MELK is not necessary for the proliferation of basal-like breast cancer cells

Thorough preclinical target validation is essential for the success of drug discovery efforts. In this study, we combined chemical and genetic perturbants, including the development of a novel selective maternal embryonic leucine zipper kinase (MELK) inhibitor HTH-01-091, CRISPR/Cas9-mediated MELK k...

Full description

Saved in:
Bibliographic Details
Published in:eLife Vol. 6; no. 9, 2017
Main Authors: Huang, Hai-Tsang, Seo, Hyuk-Soo, Zhang, Tinghu, Wang, Yubao, Jiang, Baishan, Li, Qing, Buckley, Dennis L, Nabet, Behnam, Roberts, Justin M, Paulk, Joshiawa, Dastjerdi, Shiva, Winter, Georg E, McLauchlan, Hilary, Moran, Jennifer, Bradner, James E, Eck, Michael J, Dhe-Paganon, Sirano, Zhao, Jean J, Gray, Nathanael S
Format: Journal Article
Language:English
Published: England eLife Sciences Publications Ltd 19.09.2017
eLife Sciences Publications, Ltd
Subjects:
ISSN:2050-084X, 2050-084X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thorough preclinical target validation is essential for the success of drug discovery efforts. In this study, we combined chemical and genetic perturbants, including the development of a novel selective maternal embryonic leucine zipper kinase (MELK) inhibitor HTH-01-091, CRISPR/Cas9-mediated MELK knockout, a novel chemical-induced protein degradation strategy, RNA interference and CRISPR interference to validate MELK as a therapeutic target in basal-like breast cancers (BBC). In common culture conditions, we found that small molecule inhibition, genetic deletion, or acute depletion of MELK did not significantly affect cellular growth. This discrepancy to previous findings illuminated selectivity issues of the widely used MELK inhibitor OTSSP167, and potential off-target effects of MELK-targeting short hairpins. The different genetic and chemical tools developed here allow for the identification and validation of any causal roles MELK may play in cancer biology, which will be required to guide future MELK drug discovery efforts. Furthermore, our study provides a general framework for preclinical target validation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OTHER
ISSN:2050-084X
2050-084X
DOI:10.7554/eLife.26693