A novel three-stage multi-population evolutionary algorithm for constrained multi-objective optimization problems

Lots of real-world optimization problems are inherently constrained multi-objective optimization problems (CMOPs), but the existing constrained multi-objective optimization evolutionary algorithms (CMOEAs) often fail to balance convergence and diversity effectively. Therefore, a novel constrained mu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Complex & intelligent systems Ročník 10; číslo 1; s. 655 - 675
Hlavní autoři: Shi, Chenli, Wang, Ziqi, Jin, Xiaohang, Xu, Zhengguo, Wang, Zhangsheng, Shen, Peng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.02.2024
Springer Nature B.V
Springer
Témata:
ISSN:2199-4536, 2198-6053
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Lots of real-world optimization problems are inherently constrained multi-objective optimization problems (CMOPs), but the existing constrained multi-objective optimization evolutionary algorithms (CMOEAs) often fail to balance convergence and diversity effectively. Therefore, a novel constrained multi-objective optimization evolutionary algorithm based on three-stage multi-population coevolution (CMOEA-TMC) for complex CMOPs is proposed. CMOEA-TMC contains two populations, called mainPop and helpPop , which evolve with and without consideration of constraints, respectively. The proposed algorithm divides the search process into three stages. In the first stage, fast convergence is achieved by transforming the original multi-objective problems into multiple single-objective problems. Coarse-grained parallel evolution of subpopulations in mainPop and guidance information provided by helpPop can facilitate mainPop to quickly approach the Pareto front. In the second stage, the objective function of mainPop changes to the original problem. Coevolution of mainPop and helpPop by sharing offsprings can produce solutions with better diversity. In the third stage, the mining of the global optimal solutions is performed, discarding helpPop to save computational resources. For CMOEA-TMC, the combination of parallel evolution, coevolution, and staging strategy makes it easier for mainPop to converge and maintain good diversity. Experimental results on 33 benchmark CMOPs and a real-world boiler combustion optimization case show that CMOEA-TMC is more competitive than the other five advanced CMOEAs.
AbstractList Lots of real-world optimization problems are inherently constrained multi-objective optimization problems (CMOPs), but the existing constrained multi-objective optimization evolutionary algorithms (CMOEAs) often fail to balance convergence and diversity effectively. Therefore, a novel constrained multi-objective optimization evolutionary algorithm based on three-stage multi-population coevolution (CMOEA-TMC) for complex CMOPs is proposed. CMOEA-TMC contains two populations, called mainPop and helpPop , which evolve with and without consideration of constraints, respectively. The proposed algorithm divides the search process into three stages. In the first stage, fast convergence is achieved by transforming the original multi-objective problems into multiple single-objective problems. Coarse-grained parallel evolution of subpopulations in mainPop and guidance information provided by helpPop can facilitate mainPop to quickly approach the Pareto front. In the second stage, the objective function of mainPop changes to the original problem. Coevolution of mainPop and helpPop by sharing offsprings can produce solutions with better diversity. In the third stage, the mining of the global optimal solutions is performed, discarding helpPop to save computational resources. For CMOEA-TMC, the combination of parallel evolution, coevolution, and staging strategy makes it easier for mainPop to converge and maintain good diversity. Experimental results on 33 benchmark CMOPs and a real-world boiler combustion optimization case show that CMOEA-TMC is more competitive than the other five advanced CMOEAs.
Lots of real-world optimization problems are inherently constrained multi-objective optimization problems (CMOPs), but the existing constrained multi-objective optimization evolutionary algorithms (CMOEAs) often fail to balance convergence and diversity effectively. Therefore, a novel constrained multi-objective optimization evolutionary algorithm based on three-stage multi-population coevolution (CMOEA-TMC) for complex CMOPs is proposed. CMOEA-TMC contains two populations, called mainPop and helpPop, which evolve with and without consideration of constraints, respectively. The proposed algorithm divides the search process into three stages. In the first stage, fast convergence is achieved by transforming the original multi-objective problems into multiple single-objective problems. Coarse-grained parallel evolution of subpopulations in mainPop and guidance information provided by helpPop can facilitate mainPop to quickly approach the Pareto front. In the second stage, the objective function of mainPop changes to the original problem. Coevolution of mainPop and helpPop by sharing offsprings can produce solutions with better diversity. In the third stage, the mining of the global optimal solutions is performed, discarding helpPop to save computational resources. For CMOEA-TMC, the combination of parallel evolution, coevolution, and staging strategy makes it easier for mainPop to converge and maintain good diversity. Experimental results on 33 benchmark CMOPs and a real-world boiler combustion optimization case show that CMOEA-TMC is more competitive than the other five advanced CMOEAs.
Abstract Lots of real-world optimization problems are inherently constrained multi-objective optimization problems (CMOPs), but the existing constrained multi-objective optimization evolutionary algorithms (CMOEAs) often fail to balance convergence and diversity effectively. Therefore, a novel constrained multi-objective optimization evolutionary algorithm based on three-stage multi-population coevolution (CMOEA-TMC) for complex CMOPs is proposed. CMOEA-TMC contains two populations, called mainPop and helpPop, which evolve with and without consideration of constraints, respectively. The proposed algorithm divides the search process into three stages. In the first stage, fast convergence is achieved by transforming the original multi-objective problems into multiple single-objective problems. Coarse-grained parallel evolution of subpopulations in mainPop and guidance information provided by helpPop can facilitate mainPop to quickly approach the Pareto front. In the second stage, the objective function of mainPop changes to the original problem. Coevolution of mainPop and helpPop by sharing offsprings can produce solutions with better diversity. In the third stage, the mining of the global optimal solutions is performed, discarding helpPop to save computational resources. For CMOEA-TMC, the combination of parallel evolution, coevolution, and staging strategy makes it easier for mainPop to converge and maintain good diversity. Experimental results on 33 benchmark CMOPs and a real-world boiler combustion optimization case show that CMOEA-TMC is more competitive than the other five advanced CMOEAs.
Author Jin, Xiaohang
Wang, Zhangsheng
Shi, Chenli
Wang, Ziqi
Xu, Zhengguo
Shen, Peng
Author_xml – sequence: 1
  givenname: Chenli
  surname: Shi
  fullname: Shi, Chenli
  organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University
– sequence: 2
  givenname: Ziqi
  surname: Wang
  fullname: Wang, Ziqi
  organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University
– sequence: 3
  givenname: Xiaohang
  surname: Jin
  fullname: Jin, Xiaohang
  organization: College of Mechanical Engineering, Zhejiang University of Technology, Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology
– sequence: 4
  givenname: Zhengguo
  orcidid: 0000-0003-0599-7324
  surname: Xu
  fullname: Xu, Zhengguo
  email: xzg@zju.edu.cn
  organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University
– sequence: 5
  givenname: Zhangsheng
  surname: Wang
  fullname: Wang, Zhangsheng
  organization: School of Mechanical Engineering, Tongji University
– sequence: 6
  givenname: Peng
  surname: Shen
  fullname: Shen, Peng
  organization: Jurong Power Generation Branch, Huadian Jiangsu Energy Co., Ltd
BookMark eNp9kU9r3DAQxU1JoWmaL9CToWe1I8mypGMI_RMI5JKehVYebbTIliPJC-2nr3edUughJw3i_R5v5r1vLqY0YdN8pPCZAsgvpQPZSQKME6BUUdK_aS4Z1Yr0IPjFedakE7x_11yXcgAAKqXiwC6b55t2SkeMbX3KiKRUu8d2XGINZE7zEm0NaWrxmOJymmz-1dq4TznUp7H1KbcuTaVmGyYcXri0O6Cr4YhtmmsYw-_NY85pF3EsH5q33saC1y_vVfPz29fH2x_k_uH73e3NPXECWCWOwoCs81q4QQovJPW-4yi95opzytEJ5p1AgRKw49LvtLd-8F73vXDK8avmbvMdkj2YOYdxDW-SDeb8kfLe2FyDi2ioBK3Xq0joWccY7LRzyqP13HmFIFevT5vXusTzgqWaQ1rytMY3TLNOyL5T_apSm8rlVEpGb1yo5-VPB4qGgjn1Zba-zNqXOfdlTij7D_0b-FWIb1BZxdMe879Ur1B_ANForLo
CitedBy_id crossref_primary_10_1007_s40747_025_01941_6
crossref_primary_10_3390_sym17050671
crossref_primary_10_4018_IJCINI_355766
crossref_primary_10_3390_drones8070316
crossref_primary_10_1016_j_asoc_2025_113792
Cites_doi 10.1109/TSG.2016.2598678
10.1109/TEVC.2019.2894743
10.1109/TEVC.2018.2855411
10.1023/A:1008202821328
10.1109/TEVC.2022.3155533
10.1109/TEVC.2003.810761
10.1109/TCYB.2021.3056176
10.1016/j.ins.2020.01.018
10.1016/j.swevo.2018.08.017
10.1007/s10489-022-03421-7
10.1109/4235.797969
10.1109/TCYB.2020.3031687
10.1109/TCYB.2015.2493239
10.1109/4235.996017
10.1109/TEVC.2019.2896967
10.1007/s40747-020-00230-8
10.1109/TEVC.2016.2519378
10.1109/MCI.2006.1597059
10.1016/j.ins.2017.10.022
10.1109/MCI.2017.2742868
10.1016/j.asoc.2008.04.001
10.1007/s10489-020-01976-x
10.1109/TEVC.2021.3131124
10.1109/TEVC.2020.3004012
10.1109/TCYB.2020.3021138
10.1109/CEC.2016.7743830
10.1007/s40747-022-00851-1
10.1109/CEC.1999.781901
10.1007/978-3-540-30217-9_84
10.1109/ICGTSPICC.2016.7955308
10.1007/s40747-022-00812-8
10.1201/9781315183176-4
10.1145/2463372.2463449
10.1109/TEVC.2007.892759
10.1109/MHS.1995.494215
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.1007/s40747-023-01181-6
DatabaseName Springer Nature OA/Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals - NZ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 2198-6053
EndPage 675
ExternalDocumentID oai_doaj_org_article_1709900070624220b9cc8feaf3cf8e07
10_1007_s40747_023_01181_6
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities (Zhejiang University NGICS Platform)
– fundername: National Key Research and Development Program of China
  grantid: 2022YFE0198900
– fundername: Ningbo Natural Science Foundation
  grantid: 2021J038
– fundername: National Natural Science Foundation of Xiamen City
  grantid: 61973269
– fundername: National Key Research and Development Program of China
  grantid: 2019YFB1705502
GroupedDBID 0R~
8FE
8FG
AAJSJ
AAKKN
ABEEZ
ABFTD
ACACY
ACGFS
ACULB
ADINQ
ADMLS
AFGXO
AFKRA
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
BAPOH
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
M~E
OK1
P62
PIMPY
PROAC
RSV
SOJ
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c502t-c10de24f95cd75f571ff43e7f9383313ec52fc5e5e70e437fb9fafdff9665c8c3
IEDL.DBID BENPR
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001040220400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2199-4536
IngestDate Fri Oct 03 12:52:33 EDT 2025
Wed Oct 08 14:20:25 EDT 2025
Sat Nov 29 05:49:01 EST 2025
Tue Nov 18 22:18:31 EST 2025
Fri Feb 21 02:42:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Constrained multi-objective optimization problems (CMOPs)
Parallel algorithm
Evolutionary algorithms
Staging strategy
Coevolution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-c10de24f95cd75f571ff43e7f9383313ec52fc5e5e70e437fb9fafdff9665c8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0599-7324
OpenAccessLink https://www.proquest.com/docview/2924576486?pq-origsite=%requestingapplication%
PQID 2924576486
PQPubID 2044308
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_1709900070624220b9cc8feaf3cf8e07
proquest_journals_2924576486
crossref_citationtrail_10_1007_s40747_023_01181_6
crossref_primary_10_1007_s40747_023_01181_6
springer_journals_10_1007_s40747_023_01181_6
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Complex & intelligent systems
PublicationTitleAbbrev Complex Intell. Syst
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References De Oliveira, Freitas, Tinós (CR6) 2018; 425
Liu, Wang (CR20) 2019; 23
Fan, Li, Cai (CR13) 2019; 44
Bosman, Thierens (CR1) 2003; 7
Deb, Goyal (CR8) 1996; 26
Saravanan, Ramabalan, Ebenezer (CR26) 2009; 9
CR39
Deb, Pratap, Agarwal (CR9) 2002; 6
CR16
CR38
CR37
Tian, Cheng, Zhang (CR29) 2017; 12
CR12
Cui, Zhang, Wu (CR5) 2020; 518
CR11
CR10
Liu, Wang, Tang (CR21) 2021
CR32
CR31
Yang, Xu, Chu (CR36) 2021; 51
Ma, Wang (CR23) 2019; 23
Tian, Zhang, Xiao (CR30) 2020; 25
Xia, Liu, Lu (CR34) 2020; 51
Hollander, Wolfe, Chicken (CR17) 2013
Liang, Ban, Yu (CR19) 2022
Zitzler, Thiele (CR40) 1999; 3
Ming, Wang, Ishibuchi (CR24) 2021
Fan, Wang, Xiao (CR14) 2022
Yang, Zhang, Li (CR35) 2021; 7
CR3
CR28
Wang, Wang, Li (CR33) 2015; 46
Farzin, Fotuhi-Firuzabad, Moeini-Aghtaie (CR15) 2016; 8
CR25
Storn, Price (CR27) 1997; 11
CR22
CR41
Li, Chen, Fu (CR18) 2018; 23
Deb, Agrawal (CR7) 1995; 9
Cheng, Jin, Olhofer (CR2) 2016; 20
Coello (CR4) 2006; 1
LL De Oliveira (1181_CR6) 2018; 425
K Deb (1181_CR7) 1995; 9
J Liang (1181_CR19) 2022
F Yang (1181_CR36) 2021; 51
K Li (1181_CR18) 2018; 23
Y Tian (1181_CR29) 2017; 12
Z Liu (1181_CR21) 2021
R Cheng (1181_CR2) 2016; 20
1181_CR22
Z Fan (1181_CR13) 2019; 44
1181_CR41
Z Ma (1181_CR23) 2019; 23
M Ming (1181_CR24) 2021
PA Bosman (1181_CR1) 2003; 7
R Saravanan (1181_CR26) 2009; 9
1181_CR28
C Fan (1181_CR14) 2022
1181_CR25
R Storn (1181_CR27) 1997; 11
Y Wang (1181_CR33) 2015; 46
CC Coello (1181_CR4) 2006; 1
T Yang (1181_CR35) 2021; 7
Z Cui (1181_CR5) 2020; 518
Z Liu (1181_CR20) 2019; 23
K Deb (1181_CR9) 2002; 6
1181_CR3
Y Tian (1181_CR30) 2020; 25
K Deb (1181_CR8) 1996; 26
H Farzin (1181_CR15) 2016; 8
Z Xia (1181_CR34) 2020; 51
1181_CR12
1181_CR11
1181_CR10
1181_CR32
1181_CR31
M Hollander (1181_CR17) 2013
1181_CR39
E Zitzler (1181_CR40) 1999; 3
1181_CR16
1181_CR38
1181_CR37
References_xml – volume: 8
  start-page: 117
  issue: 1
  year: 2016
  end-page: 127
  ident: CR15
  article-title: A stochastic multi-objective framework for optimal scheduling of energy storage systems in microgrids
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2598678
– ident: CR22
– volume: 23
  start-page: 870
  issue: 5
  year: 2019
  end-page: 884
  ident: CR20
  article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2019.2894743
– volume: 23
  start-page: 303
  issue: 2
  year: 2018
  end-page: 315
  ident: CR18
  article-title: Two-archive evolutionary algorithm for constrained multiobjective optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2018.2855411
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  end-page: 359
  ident: CR27
  article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J Global Optim
  doi: 10.1023/A:1008202821328
– ident: CR39
– ident: CR16
– year: 2022
  ident: CR19
  article-title: A survey on evolutionary constrained multi-objective optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2022.3155533
– ident: CR37
– volume: 7
  start-page: 174
  issue: 2
  year: 2003
  end-page: 188
  ident: CR1
  article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2003.810761
– ident: CR12
– ident: CR10
– year: 2021
  ident: CR21
  article-title: Handling constrained multiobjective optimization problems via bidirectional coevolution
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2021.3056176
– volume: 518
  start-page: 256
  year: 2020
  end-page: 271
  ident: CR5
  article-title: Hybrid many-objective particle swarm optimization algorithm for green coal production problem
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.01.018
– volume: 44
  start-page: 665
  year: 2019
  end-page: 679
  ident: CR13
  article-title: Push and pull search for solving constrained multi-objective optimization problems
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2018.08.017
– year: 2022
  ident: CR14
  article-title: A coevolution algorithm based on two-staged strategy for constrained multi-objective problems
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-03421-7
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  end-page: 271
  ident: CR40
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.797969
– volume: 51
  start-page: 5631
  issue: 11
  year: 2020
  end-page: 5636
  ident: CR34
  article-title: Penalty method for constrained distributed quaternion-variable optimization
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2020.3031687
– ident: CR25
– volume: 46
  start-page: 2938
  issue: 12
  year: 2015
  end-page: 2952
  ident: CR33
  article-title: Incorporating objective function information into the feasibility rule for constrained evolutionary optimization
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2015.2493239
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  end-page: 197
  ident: CR9
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume: 9
  start-page: 115
  issue: 2
  year: 1995
  end-page: 148
  ident: CR7
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst
– volume: 23
  start-page: 972
  issue: 6
  year: 2019
  end-page: 986
  ident: CR23
  article-title: Evolutionary constrained multiobjective optimization: test suite construction and performance comparisons
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2019.2896967
– volume: 7
  start-page: 765
  issue: 2
  year: 2021
  end-page: 780
  ident: CR35
  article-title: A multi-objective hyper-heuristic algorithm based on adaptive epsilon-greedy selection
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-020-00230-8
– volume: 20
  start-page: 773
  issue: 5
  year: 2016
  end-page: 791
  ident: CR2
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2016.2519378
– volume: 1
  start-page: 28
  issue: 1
  year: 2006
  end-page: 36
  ident: CR4
  article-title: Evolutionary multi-objective optimization: a historical view of the field
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2006.1597059
– ident: CR3
– ident: CR38
– ident: CR31
– volume: 425
  start-page: 48
  year: 2018
  end-page: 61
  ident: CR6
  article-title: Multi-objective genetic algorithms in the study of the genetic code’s adaptability
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.10.022
– ident: CR11
– ident: CR32
– volume: 12
  start-page: 73
  issue: 4
  year: 2017
  end-page: 87
  ident: CR29
  article-title: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2017.2742868
– volume: 9
  start-page: 159
  issue: 1
  year: 2009
  end-page: 172
  ident: CR26
  article-title: Evolutionary multi criteria design optimization of robot grippers
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2008.04.001
– volume: 26
  start-page: 30
  year: 1996
  end-page: 45
  ident: CR8
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: Comput Sci Inform
– ident: CR28
– volume: 51
  start-page: 5525
  issue: 8
  year: 2021
  end-page: 5542
  ident: CR36
  article-title: A new dominance relation based on convergence indicators and niching for many-objective optimization
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01976-x
– ident: CR41
– year: 2021
  ident: CR24
  article-title: A novel dual-stage dual-population evolutionary algorithm for constrained multi-objective optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2021.3131124
– volume: 25
  start-page: 102
  issue: 1
  year: 2020
  end-page: 116
  ident: CR30
  article-title: A coevolutionary framework for constrained multiobjective optimization problems
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2020.3004012
– year: 2013
  ident: CR17
  publication-title: Nonparametric statistical methods
– volume: 23
  start-page: 303
  issue: 2
  year: 2018
  ident: 1181_CR18
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2018.2855411
– volume: 7
  start-page: 765
  issue: 2
  year: 2021
  ident: 1181_CR35
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-020-00230-8
– ident: 1181_CR31
  doi: 10.1109/TCYB.2020.3021138
– volume: 425
  start-page: 48
  year: 2018
  ident: 1181_CR6
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.10.022
– volume: 23
  start-page: 972
  issue: 6
  year: 2019
  ident: 1181_CR23
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2019.2896967
– volume: 25
  start-page: 102
  issue: 1
  year: 2020
  ident: 1181_CR30
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2020.3004012
– volume: 26
  start-page: 30
  year: 1996
  ident: 1181_CR8
  publication-title: Comput Sci Inform
– ident: 1181_CR12
  doi: 10.1109/CEC.2016.7743830
– ident: 1181_CR41
– volume: 51
  start-page: 5525
  issue: 8
  year: 2021
  ident: 1181_CR36
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01976-x
– volume: 1
  start-page: 28
  issue: 1
  year: 2006
  ident: 1181_CR4
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2006.1597059
– ident: 1181_CR22
  doi: 10.1007/s40747-022-00851-1
– volume: 9
  start-page: 115
  issue: 2
  year: 1995
  ident: 1181_CR7
  publication-title: Complex Syst
– year: 2021
  ident: 1181_CR24
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2021.3131124
– ident: 1181_CR3
  doi: 10.1109/CEC.1999.781901
– ident: 1181_CR39
  doi: 10.1007/978-3-540-30217-9_84
– volume: 44
  start-page: 665
  year: 2019
  ident: 1181_CR13
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2018.08.017
– volume: 20
  start-page: 773
  issue: 5
  year: 2016
  ident: 1181_CR2
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2016.2519378
– ident: 1181_CR32
  doi: 10.1109/ICGTSPICC.2016.7955308
– volume: 9
  start-page: 159
  issue: 1
  year: 2009
  ident: 1181_CR26
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2008.04.001
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 1181_CR40
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.797969
– ident: 1181_CR16
  doi: 10.1007/s40747-022-00812-8
– ident: 1181_CR38
– volume: 46
  start-page: 2938
  issue: 12
  year: 2015
  ident: 1181_CR33
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2015.2493239
– ident: 1181_CR10
  doi: 10.1201/9781315183176-4
– year: 2021
  ident: 1181_CR21
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2021.3056176
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 1181_CR9
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– ident: 1181_CR25
  doi: 10.1145/2463372.2463449
– volume: 23
  start-page: 870
  issue: 5
  year: 2019
  ident: 1181_CR20
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2019.2894743
– ident: 1181_CR37
  doi: 10.1109/TEVC.2007.892759
– volume-title: Nonparametric statistical methods
  year: 2013
  ident: 1181_CR17
– ident: 1181_CR11
  doi: 10.1109/MHS.1995.494215
– volume: 8
  start-page: 117
  issue: 1
  year: 2016
  ident: 1181_CR15
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2598678
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 1181_CR27
  publication-title: J Global Optim
  doi: 10.1023/A:1008202821328
– volume: 7
  start-page: 174
  issue: 2
  year: 2003
  ident: 1181_CR1
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2003.810761
– volume: 12
  start-page: 73
  issue: 4
  year: 2017
  ident: 1181_CR29
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2017.2742868
– ident: 1181_CR28
– year: 2022
  ident: 1181_CR14
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-03421-7
– year: 2022
  ident: 1181_CR19
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2022.3155533
– volume: 518
  start-page: 256
  year: 2020
  ident: 1181_CR5
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.01.018
– volume: 51
  start-page: 5631
  issue: 11
  year: 2020
  ident: 1181_CR34
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2020.3031687
SSID ssj0001778302
ssib044733412
ssib045327741
Score 2.3042054
Snippet Lots of real-world optimization problems are inherently constrained multi-objective optimization problems (CMOPs), but the existing constrained multi-objective...
Abstract Lots of real-world optimization problems are inherently constrained multi-objective optimization problems (CMOPs), but the existing constrained...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 655
SubjectTerms Coevolution
Complexity
Computational Intelligence
Constrained multi-objective optimization problems (CMOPs)
Constraints
Convergence
Data Structures and Information Theory
Engineering
Evolutionary algorithms
Genetic algorithms
Multiple objective analysis
Optimization
Original Article
Parallel algorithm
Pareto optimization
Search process
Staging strategy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOiKdoKcgHbmARv-L4WBAVB6g4AOotcpyZUrTdlN2wUv99x443bZGAC9fEVmzP2PNNxvMNYy9l6CrjIgonQyMIgQcRVBeEiUZXvY-gMn3xt4_u6Kg5Pvafr5X6SnfCJnrgaeHeSJdCN4mVJmUyqKrzMTYIAXXEBqY8ckI915wp0iRjnNbmynAbq5Xb1pjJf1-cS8RXqfKc9F6YHMPcm_PqTKKVF2TORE7MFPUNq5XJ_W8g0t-CqNk2Hd5n9wqo5AfTZB6wW7B8yO5-mhlZ14_YzwO-HDaw4CMJDwRhwhPg-TahOJ9reHHYFE0MqwseFifD6nT8fsYJ2PKYgGSqJwF96Td0P6bTkg907pyVhE5eStSsH7Ovh--_vPsgSrkFEW2lRhFl1YMy6G3snUXrJKLR4NCTF6ulhmgVRgsWXAVGO-w8BuwRyWOysYn6CdtZDkt4yngD5AapGivZIHlEfaeCtBB0jbWvIda7TG6Xs42FizxNYdHOLMpZBC2JoM0iaKnPq7nP-cTE8dfWb5OU5paJRTs_IN1qi261_9KtXba_lXFbtva6VeSxkpNmGvrG663cr17_eUh7_2NIz9gdRbBquje-z3bG1S94zm7HzXi6Xr3Im-ASvQwErg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Journals Complete - Open Access
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagcIAD76otBfnADSzFr9g-loqqh1JxANSb5TjjpWi7aZOwEv8e2-ukFKlIcExiJ7E9mfkm4_kGoTfUNZVQPhBFnSYRgTviWOOI8IJXrfHAMn3x1xN1eqrPzsynkhQ2TLvdp5Bk1tRzsptIXO8k2hiSsyVJfRfdk1SbJNeH15zjQijORTHa-U-LUonkKlWZo8YQkeOVe7ff9oaFykT-N9DnHwHTbIeOHv_fCJ6gRwV34oONoDxFd2D1DD38jY0wHn2cKVyH5-jqAK-6NSzxGFcbSASRC8B5-yG5nIt-YVgX0XX9T-yWi64_H79d4IiEsU_IMxWggLb065rvG_WKu6ioLkoGKC41bYYX6MvRh8-Hx6TUZyBeVmwknlYtMBGM9K2SQSoaguCggoluL6ccvGTBS5CgKhBchcYEF9oQooslvfZ8G22tuhXsIKwh-k2sDhXVIbpQbcMcleB4HWpTg693EZ3WxPpCXp6GsLQz7XKeXBsn1-bJtbHP27nP5Ya646-t36elnlsm2u18ousXtnzFlqoUR0wUSSmthlWN8V4HcIH7oKFSu2h_EhRbdMFgWXRxo1cndHzGu0kwri_f_kp7_9b8JXrAIuLabCnfR1tj_wNeoft-PZ4P_ev8jfwCLSkJzQ
  priority: 102
  providerName: Springer Nature
Title A novel three-stage multi-population evolutionary algorithm for constrained multi-objective optimization problems
URI https://link.springer.com/article/10.1007/s40747-023-01181-6
https://www.proquest.com/docview/2924576486
https://doaj.org/article/1709900070624220b9cc8feaf3cf8e07
Volume 10
WOSCitedRecordID wos001040220400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals - NZ
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044733412
  issn: 2199-4536
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: P5Z
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: BENPR
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: PIMPY
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: C24
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdYxwEOjE_RsVU-cAOL-CtOTmibNg2JVRECNLhEjvNcQF3TNaES_z2266QaErvskkNiJ7He8_v0-z2EXlNdJUIZSxTVGXEWuCaaVZoII3hS5wZYgC_--lFNp9nlZV7EgFsbj1X2MjEI6roxPkb-jjlHwdnGIkvfL6-J7xrls6uxhcYO2vVIZWKEdo9Pp8WnnqOEUJyLrQIXkjPV95oJURilPACW70BH85yIkMvcH-rrhIeXJ06tkVCgSdIb2iuA_N-wTP9JpgYddbZ319U9Ro-idYqPNuz0BN2DxVP08GKAdm2foesjvGjWMMed4wIgzricAQ7HEslyaAaGYR1ZWq_-YD2fuW91P66ws5Cx8Rapb0wBdZzXVL82Yhc3ToBdxcpQHHvdtM_Rl7PTzyfnJPZtIEYmrCOGJjUwYXNpaiWtVNRawUHZ3LnDnHIwklkjQYJKQHBlq9xqW1vrXC9pMsNfoNGiWcBLhDNw_hRLbUIz61yrumKaStA8tWmegknHiPb0KE0ENfdLmJcDHHOgYeloWAYalm7Om2HOcgPpcevoY0_mYaSH4w43mtWsjLu7pMrnFz10ki-3YUmVG5NZ0JYbm0GixuigJ3sZZURbbmk-Rm97xtk-_v8v7d_-tlfoAXOW1-Zo-QEadavfcIjum3X3s11N4g6ZoJ0TJiYhBOGuhfzunhQfLopvfwEXghlc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFLVKigQseCNSCngBK7AYv8YzC4TKo2rUJMqioLKaejzXAZRm0mQI6k_xjdieR1QkuuuC7YxtjcfH1_favucg9ILqPBLKWKKoTojzwDXRLNdEGMGjIjXAAn3xl6Eaj5Pj43SyhX63uTD-WmVrE4OhLkrj98jfMBcoON9YJPG7xRnxqlH-dLWV0KhhcQjnv1zItno7-OjG9yVj-5-OPhyQRlWAGBmxihgaFcCETaUplLRSUWsFB2VTF6xxysFIZo0ECSoCwZXNU6ttYa0LDKRJDHftXkPbwoE96aHtyWA0-doiWAjFudg4DEJyplptm7Dro5Qn3PKKdzRNiQhnpztdPp_wdPbELaMkJISS-MJqGUQFLnjCfx3ehjVx_87_9jfvotuN94336ulyD23B_D66Neqoa1cP0NkenpdrmOHKoRyIc56ngMO1S7LoxM4wrJspq5fnWM-mrm_Vt1PsIgBsvMfthTegaOqV-Y96WcGlM9CnTeYrbrR8Vg_R5yvp8yPUm5dzeIxwAi5eZLGNaGJd6FjkTFMJmsc2TmMwcR_Rdvwz05C2-y7Mso5uOmAmc5jJAmYyV-dVV2dRU5ZcWvq9h1VX0tONhwflcpo11iujyp-femoon07Eojw1JrGgLTc2gUj10W4Ls6yxgatsg7E-et0CdfP635-0c3lrz9GNg6PRMBsOxodP0E3mvMz6Gv0u6lXLn_AUXTfr6vtq-ayZnRidXDWE_wBXMnRg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIAQH3oiWAj5wA6vxI3FyLIUViLLqAVBvluPMbIu2yZINK_Hvsb3etEUqEuKYxE78GHu-yXi-IeQVt3WmtEOmuS2ZR-CWWVFbppySWVM5EJG--Nuhnk7L4-Pq6EIUfzztvnFJrmMaAktTO-wtGtwbA99U4H1nXt-wGDnJiuvkRvBIBfPr4Jx_XCktpUoKPP510ToQXoWMc7yqmIq-y52rX3tJW0VS_0tI9A_nadRJk3v_35v75G7Co3R_LUAPyDVoH5I7F1gK_dXnkdp1-Yj82Kdtt4I5HbwUAPPgcgY0HktkizEZGIVVEmnb_6J2Puv60-HkjHqETF1ApCExBTSpXld_X2-7tPMb2FmKDKUp183yMfk6ef_l4ANLeRuYyzMxMMezBoTCKneNzjHXHFFJ0Fh5c1hyCS4X6HLIQWegpMa6QosNoje9clc6-YRstV0LTwktwdtTosCMl-hNq6YWludgZYFFVYArtgnfzI9xidQ8dGFuRjrmOLjGD66Jg2t8nddjncWa0uOvpd-GaR9LBjrueKPrZyatbsN18C8G6qQQbiOyunKuRLAoHZaQ6W2yuxEak_aIpRHe9PXWnir9N95shOT88dVN2vm34i_JraN3E3P4cfrpGbktPChbnzrfJVtD_xOek5tuNZwu-xdx6fwGrOQVlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+three-stage+multi-population+evolutionary+algorithm+for+constrained+multi-objective+optimization+problems&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Shi%2C+Chenli&rft.au=Wang%2C+Ziqi&rft.au=Jin%2C+Xiaohang&rft.au=Xu%2C+Zhengguo&rft.date=2024-02-01&rft.pub=Springer+Nature+B.V&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=10&rft.issue=1&rft.spage=655&rft.epage=675&rft_id=info:doi/10.1007%2Fs40747-023-01181-6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon