Optogenetic Tools for Subcellular Applications in Neuroscience
The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous...
Gespeichert in:
| Veröffentlicht in: | Neuron (Cambridge, Mass.) Jg. 96; H. 3; S. 572 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
01.11.2017
|
| Schlagworte: | |
| ISSN: | 1097-4199, 1097-4199 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications. |
|---|---|
| AbstractList | The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications.The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications. The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications. |
| Author | Rost, Benjamin R Hegemann, Peter Schmitz, Dietmar Schneider-Warme, Franziska |
| Author_xml | – sequence: 1 givenname: Benjamin R surname: Rost fullname: Rost, Benjamin R organization: German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany – sequence: 2 givenname: Franziska surname: Schneider-Warme fullname: Schneider-Warme, Franziska organization: Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Germany; Medical Center - University of Freiburg, Freiburg, Germany – sequence: 3 givenname: Dietmar surname: Schmitz fullname: Schmitz, Dietmar organization: German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany; Einstein Foundation Berlin, Berlin, Germany – sequence: 4 givenname: Peter surname: Hegemann fullname: Hegemann, Peter email: hegemape@rz.hu-berlin.de organization: Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany. Electronic address: hegemape@rz.hu-berlin.de |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29096074$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNjz1PwzAYhC1URD_gHyCUkSXBr-M48YJUVeVDquhAmSPHfoNcJXaIk4F_TyqKxHQ3nJ67W5KZ8w4JuQWaAAXxcEwcjr13CaOQJ1QmlOcXZAFU5jEHKWf__JwsQzhSCjyTcEXmTFIpaM4X5HHfDf4THQ5WRwfvmxDVvo_ex0pj04yN6qN11zVWq8F6FyLrordTbdAWncZrclmrJuDNWVfk42l72LzEu_3z62a9i3VG2RAbBQZqBWklIGWiqIRElRvJZCqVUEIUrDZgeGZS5IpNyvIC62k-cp5pwVbk_pfb9f5rxDCUrQ2nhcqhH0MJUvCJW3A6Re_O0bFq0ZRdb1vVf5d_n9kPrsNcQA |
| CitedBy_id | crossref_primary_10_3389_fnsyn_2021_734975 crossref_primary_10_1371_journal_pone_0200107 crossref_primary_10_1016_j_jmb_2020_01_010 crossref_primary_10_1016_j_pneurobio_2020_101799 crossref_primary_10_3390_bios11090309 crossref_primary_10_1371_journal_pbio_3001651 crossref_primary_10_3389_fncel_2023_1160245 crossref_primary_10_1016_j_nbd_2021_105475 crossref_primary_10_1038_s41574_018_0105_2 crossref_primary_10_1016_j_ymthe_2023_03_013 crossref_primary_10_3390_app9183673 crossref_primary_10_3389_fimmu_2019_00755 crossref_primary_10_4103_NRR_NRR_D_24_00537 crossref_primary_10_1016_j_brs_2025_09_005 crossref_primary_10_1038_s41467_021_26723_9 crossref_primary_10_1242_dev_199778 crossref_primary_10_7554_eLife_37487 crossref_primary_10_1038_s41589_021_00798_3 crossref_primary_10_1371_journal_pbio_3002591 crossref_primary_10_1038_s41568_022_00527_5 crossref_primary_10_1016_j_bbrc_2020_01_141 crossref_primary_10_1038_s41551_024_01210_w crossref_primary_10_3389_fnsyn_2019_00024 crossref_primary_10_1038_s43586_022_00136_4 crossref_primary_10_1038_s41467_019_08796_9 crossref_primary_10_1016_j_pbi_2022_102256 crossref_primary_10_1002_advs_202402236 crossref_primary_10_1002_cbic_201800013 crossref_primary_10_1002_cbic_202200321 crossref_primary_10_1088_1741_2552_aadf97 crossref_primary_10_1186_s12915_019_0662_4 crossref_primary_10_1016_j_isci_2024_109776 crossref_primary_10_1038_s42003_022_03636_x crossref_primary_10_3389_fncir_2020_00041 crossref_primary_10_1007_s00253_021_11307_w crossref_primary_10_1242_jcs_262163 crossref_primary_10_1038_s41598_025_95355_6 crossref_primary_10_3389_fmolb_2021_771717 crossref_primary_10_3390_ijms23137484 crossref_primary_10_1038_s42004_023_00884_8 crossref_primary_10_1371_journal_pbio_3002221 crossref_primary_10_1088_1478_3975_acf7a1 crossref_primary_10_1093_nar_gkz585 crossref_primary_10_1080_01677063_2019_1708352 crossref_primary_10_1002_advs_202307185 crossref_primary_10_3390_ijms23126593 crossref_primary_10_1073_pnas_1713845115 crossref_primary_10_1002_anie_202115472 crossref_primary_10_1002_chem_201900562 crossref_primary_10_1002_wsbm_1500 crossref_primary_10_3389_fmicb_2018_02692 crossref_primary_10_1134_S2079086424601005 crossref_primary_10_1038_s41583_019_0197_2 crossref_primary_10_1016_j_conb_2025_103106 crossref_primary_10_1113_JP281930 crossref_primary_10_1126_science_aat0094 crossref_primary_10_1007_s12551_022_01003_y crossref_primary_10_1523_JNEUROSCI_2144_18_2018 crossref_primary_10_3390_ijms21207544 crossref_primary_10_3389_fnins_2022_859803 crossref_primary_10_1002_adma_202419768 crossref_primary_10_1016_j_cub_2024_09_048 crossref_primary_10_1242_dev_191700 crossref_primary_10_1007_s12551_021_00851_4 crossref_primary_10_1007_s10517_021_05135_1 crossref_primary_10_7759_cureus_90023 crossref_primary_10_1002_adma_201908299 crossref_primary_10_1002_advs_202413817 crossref_primary_10_1016_j_neuroscience_2024_11_055 crossref_primary_10_1016_j_pnpbp_2019_01_005 crossref_primary_10_1111_jnc_16243 crossref_primary_10_7554_eLife_63230 crossref_primary_10_1016_j_neuropharm_2023_109651 crossref_primary_10_3389_fneur_2022_982223 crossref_primary_10_1111_bph_15445 crossref_primary_10_1002_ange_201915296 crossref_primary_10_1007_s00424_023_02879_9 crossref_primary_10_1016_j_ymeth_2019_03_011 crossref_primary_10_1146_annurev_physiol_032122_104610 crossref_primary_10_1038_s42003_019_0292_y crossref_primary_10_3390_app10030805 crossref_primary_10_1016_j_chembiol_2020_07_023 crossref_primary_10_1002_anie_202416456 crossref_primary_10_1016_j_stem_2023_05_015 crossref_primary_10_1109_JSTQE_2022_3214788 crossref_primary_10_1016_j_neures_2020_01_011 crossref_primary_10_1038_s41386_019_0588_0 crossref_primary_10_1007_s12268_023_2033_5 crossref_primary_10_1002_adbi_202000199 crossref_primary_10_1002_jobm_202200249 crossref_primary_10_3389_fchem_2022_879609 crossref_primary_10_1088_1741_2552_abef89 crossref_primary_10_1002_adfm_202303992 crossref_primary_10_1002_anie_201915296 crossref_primary_10_1038_s41467_023_43970_0 crossref_primary_10_3390_ijms22105300 crossref_primary_10_1016_j_conb_2018_03_008 crossref_primary_10_1016_j_jmr_2024_107743 crossref_primary_10_3390_pr11020510 crossref_primary_10_1146_annurev_chembioeng_092120_092340 crossref_primary_10_3389_fncel_2021_778900 crossref_primary_10_1038_d41586_019_01394_1 crossref_primary_10_1210_en_2018_00594 crossref_primary_10_1073_pnas_1900430116 crossref_primary_10_1016_j_jmb_2020_02_019 crossref_primary_10_1016_j_jmb_2019_01_037 crossref_primary_10_1016_j_bbrc_2020_03_105 crossref_primary_10_1016_j_bpj_2019_04_001 crossref_primary_10_1083_jcb_202106179 crossref_primary_10_1002_SMMD_20230026 crossref_primary_10_1111_jnc_15210 crossref_primary_10_1038_s41598_019_42923_2 crossref_primary_10_1002_chem_201903909 crossref_primary_10_1186_s12896_020_00633_y crossref_primary_10_1038_s41598_018_34472_x crossref_primary_10_1016_j_plasmid_2021_102597 crossref_primary_10_1016_j_bbrc_2019_12_132 crossref_primary_10_1038_s41592_021_01240_1 crossref_primary_10_1007_s10071_021_01514_3 crossref_primary_10_3389_fcell_2021_716919 crossref_primary_10_1038_s41467_020_20596_0 crossref_primary_10_1002_ange_202115472 crossref_primary_10_1016_j_cub_2020_09_056 crossref_primary_10_1021_acscentsci_3c01351 crossref_primary_10_1038_s41467_018_04428_w crossref_primary_10_1002_cbic_202200244 crossref_primary_10_1038_s41598_020_62874_3 crossref_primary_10_1038_s41587_019_0198_8 crossref_primary_10_1177_1073858418769644 crossref_primary_10_1016_j_coisb_2021_100396 crossref_primary_10_1016_j_devcel_2019_01_015 crossref_primary_10_1186_s10020_022_00524_2 crossref_primary_10_1134_S0026893320050118 crossref_primary_10_7554_eLife_42367 crossref_primary_10_3390_cells8121534 crossref_primary_10_1016_j_addr_2022_114457 crossref_primary_10_1111_ner_13516 crossref_primary_10_1007_s00424_023_02887_9 crossref_primary_10_1016_j_ceca_2018_08_007 crossref_primary_10_1016_j_ijbiomac_2024_129551 crossref_primary_10_1002_ange_202416456 crossref_primary_10_1007_s11302_021_09799_2 crossref_primary_10_1016_j_bios_2019_112003 crossref_primary_10_1038_s41598_020_59984_3 crossref_primary_10_1016_j_chembiol_2020_08_005 crossref_primary_10_1016_j_conb_2021_02_002 crossref_primary_10_1111_nph_18451 crossref_primary_10_3390_brainsci10100725 crossref_primary_10_5802_crphys_41 crossref_primary_10_3389_fsci_2023_1017235 crossref_primary_10_1016_j_conb_2020_02_007 crossref_primary_10_1007_s11427_022_2122_0 crossref_primary_10_1038_s41592_022_01745_3 crossref_primary_10_1038_s41398_024_03156_8 crossref_primary_10_3390_ijms21186522 crossref_primary_10_3390_ijms26136521 crossref_primary_10_3390_jfb10030032 crossref_primary_10_1080_10409238_2020_1726279 crossref_primary_10_1208_s12248_018_0211_z crossref_primary_10_1016_j_neuron_2019_10_036 crossref_primary_10_1111_jnc_15236 crossref_primary_10_3390_microorganisms7100409 crossref_primary_10_1016_j_tibtech_2018_06_011 crossref_primary_10_1117_1_NPh_11_3_033405 crossref_primary_10_1038_s44318_024_00221_2 crossref_primary_10_1002_med_22112 crossref_primary_10_3389_fncom_2023_1229715 crossref_primary_10_1042_BST20190246 crossref_primary_10_1016_j_mee_2017_12_007 crossref_primary_10_1038_s41592_023_01852_9 crossref_primary_10_3390_ijms252111365 crossref_primary_10_3390_ijms20205106 crossref_primary_10_1016_j_jneumeth_2020_109004 crossref_primary_10_1113_JP278292 crossref_primary_10_1016_j_neuron_2021_04_026 crossref_primary_10_1107_S2059798321011220 crossref_primary_10_1016_j_neubiorev_2019_08_007 crossref_primary_10_1038_s42003_021_01977_7 crossref_primary_10_1016_j_jviromet_2020_113863 crossref_primary_10_1016_j_ceb_2020_01_007 crossref_primary_10_1038_s41467_023_36960_9 crossref_primary_10_1016_j_sbi_2019_01_017 crossref_primary_10_1016_j_neures_2021_10_004 crossref_primary_10_1242_bio_036749 crossref_primary_10_3389_fcell_2022_931237 crossref_primary_10_1016_j_preteyeres_2022_101153 crossref_primary_10_2147_JPR_S455549 crossref_primary_10_1002_advs_202100424 crossref_primary_10_4103_bc_bc_33_24 crossref_primary_10_1038_s41593_022_01113_6 crossref_primary_10_1038_s43586_022_00168_w crossref_primary_10_1007_s12031_021_01898_4 |
| ContentType | Journal Article |
| Copyright | Copyright © 2017 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2017 Elsevier Inc. All rights reserved. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.neuron.2017.09.047 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Biology |
| EISSN | 1097-4199 |
| ExternalDocumentID | 29096074 |
| Genre | Journal Article Review |
| GroupedDBID | --- --K -DZ -~X 0R~ 0SF 123 1RT 1~5 26- 2WC 3V. 4.4 457 4G. 53G 5RE 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDT AAEDW AAFTH AAKRW AAKUH AALRI AAMRU AAVLU AAXUO ABJNI ABMAC ABVKL ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADVLN AEFWE AENEX AEXQZ AFKRA AFTJW AGKMS AHHHB AHMBA AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BKNYI BPHCQ BVXVI CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P FCP FDB FEDTE FIRID HCIFZ HVGLF IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M0R M0T M2M M2O M3Z M41 M7P N9A NCXOZ NPM O-L O9- OK1 P2P P6G PQQKQ PROAC RCE RIG ROL RPZ SCP SDP SES SSZ TR2 WOW 7X8 AAFWJ AAYWO ABDGV ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP EFKBS |
| ID | FETCH-LOGICAL-c502t-da1d1fa13b613268b69ea7d92939a6a6682fd1d45d3e4a245d278ef097e445c62 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 252 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414203400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1097-4199 |
| IngestDate | Sat Sep 27 19:54:33 EDT 2025 Thu Jan 02 22:22:57 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | neuroscience Channelrhodopsin optogenetics subcellular targeting organelles neurons trafficking |
| Language | English |
| License | Copyright © 2017 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c502t-da1d1fa13b613268b69ea7d92939a6a6682fd1d45d3e4a245d278ef097e445c62 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | http://www.cell.com/article/S0896627317309169/pdf |
| PMID | 29096074 |
| PQID | 1964268840 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1964268840 pubmed_primary_29096074 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Nov-01 20171101 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-Nov-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neuron (Cambridge, Mass.) |
| PublicationTitleAlternate | Neuron |
| PublicationYear | 2017 |
| SSID | ssj0014591 |
| Score | 2.6429079 |
| SecondaryResourceType | review_article |
| Snippet | The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic... The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 572 |
| SubjectTerms | Animals Cell Physiological Phenomena - physiology Humans Intracellular Space - chemistry Intracellular Space - genetics Intracellular Space - metabolism Neurons - chemistry Neurons - physiology Neurosciences - methods Neurosciences - trends Optogenetics - methods Optogenetics - trends Rhodopsin - analysis Rhodopsin - genetics Second Messenger Systems - physiology |
| Title | Optogenetic Tools for Subcellular Applications in Neuroscience |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29096074 https://www.proquest.com/docview/1964268840 |
| Volume | 96 |
| WOSCitedRecordID | wos000414203400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_qFLz4sfkxv4gg3oJtkubjogxxeLHuMGG3kjQpDLSddgr7703SjnkRBC_tqfB4fXlfv5ffA-DKGhUlliVIGCsRLXSOFCEceRzRhfOcSKrCsgmepmIykaO24Va3Y5VLnxgctaly3yO_8cRRmAlXj9zN3pHfGuXR1XaFxjroEJfK-JEuPlmhCDQJG_M8yOrRTrm8OhfmuwJfpGdAjXlgOqX89yQzBJvh7n_F3AM7bZoJB41d7IM1W3ZBb1C6EvttAa9hGPwMHfUu2Gr2US564PZ5Nq-cRfmLjXBcVa81dDktdM7F9_f9wCoc_AC84bSE6YoP0x6Al-HD-P4RtQsWUJ5EeI6Mik1cqJhoF9Sd1JpJq7hxGRORiinGBC5MbGhiiKUKuzfmwhZOnZbSJGf4EGyUVWmPAaSGaGpwJGSuqRVcaEwL5nIPZbiOuO6Dy6W-MmfAXmpV2uqzzlYa64OjRunZrGHayLD0FRanJ3_4-hRs-3_Z3BM8A53CHV97Djbzr_m0_rgIluGe6ejpGxPtwqc |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optogenetic+Tools+for+Subcellular+Applications+in+Neuroscience&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Rost%2C+Benjamin+R&rft.au=Schneider-Warme%2C+Franziska&rft.au=Schmitz%2C+Dietmar&rft.au=Hegemann%2C+Peter&rft.date=2017-11-01&rft.eissn=1097-4199&rft.volume=96&rft.issue=3&rft.spage=572&rft_id=info:doi/10.1016%2Fj.neuron.2017.09.047&rft_id=info%3Apmid%2F29096074&rft_id=info%3Apmid%2F29096074&rft.externalDocID=29096074 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4199&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4199&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4199&client=summon |