cuevas W (2014). You-do, I-learn: Discovering task relevant objects and their modes of interaction from multi-user egocentric video. In BMVC
Vondrick C, Shrivastava A, Fathi A, Guadarrama S, & Murphy K (2018) Tracking emerges by colorizing videos. In ECCV
Yogamani S, Hughes C, Horgan J, Sistu G, Varley P, O‘Dea D, Uricár M, Milz S, Simon M, Amende K et al. (2019) Woodscape: A multi-task, multi-camera fisheye dataset for autonomous driving. In ICCV
Saenko K, Kulis B, Fritz M, & Darrell T (2010) Adapting visual category models to new domains. In ECCV
Zhao H, Yan Z, Torresani L, & Torralba A (2019) HACS: Human action clips and segments dataset for recognition and temporal localization. In ICCV
Moltisanti D, Wray M, Mayol-Cuevas W, & Damen D (2017) Trespassing the boundaries: Labeling temporal bounds for object interactions in egocentric video. In ICCV
Gupta S, & Malik J (2016) Visual semantic role labeling. In CVPR
Gygli M, & Ferrari V (2019) Efficient object annotation via speaking and pointing. IJCV
Richard A, Kuehne H, Iqbal A, & Gall J (2018) NeuralNetwork-Viterbi: A framework for weakly supervised video learning. In CVPR
Damen D, Doughty H, Farinella GM, Fidler S, Furnari A, Kazakos E, Moltisanti D, Munro J, Perrett T, Price W, & Wray M (2018) Scaling egocentric vision: The EPIC-KITCHENS dataset. In ECCV
Deng J, Dong W, Socher R, Li LJ, Li K, & Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. In CVPR
Oberdiek P, Rottmann M, & Fink GA (2020) Detection and Retrieval of Out-of-Distribution Objects in Semantic Segmentation. In Computer Vision and Pattern Recognition Workshops
Gu C, Sun C, Ross DA, Vondrick C, Pantofaru C, Li Y, Vijayanarasimhan S, Toderici G, Ricco S, Sukthankar R, Schmid C, & Malik J (2018) AVA: A video dataset of spatio-temporally localized atomic visual actions. In CVPR
Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, & Schiele B (2016) The cityscapes dataset for semantic urban scene understanding. In CVPR
Xu T, Zhu F, Wong EK, & Fang Y (2016) Dual many-to-one-encoder-based transfer learning for cross-dataset human action recognition. IMAVIS
Karpathy A, & Fei-Fei L (2015) Deep Visual-Semantic Alignments for Generating Image Descriptions. In CVPR
Gong B, Shi Y, Sha F, & Grauman K (2012) Geodesic Flow Kernel for Unsupervised Domain Adaptation. In Computer Vision and Pattern Recognition
Krishna R, Hata K, Ren F, Fei-Fei L, & Niebles JC (2017) Dense-captioning events in videos. In ICCV
Geiger A, Lenz P, & Urtasun R (2012) Are we ready for autonomous driving? The KITTI vision benchmark suite. In CVPR
HeckmanJJSample Selection Bias as a Specification ErrorEconometrica197947115316151883210.2307/1912352
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, & Chintala S (2019). Pytorch: An imperative style, high-performance deep learning library. In Wallach H, Larochelle H, Beygelzimer A, dÁlché-Buc F, Fox E, & Garnett R, eds. Advances in Neural Information Processing Systems 32. Curran Associates, Inc. 8024–8035
Monfort M, Vondrick C, Oliva A, Andonian A, Zhou B, Ramakrishnan K, Bargal SA, Yan T, Brown L, Fan Q, & Gutfreund D (2020) Moments in Time dataset: One million videos for event understanding. TPAMI
Kay W, Carreira J, Simonyan K, Zhang B, Hillier C, Vijayanarasimhan S, Viola F, Green T, Back T, Natsev P, Suleyman M, & Zisserman A (2017) The Kinetics human action video dataset. arXiv
Planamente M, Plizzari C, Alberti E, & Caputo B (2021) Cross-domain first
1531_CR23
1531_CR22
1531_CR25
1531_CR24
1531_CR21
1531_CR20
1531_CR27
1531_CR26
1531_CR29
1531_CR28
1531_CR34
1531_CR33
1531_CR36
1531_CR30
1531_CR32
1531_CR31
N Carlevaris-Bianco (1531_CR7) 2016; 35
1531_CR104
1531_CR103
1531_CR106
1531_CR105
1531_CR108
1531_CR107
1531_CR109
1531_CR38
W Maddern (1531_CR64) 2017; 36
1531_CR100
1531_CR37
1531_CR102
1531_CR39
1531_CR101
1531_CR45
1531_CR44
1531_CR47
1531_CR46
1531_CR41
1531_CR40
1531_CR43
1531_CR42
1531_CR115
1531_CR114
1531_CR117
1531_CR116
1531_CR119
1531_CR118
1531_CR49
1531_CR111
1531_CR48
1531_CR110
1531_CR113
1531_CR112
1531_CR56
1531_CR55
1531_CR58
1531_CR57
1531_CR52
1531_CR51
1531_CR54
1531_CR53
1531_CR50
1531_CR126
1531_CR125
1531_CR128
1531_CR127
1531_CR129
1531_CR120
1531_CR122
1531_CR59
1531_CR121
1531_CR124
1531_CR123
1531_CR67
1531_CR66
1531_CR69
1531_CR68
1531_CR63
1531_CR62
1531_CR65
1531_CR61
1531_CR60
1531_CR131
1531_CR130
1531_CR78
1531_CR77
1531_CR79
1531_CR74
1531_CR73
1531_CR76
1531_CR75
1531_CR70
1531_CR72
1531_CR71
1531_CR5
1531_CR89
1531_CR4
1531_CR88
1531_CR6
1531_CR9
1531_CR85
1531_CR8
1531_CR84
1531_CR87
1531_CR86
1531_CR81
1531_CR80
1531_CR83
1531_CR82
1531_CR1
1531_CR3
1531_CR2
JJ Heckman (1531_CR35) 1979; 47
1531_CR12
1531_CR11
1531_CR99
1531_CR14
1531_CR13
1531_CR96
1531_CR95
1531_CR10
1531_CR98
1531_CR97
1531_CR92
1531_CR91
1531_CR94
1531_CR93
1531_CR90
1531_CR19
1531_CR16
1531_CR15
1531_CR18
1531_CR17
References_xml – reference: Yogamani S, Hughes C, Horgan J, Sistu G, Varley P, O‘Dea D, Uricár M, Milz S, Simon M, Amende K et al. (2019) Woodscape: A multi-task, multi-camera fisheye dataset for autonomous driving. In ICCV
– reference: Zamir AR, Sax A, Shen W, Guibas L, Malik J, & Savarese S (2018) Taskonomy: Disentangling task transfer learning. In CVPR
– reference: Mettes P, Van Gemert JC, & Snoek CG (2016) Spot on: Action localization from pointly-supervised proposals. In ECCV
– reference: Krishna R, Hata K, Ren F, Fei-Fei L, & Niebles JC (2017) Dense-captioning events in videos. In ICCV
– reference: Honnibal M, & Montani I (2017) spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing
– reference: Kuehne H, Jhuang H, Garrote E, Poggio T, & Serre T (2011) HMDB: a large video database for human motion recognition. In ICCV
– reference: Kay W, Carreira J, Simonyan K, Zhang B, Hillier C, Vijayanarasimhan S, Viola F, Green T, Back T, Natsev P, Suleyman M, & Zisserman A (2017) The Kinetics human action video dataset. arXiv
– reference: Saenko K, Kulis B, Fritz M, & Darrell T (2010) Adapting Visual Category Models to New Domains. In European Conference on Computer Vision
– reference: Mettes P, Koelma DC, & Snoek CGM (2016) The ImageNet shuffle: Reorganized pre-training for video event detection. In ICMR
– reference: Qi F, Yang X, & Xu C (2018) A unified framework for multimodal domain adaptation. In ACM-MM
– reference: Rasiwasia N, Mahajan D, Mahadevan V, & Aggarwal G (2014) Cluster canonical correlation analysis. In AISTATS
– reference: Furnari A, Battiato S, & Farinella GM (2018) Leveraging uncertainty to rethink loss functions and evaluation measures for egocentric action anticipation. In ECCVW
– reference: Ding L, & Xu C (2018) Weakly-supervised action segmentation with iterative soft boundary assignment. In CVPR
– reference: Perazzi F, Pont-Tuset J, McWilliams B, Gool LV, Gross M, & Sorkine-Hornung A (2016) A benchmark dataset and evaluation methodology for video object segmentation. In CVPR
– reference: Heilbron FC, Lee JY, Jin H, & Ghanem B (2018) What do i annotate next?, An empirical study of active learning for action localization. In ECCV
– reference: Jiang YG, Liu J, Zamir AR, Toderici G, Laptev I, Shah M, & Sukthankar R (2014) THUMOS challenge: Action recognition with a large number of classes. http://crcv.ucf.edu/THUMOS14/
– reference: Damen D, Leelasawassuk T, Haines O, Calway A, & Mayol-Cuevas W (2014). You-do, I-learn: Discovering task relevant objects and their modes of interaction from multi-user egocentric video. In BMVC
– reference: Zhou B, Krähenbühl P, & Koltun V (2019) Does computer vision matter for action? Science Robotics
– reference: Zhou L, Kalantidis Y, Chen X, Corso JJ, & Rohrbach M (2019) Grounded video description. In CVPR
– reference: Mahdisoltani F, Berger G, Gharbieh W, Fleet D, & Memisevic R (2018) On the effectiveness of task granularity for transfer learning. arXiv
– reference: Jamal A, Namboodiri VP, Deodhare D, & Venkatesh K (2018) Deep domain adaptation in action space. In BMVC
– reference: Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, & Zitnick CL (2014) Microsoft COCO: Common objects in context. In ECCV
– reference: Sigurdsson GA, Varol G, Wang X, Farhadi A, Laptev I, & Gupta A (2016) Hollywood in Homes: Crowdsourcing data collection for activity understanding. In ECCV
– reference: Xu T, Zhu F, Wong EK, & Fang Y (2016) Dual many-to-one-encoder-based transfer learning for cross-dataset human action recognition. IMAVIS
– reference: De La Torre F, Hodgins J, Bargteil A, Martin X, Macey J, Collado A, & Beltran P (2008) Guide to the Carnegie Mellon University Multimodal Activity (CMU-MMAC) database. In Robotics Institute
– reference: Rohrbach A, Rohrbach M, Tandon N, & Schiele B (2015) A dataset for movie description. In CVPR
– reference: Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, & Chintala S (2019). Pytorch: An imperative style, high-performance deep learning library. In Wallach H, Larochelle H, Beygelzimer A, dÁlché-Buc F, Fox E, & Garnett R, eds. Advances in Neural Information Processing Systems 32. Curran Associates, Inc. 8024–8035
– reference: Li J, Lei P, & Todorovic S (2019) Weakly supervised energy-based learning for action segmentation. In ICCV
– reference: Rohrbach, M., Amin, S., Andriluka, M., & Schiele, B. (2012). A database for fine grained activity detection of cooking activities. In CVPR
– reference: Karpathy A, & Fei-Fei L (2015) Deep Visual-Semantic Alignments for Generating Image Descriptions. In CVPR
– reference: Neuhold G, Ollmann T, Bulo SR, & Kontschieder P (2017) The mapillary vistas dataset for semantic understanding of street scenes. In ICCV
– reference: Richard A, Kuehne H, Iqbal A, & Gall J (2018) NeuralNetwork-Viterbi: A framework for weakly supervised video learning. In CVPR
– reference: Soomro K, Zamir AR, & Shah M (2012) UCF101: A dataset of 101 human actions classes from videos in the wild. arXiv
– reference: Stein S, & McKenna S (2013) Combining embedded accelerometers with computer vision for recognizing food preparation activities. In UbiComp
– reference: Liu D, Jiang T, & Wang Y (2019) Completeness modeling and context separation for weakly supervised temporal action localization. In CVPR
– reference: Monfort M, Vondrick C, Oliva A, Andonian A, Zhou B, Ramakrishnan K, Bargal SA, Yan T, Brown L, Fan Q, & Gutfreund D (2020) Moments in Time dataset: One million videos for event understanding. TPAMI
– reference: Pan B, Cao Z, Adeli E, & Niebles JC (2020) Adversarial cross-domain action recognition with co-attention. In AAAI
– reference: Sigurdsson GA, Gupta A, Schmid C, Farhadi A, & Alahari K (2018) Charades-ego: A large-scale dataset of paired third and first person videos. In ArXiv
– reference: Huang DA, Fei-Fei L, & Niebles JC (2016) Connectionist temporal modeling for weakly supervised action labeling. In ECCV
– reference: De Geest R, Gavves E, Ghodrati A, Li Z, Snoek C, & Tuytelaars T (2016) Online action detection. In ECCV
– reference: Plizzari C, Planamente M, Alberti E, & Caputo B (2021). Polito-iit submission to the epic-kitchens-100 unsupervised domain adaptation challenge for action recognition. arXiv preprint arXiv:2107.00337
– reference: Roth J, Chaudhuri S, Klejch O, Marvin R, Gallagher A, Kaver L, Ramaswamy S, Stopczynski A, Schmid C, Xi Z, et al. (2019). AVA-ActiveSpeaker: An audio-visual dataset for active speaker detection. arXiv
– reference: Yu F, Xian W, Chen Y, Liu F, Liao M, Madhavan V, & Darrell T (2018) BDD100K: A diverse driving video database with scalable annotation tooling. arXiv
– reference: Deng J, Dong W, Socher R, Li LJ, Li K, & Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. In CVPR
– reference: Bhattacharyya A, Fritz M, & Schiele B (2019) Bayesian prediction of future street scenes using synthetic likelihoods. In ICLR
– reference: Singh KK, & Lee YJ (2017). Hide-and-Seek: Forcing a network to be meticulous for weakly-supervised object and action localization. In ICCV
– reference: Geiger A, Lenz P, & Urtasun R (2012) Are we ready for autonomous driving? The KITTI vision benchmark suite. In CVPR
– reference: Gong B, Shi Y, Sha F, & Grauman K (2012) Geodesic Flow Kernel for Unsupervised Domain Adaptation. In Computer Vision and Pattern Recognition
– reference: Munro J, & Damen D (2020) Multi-modal domain adaptation for fine-grained action recognition. In CVPR
– reference: Pirsiavash H, & Ramanan D (2012) Detecting activities of daily living in first-person camera views. In CVPR
– reference: Bearman A, Russakovsky O, Ferrari V, & Fei-Fei L (2016) What’s the point: semantic segmentation with point supervision. In ECCV
– reference: Planamente M, Plizzari C, Alberti E, & Caputo B (2021) Cross-domain first person audio-visual action recognition through relative norm alignment. arXiv preprint arXiv:2106.01689
– reference: Hsu HK, Yao CH, Tsai YH, Hung WC, Tseng HY, Singh M, & Yang MH (2020) Progressive domain adaptation for object detection. In Winter Conference on Applications of Computer Vision
– reference: Feichtenhofer C, Fan H, Malik J, & He K (2019) SlowFast networks for video recognition. In ICCV
– reference: Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, & Schiele B (2016) The cityscapes dataset for semantic urban scene understanding. In CVPR
– reference: Saenko K, Kulis B, Fritz M, & Darrell T (2010) Adapting visual category models to new domains. In ECCV
– reference: Xu J, Mei T, Yao T, & Rui Y (2016) MSR-VTT: A large video description dataset for bridging video and language. In CVPR
– reference: Cao Y, Long M, Wang J, & Yu P (2017) Correlation hashing network for efficient cross-modal retrieval. In BMVC
– reference: HeckmanJJSample Selection Bias as a Specification ErrorEconometrica197947115316151883210.2307/1912352
– reference: Kazakos E, Nagrani A, Zisserman A, & Damen D (2019) EPIC-Fusion: Audio-visual temporal binding for egocentric action recognition. In ICCV
– reference: Wray M, Larlus D, Csurka G, & Damen D (2019) Fine-grained action retrieval through multiple parts-of-speech embeddings. In ICCV
– reference: Moltisanti D, Wray M, Mayol-Cuevas W, & Damen D (2017) Trespassing the boundaries: Labeling temporal bounds for object interactions in egocentric video. In ICCV
– reference: He K, Girshick R, & Dollár P (2019) Rethinking ImageNet pre-training. In ICCV
– reference: Vondrick C, Shrivastava A, Fathi A, Guadarrama S, & Murphy K (2018) Tracking emerges by colorizing videos. In ECCV
– reference: Koppula HS, & Saxena A (2016) Anticipating human activities using object affordances for reactive robotic response. TPAMI
– reference: Zhou L, Xu C, & Corso JJ (2017) Towards automatic learning of procedures from web instructional videos. In AAAI
– reference: Torralba A, & Efros AA (2011) Unbiased look at dataset bias. In CVPR 2011
– reference: Huang X, Cheng X, Geng Q, Cao B, Zhou D, Wang P, Lin Y, & Yang R (2018) The apolloscape dataset for autonomous driving. In CVPRW
– reference: Bojanowski P, Lajugie R, Bach F, Laptev I, Ponce J, Schmid C, & Sivic J (2014) Weakly supervised action labeling in videos under ordering constraints. In ECCV
– reference: Narayan S, Cholakkal H, Khan F, & Shao L (2019) 3C-Net: Category count and center loss for weakly-supervised action localization. In ICCV
– reference: Nguyen P, Ramanan D, & Fowlkes C (2019) Weakly-supervised action localization with background modeling. In ICCV
– reference: Chen MH, Kira Z, AlRegib G, Yoo J, Chen R, & Zheng J (2019) Temporal attentive alignment for large-scale video domain adaptation. In ICCV
– reference: Ganin Y, Ustinova E, Ajakan, H, Germain P, Larochelle H, Laviolette F, Marchand M, & Lempitsky V (2016) Domain-adversarial training of neural networks. JMLR
– reference: Fathi A, Li Y, & Rehg J (2012) Learning to recognize daily actions using gaze. In ECCV
– reference: Chéron G, Alayrac J, Laptev I, & Schmid C (2018) A flexible model for training action localization with varying levels of supervision. In NeurIPS
– reference: Lin J, Gan C, & Han S (2019) TSM: Temporal shift module for efficient video understanding. In ICCV
– reference: Yeung S, Russakovsky O, Jin N, Andriluka M, Mori G, & Fei-Fei L (2017) Every Moment Counts: Dense detailed labeling of actions in complex videos. IJCV
– reference: Miech A, Zhukov D, Alayrac JB, Tapaswi M, Laptev I, & Sivic J (2019) HowTo100M: Learning a text-video embedding by watching hundred million narrated video clips. In ICCV
– reference: Damen D, Doughty H, Farinella GM, Fidler S, Furnari A, Kazakos E, Moltisanti D, Munro J, Perrett T, Price W, & Wray M (2018) Scaling egocentric vision: The EPIC-KITCHENS dataset. In ECCV
– reference: Caputo B, Müller H, Martinez-Gomez J, Villegas M, Acar B, Patricia N, Marvasti N, Üsküdarlı S, Paredes R, Cazorla M, et al. (2014) Imageclef 2014: Overview and analysis of the results. In: International Conference of the Cross-Language Evaluation Forum for European Languages, Springer 192–211
– reference: Lee N, Choi W, Vernaza P, Choy C, Torr PHS, & Chandraker M (2017) DESIRE: Distant future prediction in dynamic scenes with interacting agents. In CVPR
– reference: Zach C, Pock T, & Bischof H (2007) A duality based approach for realtime TV-L1 optical flow. In Pattern Recognition
– reference: Chen D, & Dolan, W (2011) Collecting highly parallel data for paraphrase evaluation. In NAACL-HLT
– reference: Liu Z, Miao Z, Zhan X, Lin D, Yu SX, & Icsi, UCB (2020) Open Compound Domain Adaptation. In Computer Vision and Pattern Recognition
– reference: Moltisanti D, Fidler S, & Damen D (2019). Action recognition from single timestamp supervision in untrimmed videos. In CVPR
– reference: Caesar H, Bankiti V, Lang AH, Vora S, Liong VE, Xu Q, Krishnan A, Pan Y, Baldan G, & Beijbom O (2019) nuScenes: A multimodal dataset for autonomous driving. arXiv
– reference: Marszalek M, Laptev I, & Schmid C (2009) Actions in context. In CVPR
– reference: Heilbron FC, Escorcia V, Ghanem B, & Niebles JC (2015) ActivityNet: A large-scale video benchmark for human activity understanding. In CVPR
– reference: Carreira J, & Zisserman A (2017) Quo Vadis, action recognition? A new model and the Kinetics dataset. In CVPR
– reference: Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, & Torralba A (2017) Scene parsing through ADE20K dataset. In CVPR
– reference: Zhao H, Yan Z, Torresani L, & Torralba A (2019) HACS: Human action clips and segments dataset for recognition and temporal localization. In ICCV
– reference: Gygli M, & Ferrari V (2019) Efficient object annotation via speaking and pointing. IJCV
– reference: Silberman N, Hoiem D, Kohli P, & Fergus R (2012) Indoor segmentation and support inference from RGBD images. In ECCV
– reference: Li Y, Ye Z, & Rehg JM (2015) Delving into egocentric actions. In CVPR
– reference: Järvelin K, & Kekäläinen J (2002) Cumulated gain-based evaluation of IR techniques. TOIS
– reference: Wang L, Xiong Y, Lin D, & Van Gool L (2017) Untrimmednets for weakly supervised action recognition and detection. In CVPR
– reference: Lin T, Liu X, Li X, Ding E, & Wen S (2019) BMN: Boundary-matching network for temporal action proposal generation. In ICCV
– reference: Yang L, Huang Y, Sugano Y, & Sato Y (2021) Epic-kitchens-100 unsupervised domain adaptation challenge for action recognition 2021: Team m3em technical report. arXiv preprint arXiv:2106.10026
– reference: Furnari A, & Farinella GM (2020) Rolling-unrolling LSTMs for action anticipation from first-person video. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)
– reference: Wulfmeier M, Bewley A, & Posner I (2018) Incremental Adversarial Domain Adaptation for Continually Changing Environments. In International Conference on Robotics and Automation. 4489–4495
– reference: Chang C, Huang DA, Sui Y, Fei-Fei L, & Niebles JC (2019) D3TW: Discriminative differentiable dynamic time warping for weakly supervised action alignment and segmentation. In CVPR
– reference: Venkateswara H, Eusebio J, Chakraborty S, & Panchanathan S (2017) Deep hashing network for unsupervised domain adaptation. In CVPR
– reference: Gorban A, Idrees H, Jiang YG, Zamir AR, Laptev I, Shah M, & Sukthankar R (2015). THUMOS challenge: Action recognition with a large number of classes. http://www.thumos.info/
– reference: Gupta S, & Malik J (2016) Visual semantic role labeling. In CVPR
– reference: Carlevaris-BiancoNUshaniAKEusticeRMUniversity of Michigan North Campus long-term vision and lidar datasetInt J Robotics Res20163591023103510.1177/0278364915614638
– reference: Zhai M, Bessinger Z, Workman S, & Jacobs N (2017) Predicting Ground-Level Scene Layout from Aerial Imagery. In Computer Vision and Pattern Recognition
– reference: Ioffe S, & Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In ICML
– reference: Kang C, Xiang S, Liao S, Xu C, & Pan C (2015) Learning consistent feature representation for cross-modal multimedia retrieval. TMM
– reference: Stein S, & McKenna SJ (2013). Combining Embedded Accelerometers with Computer Vision for Recognizing Food Preparation Activities. In International Joint Conference on Pervasive and Ubiquitous Computing
– reference: Kingma DP, & Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
– reference: McInnes L, Healy J, & Melville J (2018) UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv
– reference: Shan D, Geng J, Shu M, & Fouhey DF (2020) Understanding human hands in contact at internet scale. In CVPR
– reference: Mikolov T, Chen K, Corrado G, & Dean J (2013) Efficient estimation of word representations in vector space. In ICLR
– reference: Zhou B, Andonian A, Oliva A, & Torralba A (2018) Temporal relational reasoning in videos. ECCV
– reference: MaddernWPascoeGLinegarCNewmanP1 year, 1000 km: the Oxford RobotCar datasetInt J Robot Res201736131510.1177/0278364916679498
– reference: Gu C, Sun C, Ross DA, Vondrick C, Pantofaru C, Li Y, Vijayanarasimhan S, Toderici G, Ricco S, Sukthankar R, Schmid C, & Malik J (2018) AVA: A video dataset of spatio-temporally localized atomic visual actions. In CVPR
– reference: Zhai X, Puigcerver J, Kolesnikov A, Ruyssen P, Riquelme C, Lucic M, Djolonga J, Pinto AS, Neumann M, Dosovitskiy A, Beyer L, Bachem O, Tschannen M, Michalski M, Bousquet O, Gelly S, & Houlsby N (2019) A large-scale study of representation learning with the visual task adaptation benchmark. arXiv
– reference: Nguyen P, Liu T, Prasad G, & Han B (2018). Weakly supervised action localization by sparse temporal pooling network. In CVPR
– reference: Noroozi M, & Favaro P (2016) Unsupervised learning of visual representations by solving jigsaw puzzles. In ECCV
– reference: Lea C, Flynn MD, Vidal R, Reiter A, & Hager GM (2017) Temporal convolutional networks for action segmentation and detection. In CVPR
– reference: Kuehne H, Arslan A, & Serre T (2014) The language of actions: Recovering the syntax and semantics of goal-directed human activities. In CVPR
– reference: Oberdiek P, Rottmann M, & Fink GA (2020) Detection and Retrieval of Out-of-Distribution Objects in Semantic Segmentation. In Computer Vision and Pattern Recognition Workshops
– reference: Ueberla JP (1997) Domain adaptation with clustered language models. In International Conference on Acoustics, Speech and Signal Processing
– reference: Peng X, Bai Q, Xia X, Huang Z, Saenko K, & Wang B (2019) Moment matching for multi-source domain adaptation. In ICCV
– reference: Weinzaepfel P, Martin X, & Schmid C (2016) Human action localization with sparse spatial supervision. arXiv
– reference: Goyal R, Kahou SE, Michalski V, Materzynska J, Westphal S, Kim H, Haenel V, Fründ I, Yianilos P, Mueller-Freitag M, Hoppe F, Thurau C, Bax I, Memisevic R (2017) The “Something Something” video database for learning and evaluating visual common sense. In ICCV
– reference: Patron-Perez A, Marszalek M, Zisserman A, & Reid I (2010) High Five: Recognising human interactions in TV shows. In BMVC
– reference: He K, Gkioxari G, Dollár P, & Girshick R (2017) Mask R-CNN. In ICCV
– reference: Carreira J, Noland E, Hillier C, & Zisserman A (2019) A short note on the Kinetics-700 human action dataset. arXiv
– reference: Peng X, Usman B, Kaushik N, Hoffman J, Wang D, & Saenko K (2017) VisDA: The visual domain adaptation challenge. arXiv
– reference: Wang L, Xiong Y, Wang Z, Qiao Y, Lin D, Tang X, & Gool LV (2016) Temporal Segment Networks: Towards good practices for deep action recognition. In ECCV
– ident: 1531_CR119
  doi: 10.1007/s11263-017-1013-y
– ident: 1531_CR101
  doi: 10.1007/978-3-319-46448-0_31
– ident: 1531_CR18
– ident: 1531_CR22
  doi: 10.1109/ICCV.2019.00630
– ident: 1531_CR63
  doi: 10.1109/CVPR42600.2020.01242
– ident: 1531_CR95
  doi: 10.1109/CVPR.2015.7298940
– volume: 35
  start-page: 1023
  issue: 9
  year: 2016
  ident: 1531_CR7
  publication-title: Int J Robotics Res
  doi: 10.1177/0278364915614638
– ident: 1531_CR54
  doi: 10.1109/ICCV.2011.6126543
– ident: 1531_CR37
  doi: 10.1007/978-3-030-01252-6_13
– ident: 1531_CR24
  doi: 10.1007/978-3-030-11021-5_24
– ident: 1531_CR26
  doi: 10.1109/CVPR.2012.6248074
– ident: 1531_CR52
  doi: 10.1109/ICCV.2017.83
– ident: 1531_CR107
  doi: 10.1109/CVPR.2011.5995347
– ident: 1531_CR112
  doi: 10.1007/978-3-319-46484-8_2
– ident: 1531_CR42
– volume: 47
  start-page: 153
  issue: 1
  year: 1979
  ident: 1531_CR35
  publication-title: Econometrica
  doi: 10.2307/1912352
– ident: 1531_CR78
  doi: 10.1109/CVPR.2018.00706
– ident: 1531_CR93
  doi: 10.1109/CVPR.2018.00771
– ident: 1531_CR29
  doi: 10.1109/ICCV.2017.622
– ident: 1531_CR34
  doi: 10.1109/ICCV.2017.322
– ident: 1531_CR72
  doi: 10.1109/CVPR.2019.01015
– ident: 1531_CR39
  doi: 10.1109/WACV45572.2020.9093358
– ident: 1531_CR73
  doi: 10.1109/ICCV.2017.314
– ident: 1531_CR58
  doi: 10.1109/CVPR.2015.7298625
– ident: 1531_CR131
  doi: 10.1109/CVPR.2017.544
– ident: 1531_CR9
– ident: 1531_CR15
  doi: 10.1007/978-3-030-01225-0_44
– ident: 1531_CR47
  doi: 10.1109/CVPR.2015.7298932
– ident: 1531_CR83
– ident: 1531_CR4
  doi: 10.1109/CVPR42600.2020.01164
– ident: 1531_CR44
  doi: 10.1145/582415.582418
– ident: 1531_CR23
  doi: 10.1109/TPAMI.2020.2992889
– ident: 1531_CR6
  doi: 10.1007/978-3-319-11382-1_18
– ident: 1531_CR97
  doi: 10.1007/978-3-642-15561-1_16
– ident: 1531_CR99
  doi: 10.1109/CVPR42600.2020.00989
– ident: 1531_CR105
  doi: 10.1145/2493432.2493482
– ident: 1531_CR121
– ident: 1531_CR104
– ident: 1531_CR92
– ident: 1531_CR127
  doi: 10.1007/978-3-030-01246-5_49
– ident: 1531_CR38
– ident: 1531_CR13
– ident: 1531_CR55
  doi: 10.1109/CVPR.2017.113
– ident: 1531_CR62
  doi: 10.1109/CVPR.2019.00139
– ident: 1531_CR69
  doi: 10.1007/978-3-319-46454-1_27
– ident: 1531_CR86
– ident: 1531_CR3
  doi: 10.1007/978-3-319-10602-1_41
– ident: 1531_CR17
  doi: 10.1007/978-3-319-46454-1_17
– ident: 1531_CR80
  doi: 10.1007/978-3-319-46466-4_5
– ident: 1531_CR94
  doi: 10.1109/CVPR.2012.6247801
– ident: 1531_CR103
  doi: 10.1109/ICCV.2017.381
– ident: 1531_CR118
– ident: 1531_CR27
– ident: 1531_CR79
  doi: 10.1109/ICCV.2019.00560
– ident: 1531_CR49
  doi: 10.1109/ICCV.2019.00559
– ident: 1531_CR50
– ident: 1531_CR88
  doi: 10.1109/CVPR.2012.6248010
– ident: 1531_CR68
  doi: 10.1145/2911996.2912036
– ident: 1531_CR122
  doi: 10.1109/CVPR.2007.383196
– ident: 1531_CR123
  doi: 10.24963/ijcai.2019/871
– ident: 1531_CR114
  doi: 10.1109/ICCV.2019.00054
– ident: 1531_CR5
  doi: 10.5244/C.31.128
– ident: 1531_CR20
– ident: 1531_CR43
– ident: 1531_CR129
  doi: 10.1126/scirobotics.aaw6661
– ident: 1531_CR130
  doi: 10.1609/aaai.v32i1.12342
– ident: 1531_CR40
  doi: 10.1109/CVPRW.2018.00141
– ident: 1531_CR89
– ident: 1531_CR16
  doi: 10.5244/C.28.30
– ident: 1531_CR28
– ident: 1531_CR74
  doi: 10.1109/TPAMI.2019.2901464
– ident: 1531_CR84
  doi: 10.5244/C.24.50
– ident: 1531_CR113
– ident: 1531_CR98
  doi: 10.1007/978-3-642-15561-1_16
– ident: 1531_CR110
  doi: 10.1007/978-3-030-01261-8_24
– ident: 1531_CR96
  doi: 10.1109/ICCVW.2019.00460
– ident: 1531_CR81
  doi: 10.1109/CVPRW50498.2020.00172
– ident: 1531_CR10
  doi: 10.1109/CVPR.2019.00366
– ident: 1531_CR32
  doi: 10.1007/s11263-019-01255-4
– ident: 1531_CR67
  doi: 10.21105/joss.00861
– ident: 1531_CR116
  doi: 10.1109/CVPR.2016.571
– ident: 1531_CR90
– ident: 1531_CR70
  doi: 10.1109/ICCV.2019.00272
– ident: 1531_CR91
  doi: 10.1145/3240508.3240633
– ident: 1531_CR11
– ident: 1531_CR59
  doi: 10.1109/ICCV.2019.00718
– ident: 1531_CR77
  doi: 10.1109/ICCV.2017.534
– ident: 1531_CR21
  doi: 10.1007/978-3-642-33718-5_23
– volume: 36
  start-page: 3
  issue: 1
  year: 2017
  ident: 1531_CR64
  publication-title: Int J Robot Res
  doi: 10.1177/0278364916679498
– ident: 1531_CR102
  doi: 10.1007/978-3-642-33715-4_54
– ident: 1531_CR53
  doi: 10.1109/CVPR.2014.105
– ident: 1531_CR31
– ident: 1531_CR124
  doi: 10.1109/CVPR.2017.440
– ident: 1531_CR87
  doi: 10.1109/CVPR.2016.85
– ident: 1531_CR36
  doi: 10.1109/CVPR.2015.7298698
– ident: 1531_CR12
  doi: 10.1109/ICCV.2019.00642
– ident: 1531_CR45
– ident: 1531_CR25
  doi: 10.1007/978-3-319-58347-1_10
– ident: 1531_CR61
  doi: 10.1007/978-3-319-10602-1_48
– ident: 1531_CR76
  doi: 10.1109/ICCV.2019.00877
– ident: 1531_CR128
  doi: 10.1109/CVPR.2019.00674
– ident: 1531_CR106
  doi: 10.1145/2493432.2493482
– ident: 1531_CR117
  doi: 10.1016/j.imavis.2016.01.001
– ident: 1531_CR1
  doi: 10.1007/978-3-319-46478-7_34
– ident: 1531_CR46
  doi: 10.1109/TMM.2015.2390499
– ident: 1531_CR66
  doi: 10.1109/CVPR.2009.5206557
– ident: 1531_CR30
  doi: 10.1109/CVPR.2018.00633
– ident: 1531_CR41
  doi: 10.1007/978-3-319-46493-0_9
– ident: 1531_CR51
  doi: 10.1109/TPAMI.2015.2430335
– ident: 1531_CR8
  doi: 10.1109/CVPR.2017.502
– ident: 1531_CR109
  doi: 10.1109/CVPR.2017.572
– ident: 1531_CR85
  doi: 10.1109/ICCV.2019.00149
– ident: 1531_CR65
– ident: 1531_CR56
  doi: 10.1109/CVPR.2017.233
– ident: 1531_CR60
  doi: 10.1109/ICCV.2019.00399
– ident: 1531_CR125
– ident: 1531_CR108
– ident: 1531_CR2
– ident: 1531_CR126
  doi: 10.1109/ICCV.2019.00876
– ident: 1531_CR100
– ident: 1531_CR48
– ident: 1531_CR33
  doi: 10.1109/ICCV.2019.00502
– ident: 1531_CR14
  doi: 10.1109/CVPR.2016.350
– ident: 1531_CR111
  doi: 10.1109/CVPR.2017.678
– ident: 1531_CR120
  doi: 10.1109/ICCV.2019.00940
– ident: 1531_CR82
  doi: 10.1609/aaai.v34i07.6854
– ident: 1531_CR57
  doi: 10.1109/ICCV.2019.00634
– ident: 1531_CR71
– ident: 1531_CR75
  doi: 10.1109/CVPR42600.2020.00020
– ident: 1531_CR19
  doi: 10.1109/CVPR.2009.5206848
– ident: 1531_CR115
  doi: 10.1109/ICRA.2018.8460982
SSID ssj0002823
Score 2.740413
Snippet This paper introduces the pipeline to extend the largest dataset in egocentric vision, EPIC-KITCHENS. The effort culminates in EPIC-KITCHENS-100, a collection...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 33
SubjectTerms Activity recognition
Annotations
Artificial Intelligence
Computer Imaging
Computer Science
Datasets
Image Processing and Computer Vision
Kitchens
Pattern Recognition
Pattern Recognition and Graphics
Pipelines
Rescaling
Vision
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-iPvjit1idEkTwQQPrR5rGtzEmDmGMTYdvoU2vMpBurNO_30uWOvwEhb60vTZfl7vfJbk7Qs5RJaXAU8EyrgWLEL8xmSea-Zn2M15ADM3UJpsQvV7y-Cj7zimsqk-711uSVlIvnd38wO45GvMXOYeh4F1DdZeYhA2D4ehd_qIRsUggj4YRj6XvXGW-_8cHdfRZKH_ZHbVK52brf9XdJpsOZNLWgit2yAqUu2TLAU7qpnOFj-qcDvWzPTIaQIXDhiXRztPEHt0cazqyHujX1C4zWE-IK9ofT40vO9C0zGm7zslSUUTBtNPvttld97592-kNUQY398nDTQdvmcu9wDRvBnNWZHkEILOCZ0mBDYlRGEWhFpAHEtJEBiByQPtWh2EUFdxkRuAaIiGFztMQrwOyWk5KOCQ0ixMRhHEGUvNIc0jCSCIOiUEY9CVzj_j1ECjtApOb_BjPahlS2fSlwr5Uti9V4JHL92-mi7Acv1KfmZFVJt5FaQ7UPKUvVaW6w4FqYcNkkCDQ9MiFIyomWLxOnX8CNsKEyPpA2ag5RLkZXykT2R7RdRgLj1zVHLF8_XPljv5Gfkw2AuOBYVeBGmR1PnuBE7KuX-fjanZqZ8IbEdH9Tg
  priority: 102
  providerName: Springer Nature
Title Rescaling Egocentric Vision: Collection, Pipeline and Challenges for EPIC-KITCHENS-100
URI https://link.springer.com/article/10.1007/s11263-021-01531-2
https://www.proquest.com/docview/2617115367
Volume 130
WOSCitedRecordID wos000709268800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1405
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002823
  issn: 0920-5691
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_Wdg97WbsvmrULYgz2sIrFH7KsvYw2uCyUBZNsWbcXYcvnEhhOVqf9-3dS5Ia2rC8DI5As25JPOv30cfcDeEdDUoGikLwURvKY8BtXVWp4UJqgFDUmOCgc2YQcj9Pzc5X7BbfWH6vsdKJT1NXC2DXyj9ZzOKGXKJGfl3-4ZY2yu6ueQmMLdiyysUf6vg6GN5qYphNrKnmaIolEBd5oZm06F4RuB9NOpqkd8vDWwHRXPd_bJ3XDz-nu_xZ8D5564MmO1y3lGTzC5jnsehDKfBdvKanjeejSXsBsgi2JksrFsouFO845N2zmrNI_Mbf04Kwjjlg-X1r7dmRFU7Fhx9PSMkLGLMtHQ342-jb8ko2npJcHL-H7aUZR7vkYuBGDcMXrsooRVVmLMq3p7yWkoOLISKxChUWqQpQV0pzXRFEc18KyJQiDsVTSVEVE1yvYbhYN7gMrk1SGUVKiMiI2AtMoVoRNEpQWkamqB0EnDG28s3LLmfFbb9wsWwFqEqB2AtRhDz7cPLNcu-p4MPdbK2NtfWA09pDNRXHVtno0nehjqpgKUwKfPXjvM9UL-rwpvM0CVcK6zbqV87CTvvZaoNUb0ffgqGs_m9v_Ltzrh992AE9Ca4XhVoIOYXt1eYVv4LG5Xs3byz5syR8_-7Bzko3zCcXOJO-7fkFhLn5ROJnO_gL7Dgzw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggSXlqdYWsBCIA7UYuPEcYyEULVs1WjLatWWqjeTOJNqJZRdmm0r_hS_kbGTdFUQvfWAlJPjPMb-5mV7ZgBek0rKUGaK59IqHpH9xnWRWB7kNshliTH2M19sQo3HyfGxnqzAry4Wxh2r7GSiF9TFzLo18vcuczhZL2GsPs1_cFc1yu2udiU0GliM8OcFuWz1x_Qzze8bIXaGh4Nd3lYV4Fb2xYKXeREh6ryUeVKKOIyJzaLQKiyExizRAlWB5LnZMIyiUrqc_9JipLSyRRbSRe-9BbejMFGOr0aKX0p-cl-a0vXkkslYB22QThOqFwi_Y-qcd8I9F1cU4Z_q4K99Wa_udtb_t4G6D2utYc22G054ACtYPYT11shmrQirqamrY9G1PYKjfawJqjQObHgy88dVp5Yd-aj7D8wvrfjojy02mc5d_D6yrCrYoKtDUzOy_Nlwkg74KCUKh-MD0jv9x_D1Rgh-AqvVrMKnwPI4USKMc9RWRlZiEkaabK8YlbM4ddGDoJt8Y9tk7K4myHezTCPtAGMIMMYDxogevLt8Zt6kIrm29yuHKeNyfFTuENFJdlbXJj3YN9tEmBYJGdc9eNt2Kmf0eZu1MRlEhEsLdqXnZoc200q52iyh1oOtDq_L2__-uWfXv-0l3N09_LJn9tLxaAPuCRdx4le9NmF1cXqGz-GOPV9M69MXnv8YfLtpHP8GRyFlZg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NgRAvbHyJwhgWAvHArDVOHMeTJjR1rYiKqmiDadqLSRxnqjSl3dKB-Nf46zg7zqqB2NsekPLkOE7O-Z3vzr4PgLcoknLDc0ELrgWNUH-jskw0DQodFLwysennrtiEmEyS42OZrcCvLhbGulV2a6JbqMuZtnvk2zZzOGovYSy2K-8Wke2PPs7Pqa0gZU9au3IaLUTG5ucPNN-a3XQf__U7xkbDL4NP1FcYoJr32YJWRRkZI4uKF0nF4jBGlotCLUzJpMkTyYwoDVpxOgyjqOI2_z_XJhJS6DIP8cJx78BdgTamdSfM-MmVFEBTpi1jj-YZj2XgA3basL2AudNTa8gjD1B2TSj-KRr-OqN1om-09j9P2jo89Ao32Ws55BGsmPoxrHnlm_ilrcGmrr5F1_YEjg5MgxDGOSHD05lzY51qcuSi8XeI23JxUSFbJJvObVy_IXldkkFXn6YhaBGQYZYO6DhFCoeTQ5RH_afw9VYIfgar9aw2z4EUcSJYGBdGah5pbpIwkqiTxUZYTVSWPQg6ICjtk7TbWiFnaple2oJHIXiUA49iPfhw9cy8TVFyY-83Fl_K5v6oLSBO88umUenhgdpDwiRLUOnuwXvfqZrh63XuYzWQCJsu7FrPjQ55yq9-jVrCrgdbHXaXt__9cS9uHu013Ef4qs_pZPwSHjAbiOI2wzZgdXFxaV7BPf19MW0uNh0rEvh22zD-Dc3Tboo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rescaling+Egocentric+Vision%3A+Collection%2C+Pipeline+and+Challenges+for+EPIC-KITCHENS-100&rft.jtitle=International+journal+of+computer+vision&rft.au=Damen+Dima&rft.au=Doughty%2C+Hazel&rft.au=Farinella%2C+Giovanni+Maria&rft.au=Furnari+Antonino&rft.date=2022-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=130&rft.issue=1&rft.spage=33&rft.epage=55&rft_id=info:doi/10.1007%2Fs11263-021-01531-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon