A novel three-stage multi-population evolutionary algorithm for constrained multi-objective optimization problems
Lots of real-world optimization problems are inherently constrained multi-objective optimization problems (CMOPs), but the existing constrained multi-objective optimization evolutionary algorithms (CMOEAs) often fail to balance convergence and diversity effectively. Therefore, a novel constrained mu...
Uloženo v:
| Vydáno v: | Complex & intelligent systems Ročník 10; číslo 1; s. 655 - 675 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.02.2024
Springer Nature B.V Springer |
| Témata: | |
| ISSN: | 2199-4536, 2198-6053 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Lots of real-world optimization problems are inherently constrained multi-objective optimization problems (CMOPs), but the existing constrained multi-objective optimization evolutionary algorithms (CMOEAs) often fail to balance convergence and diversity effectively. Therefore, a novel constrained multi-objective optimization evolutionary algorithm based on three-stage multi-population coevolution (CMOEA-TMC) for complex CMOPs is proposed. CMOEA-TMC contains two populations, called
mainPop
and
helpPop
, which evolve with and without consideration of constraints, respectively. The proposed algorithm divides the search process into three stages. In the first stage, fast convergence is achieved by transforming the original multi-objective problems into multiple single-objective problems. Coarse-grained parallel evolution of subpopulations in
mainPop
and guidance information provided by
helpPop
can facilitate
mainPop
to quickly approach the Pareto front. In the second stage, the objective function of
mainPop
changes to the original problem. Coevolution of
mainPop
and
helpPop
by sharing offsprings can produce solutions with better diversity. In the third stage, the mining of the global optimal solutions is performed, discarding
helpPop
to save computational resources. For CMOEA-TMC, the combination of parallel evolution, coevolution, and staging strategy makes it easier for
mainPop
to converge and maintain good diversity. Experimental results on 33 benchmark CMOPs and a real-world boiler combustion optimization case show that CMOEA-TMC is more competitive than the other five advanced CMOEAs. |
|---|---|
| AbstractList | Lots of real-world optimization problems are inherently constrained multi-objective optimization problems (CMOPs), but the existing constrained multi-objective optimization evolutionary algorithms (CMOEAs) often fail to balance convergence and diversity effectively. Therefore, a novel constrained multi-objective optimization evolutionary algorithm based on three-stage multi-population coevolution (CMOEA-TMC) for complex CMOPs is proposed. CMOEA-TMC contains two populations, called
mainPop
and
helpPop
, which evolve with and without consideration of constraints, respectively. The proposed algorithm divides the search process into three stages. In the first stage, fast convergence is achieved by transforming the original multi-objective problems into multiple single-objective problems. Coarse-grained parallel evolution of subpopulations in
mainPop
and guidance information provided by
helpPop
can facilitate
mainPop
to quickly approach the Pareto front. In the second stage, the objective function of
mainPop
changes to the original problem. Coevolution of
mainPop
and
helpPop
by sharing offsprings can produce solutions with better diversity. In the third stage, the mining of the global optimal solutions is performed, discarding
helpPop
to save computational resources. For CMOEA-TMC, the combination of parallel evolution, coevolution, and staging strategy makes it easier for
mainPop
to converge and maintain good diversity. Experimental results on 33 benchmark CMOPs and a real-world boiler combustion optimization case show that CMOEA-TMC is more competitive than the other five advanced CMOEAs. Lots of real-world optimization problems are inherently constrained multi-objective optimization problems (CMOPs), but the existing constrained multi-objective optimization evolutionary algorithms (CMOEAs) often fail to balance convergence and diversity effectively. Therefore, a novel constrained multi-objective optimization evolutionary algorithm based on three-stage multi-population coevolution (CMOEA-TMC) for complex CMOPs is proposed. CMOEA-TMC contains two populations, called mainPop and helpPop, which evolve with and without consideration of constraints, respectively. The proposed algorithm divides the search process into three stages. In the first stage, fast convergence is achieved by transforming the original multi-objective problems into multiple single-objective problems. Coarse-grained parallel evolution of subpopulations in mainPop and guidance information provided by helpPop can facilitate mainPop to quickly approach the Pareto front. In the second stage, the objective function of mainPop changes to the original problem. Coevolution of mainPop and helpPop by sharing offsprings can produce solutions with better diversity. In the third stage, the mining of the global optimal solutions is performed, discarding helpPop to save computational resources. For CMOEA-TMC, the combination of parallel evolution, coevolution, and staging strategy makes it easier for mainPop to converge and maintain good diversity. Experimental results on 33 benchmark CMOPs and a real-world boiler combustion optimization case show that CMOEA-TMC is more competitive than the other five advanced CMOEAs. Abstract Lots of real-world optimization problems are inherently constrained multi-objective optimization problems (CMOPs), but the existing constrained multi-objective optimization evolutionary algorithms (CMOEAs) often fail to balance convergence and diversity effectively. Therefore, a novel constrained multi-objective optimization evolutionary algorithm based on three-stage multi-population coevolution (CMOEA-TMC) for complex CMOPs is proposed. CMOEA-TMC contains two populations, called mainPop and helpPop, which evolve with and without consideration of constraints, respectively. The proposed algorithm divides the search process into three stages. In the first stage, fast convergence is achieved by transforming the original multi-objective problems into multiple single-objective problems. Coarse-grained parallel evolution of subpopulations in mainPop and guidance information provided by helpPop can facilitate mainPop to quickly approach the Pareto front. In the second stage, the objective function of mainPop changes to the original problem. Coevolution of mainPop and helpPop by sharing offsprings can produce solutions with better diversity. In the third stage, the mining of the global optimal solutions is performed, discarding helpPop to save computational resources. For CMOEA-TMC, the combination of parallel evolution, coevolution, and staging strategy makes it easier for mainPop to converge and maintain good diversity. Experimental results on 33 benchmark CMOPs and a real-world boiler combustion optimization case show that CMOEA-TMC is more competitive than the other five advanced CMOEAs. |
| Author | Jin, Xiaohang Wang, Zhangsheng Shi, Chenli Wang, Ziqi Xu, Zhengguo Shen, Peng |
| Author_xml | – sequence: 1 givenname: Chenli surname: Shi fullname: Shi, Chenli organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University – sequence: 2 givenname: Ziqi surname: Wang fullname: Wang, Ziqi organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University – sequence: 3 givenname: Xiaohang surname: Jin fullname: Jin, Xiaohang organization: College of Mechanical Engineering, Zhejiang University of Technology, Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology – sequence: 4 givenname: Zhengguo orcidid: 0000-0003-0599-7324 surname: Xu fullname: Xu, Zhengguo email: xzg@zju.edu.cn organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University – sequence: 5 givenname: Zhangsheng surname: Wang fullname: Wang, Zhangsheng organization: School of Mechanical Engineering, Tongji University – sequence: 6 givenname: Peng surname: Shen fullname: Shen, Peng organization: Jurong Power Generation Branch, Huadian Jiangsu Energy Co., Ltd |
| BookMark | eNp9kU9r3DAQxU1JoWmaL9CToWe1I8mypGMI_RMI5JKehVYebbTIliPJC-2nr3edUughJw3i_R5v5r1vLqY0YdN8pPCZAsgvpQPZSQKME6BUUdK_aS4Z1Yr0IPjFedakE7x_11yXcgAAKqXiwC6b55t2SkeMbX3KiKRUu8d2XGINZE7zEm0NaWrxmOJymmz-1dq4TznUp7H1KbcuTaVmGyYcXri0O6Cr4YhtmmsYw-_NY85pF3EsH5q33saC1y_vVfPz29fH2x_k_uH73e3NPXECWCWOwoCs81q4QQovJPW-4yi95opzytEJ5p1AgRKw49LvtLd-8F73vXDK8avmbvMdkj2YOYdxDW-SDeb8kfLe2FyDi2ioBK3Xq0joWccY7LRzyqP13HmFIFevT5vXusTzgqWaQ1rytMY3TLNOyL5T_apSm8rlVEpGb1yo5-VPB4qGgjn1Zba-zNqXOfdlTij7D_0b-FWIb1BZxdMe879Ur1B_ANForLo |
| CitedBy_id | crossref_primary_10_1007_s40747_025_01941_6 crossref_primary_10_3390_sym17050671 crossref_primary_10_4018_IJCINI_355766 crossref_primary_10_3390_drones8070316 crossref_primary_10_1016_j_asoc_2025_113792 |
| Cites_doi | 10.1109/TSG.2016.2598678 10.1109/TEVC.2019.2894743 10.1109/TEVC.2018.2855411 10.1023/A:1008202821328 10.1109/TEVC.2022.3155533 10.1109/TEVC.2003.810761 10.1109/TCYB.2021.3056176 10.1016/j.ins.2020.01.018 10.1016/j.swevo.2018.08.017 10.1007/s10489-022-03421-7 10.1109/4235.797969 10.1109/TCYB.2020.3031687 10.1109/TCYB.2015.2493239 10.1109/4235.996017 10.1109/TEVC.2019.2896967 10.1007/s40747-020-00230-8 10.1109/TEVC.2016.2519378 10.1109/MCI.2006.1597059 10.1016/j.ins.2017.10.022 10.1109/MCI.2017.2742868 10.1016/j.asoc.2008.04.001 10.1007/s10489-020-01976-x 10.1109/TEVC.2021.3131124 10.1109/TEVC.2020.3004012 10.1109/TCYB.2020.3021138 10.1109/CEC.2016.7743830 10.1007/s40747-022-00851-1 10.1109/CEC.1999.781901 10.1007/978-3-540-30217-9_84 10.1109/ICGTSPICC.2016.7955308 10.1007/s40747-022-00812-8 10.1201/9781315183176-4 10.1145/2463372.2463449 10.1109/TEVC.2007.892759 10.1109/MHS.1995.494215 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
| DOI | 10.1007/s40747-023-01181-6 |
| DatabaseName | Springer Nature OA/Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals - NZ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 2198-6053 |
| EndPage | 675 |
| ExternalDocumentID | oai_doaj_org_article_1709900070624220b9cc8feaf3cf8e07 10_1007_s40747_023_01181_6 |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities (Zhejiang University NGICS Platform) – fundername: National Key Research and Development Program of China grantid: 2022YFE0198900 – fundername: Ningbo Natural Science Foundation grantid: 2021J038 – fundername: National Natural Science Foundation of Xiamen City grantid: 61973269 – fundername: National Key Research and Development Program of China grantid: 2019YFB1705502 |
| GroupedDBID | 0R~ 8FE 8FG AAJSJ AAKKN ABEEZ ABFTD ACACY ACGFS ACULB ADINQ ADMLS AFGXO AFKRA AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF BAPOH BENPR BGLVJ C24 C6C CCPQU EBLON EBS EJD GROUPED_DOAJ HCIFZ IAO ISR ITC M~E OK1 P62 PIMPY PROAC RSV SOJ AASML AAYXX AFFHD CITATION PHGZM PHGZT PQGLB ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c502t-c10de24f95cd75f571ff43e7f9383313ec52fc5e5e70e437fb9fafdff9665c8c3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001040220400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2199-4536 |
| IngestDate | Fri Oct 03 12:52:33 EDT 2025 Wed Oct 08 14:20:25 EDT 2025 Sat Nov 29 05:49:01 EST 2025 Tue Nov 18 22:18:31 EST 2025 Fri Feb 21 02:42:20 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Constrained multi-objective optimization problems (CMOPs) Parallel algorithm Evolutionary algorithms Staging strategy Coevolution |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c502t-c10de24f95cd75f571ff43e7f9383313ec52fc5e5e70e437fb9fafdff9665c8c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0599-7324 |
| OpenAccessLink | https://www.proquest.com/docview/2924576486?pq-origsite=%requestingapplication% |
| PQID | 2924576486 |
| PQPubID | 2044308 |
| PageCount | 21 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1709900070624220b9cc8feaf3cf8e07 proquest_journals_2924576486 crossref_citationtrail_10_1007_s40747_023_01181_6 crossref_primary_10_1007_s40747_023_01181_6 springer_journals_10_1007_s40747_023_01181_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Complex & intelligent systems |
| PublicationTitleAbbrev | Complex Intell. Syst |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Nature B.V Springer |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
| References | De Oliveira, Freitas, Tinós (CR6) 2018; 425 Liu, Wang (CR20) 2019; 23 Fan, Li, Cai (CR13) 2019; 44 Bosman, Thierens (CR1) 2003; 7 Deb, Goyal (CR8) 1996; 26 Saravanan, Ramabalan, Ebenezer (CR26) 2009; 9 CR39 Deb, Pratap, Agarwal (CR9) 2002; 6 CR16 CR38 CR37 Tian, Cheng, Zhang (CR29) 2017; 12 CR12 Cui, Zhang, Wu (CR5) 2020; 518 CR11 CR10 Liu, Wang, Tang (CR21) 2021 CR32 CR31 Yang, Xu, Chu (CR36) 2021; 51 Ma, Wang (CR23) 2019; 23 Tian, Zhang, Xiao (CR30) 2020; 25 Xia, Liu, Lu (CR34) 2020; 51 Hollander, Wolfe, Chicken (CR17) 2013 Liang, Ban, Yu (CR19) 2022 Zitzler, Thiele (CR40) 1999; 3 Ming, Wang, Ishibuchi (CR24) 2021 Fan, Wang, Xiao (CR14) 2022 Yang, Zhang, Li (CR35) 2021; 7 CR3 CR28 Wang, Wang, Li (CR33) 2015; 46 Farzin, Fotuhi-Firuzabad, Moeini-Aghtaie (CR15) 2016; 8 CR25 Storn, Price (CR27) 1997; 11 CR22 CR41 Li, Chen, Fu (CR18) 2018; 23 Deb, Agrawal (CR7) 1995; 9 Cheng, Jin, Olhofer (CR2) 2016; 20 Coello (CR4) 2006; 1 LL De Oliveira (1181_CR6) 2018; 425 K Deb (1181_CR7) 1995; 9 J Liang (1181_CR19) 2022 F Yang (1181_CR36) 2021; 51 K Li (1181_CR18) 2018; 23 Y Tian (1181_CR29) 2017; 12 Z Liu (1181_CR21) 2021 R Cheng (1181_CR2) 2016; 20 1181_CR22 Z Fan (1181_CR13) 2019; 44 1181_CR41 Z Ma (1181_CR23) 2019; 23 M Ming (1181_CR24) 2021 PA Bosman (1181_CR1) 2003; 7 R Saravanan (1181_CR26) 2009; 9 1181_CR28 C Fan (1181_CR14) 2022 1181_CR25 R Storn (1181_CR27) 1997; 11 Y Wang (1181_CR33) 2015; 46 CC Coello (1181_CR4) 2006; 1 T Yang (1181_CR35) 2021; 7 Z Cui (1181_CR5) 2020; 518 Z Liu (1181_CR20) 2019; 23 K Deb (1181_CR9) 2002; 6 1181_CR3 Y Tian (1181_CR30) 2020; 25 K Deb (1181_CR8) 1996; 26 H Farzin (1181_CR15) 2016; 8 Z Xia (1181_CR34) 2020; 51 1181_CR12 1181_CR11 1181_CR10 1181_CR32 1181_CR31 M Hollander (1181_CR17) 2013 1181_CR39 E Zitzler (1181_CR40) 1999; 3 1181_CR16 1181_CR38 1181_CR37 |
| References_xml | – volume: 8 start-page: 117 issue: 1 year: 2016 end-page: 127 ident: CR15 article-title: A stochastic multi-objective framework for optimal scheduling of energy storage systems in microgrids publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2016.2598678 – ident: CR22 – volume: 23 start-page: 870 issue: 5 year: 2019 end-page: 884 ident: CR20 article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2019.2894743 – volume: 23 start-page: 303 issue: 2 year: 2018 end-page: 315 ident: CR18 article-title: Two-archive evolutionary algorithm for constrained multiobjective optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2018.2855411 – volume: 11 start-page: 341 issue: 4 year: 1997 end-page: 359 ident: CR27 article-title: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces publication-title: J Global Optim doi: 10.1023/A:1008202821328 – ident: CR39 – ident: CR16 – year: 2022 ident: CR19 article-title: A survey on evolutionary constrained multi-objective optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2022.3155533 – ident: CR37 – volume: 7 start-page: 174 issue: 2 year: 2003 end-page: 188 ident: CR1 article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2003.810761 – ident: CR12 – ident: CR10 – year: 2021 ident: CR21 article-title: Handling constrained multiobjective optimization problems via bidirectional coevolution publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2021.3056176 – volume: 518 start-page: 256 year: 2020 end-page: 271 ident: CR5 article-title: Hybrid many-objective particle swarm optimization algorithm for green coal production problem publication-title: Inf Sci doi: 10.1016/j.ins.2020.01.018 – volume: 44 start-page: 665 year: 2019 end-page: 679 ident: CR13 article-title: Push and pull search for solving constrained multi-objective optimization problems publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2018.08.017 – year: 2022 ident: CR14 article-title: A coevolution algorithm based on two-staged strategy for constrained multi-objective problems publication-title: Appl Intell doi: 10.1007/s10489-022-03421-7 – volume: 3 start-page: 257 issue: 4 year: 1999 end-page: 271 ident: CR40 article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.797969 – volume: 51 start-page: 5631 issue: 11 year: 2020 end-page: 5636 ident: CR34 article-title: Penalty method for constrained distributed quaternion-variable optimization publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2020.3031687 – ident: CR25 – volume: 46 start-page: 2938 issue: 12 year: 2015 end-page: 2952 ident: CR33 article-title: Incorporating objective function information into the feasibility rule for constrained evolutionary optimization publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2015.2493239 – volume: 6 start-page: 182 issue: 2 year: 2002 end-page: 197 ident: CR9 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume: 9 start-page: 115 issue: 2 year: 1995 end-page: 148 ident: CR7 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst – volume: 23 start-page: 972 issue: 6 year: 2019 end-page: 986 ident: CR23 article-title: Evolutionary constrained multiobjective optimization: test suite construction and performance comparisons publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2019.2896967 – volume: 7 start-page: 765 issue: 2 year: 2021 end-page: 780 ident: CR35 article-title: A multi-objective hyper-heuristic algorithm based on adaptive epsilon-greedy selection publication-title: Complex Intell Syst doi: 10.1007/s40747-020-00230-8 – volume: 20 start-page: 773 issue: 5 year: 2016 end-page: 791 ident: CR2 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2016.2519378 – volume: 1 start-page: 28 issue: 1 year: 2006 end-page: 36 ident: CR4 article-title: Evolutionary multi-objective optimization: a historical view of the field publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2006.1597059 – ident: CR3 – ident: CR38 – ident: CR31 – volume: 425 start-page: 48 year: 2018 end-page: 61 ident: CR6 article-title: Multi-objective genetic algorithms in the study of the genetic code’s adaptability publication-title: Inf Sci doi: 10.1016/j.ins.2017.10.022 – ident: CR11 – ident: CR32 – volume: 12 start-page: 73 issue: 4 year: 2017 end-page: 87 ident: CR29 article-title: PlatEMO: a MATLAB platform for evolutionary multi-objective optimization publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2017.2742868 – volume: 9 start-page: 159 issue: 1 year: 2009 end-page: 172 ident: CR26 article-title: Evolutionary multi criteria design optimization of robot grippers publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2008.04.001 – volume: 26 start-page: 30 year: 1996 end-page: 45 ident: CR8 article-title: A combined genetic adaptive search (GeneAS) for engineering design publication-title: Comput Sci Inform – ident: CR28 – volume: 51 start-page: 5525 issue: 8 year: 2021 end-page: 5542 ident: CR36 article-title: A new dominance relation based on convergence indicators and niching for many-objective optimization publication-title: Appl Intell doi: 10.1007/s10489-020-01976-x – ident: CR41 – year: 2021 ident: CR24 article-title: A novel dual-stage dual-population evolutionary algorithm for constrained multi-objective optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2021.3131124 – volume: 25 start-page: 102 issue: 1 year: 2020 end-page: 116 ident: CR30 article-title: A coevolutionary framework for constrained multiobjective optimization problems publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2020.3004012 – year: 2013 ident: CR17 publication-title: Nonparametric statistical methods – volume: 23 start-page: 303 issue: 2 year: 2018 ident: 1181_CR18 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2018.2855411 – volume: 7 start-page: 765 issue: 2 year: 2021 ident: 1181_CR35 publication-title: Complex Intell Syst doi: 10.1007/s40747-020-00230-8 – ident: 1181_CR31 doi: 10.1109/TCYB.2020.3021138 – volume: 425 start-page: 48 year: 2018 ident: 1181_CR6 publication-title: Inf Sci doi: 10.1016/j.ins.2017.10.022 – volume: 23 start-page: 972 issue: 6 year: 2019 ident: 1181_CR23 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2019.2896967 – volume: 25 start-page: 102 issue: 1 year: 2020 ident: 1181_CR30 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2020.3004012 – volume: 26 start-page: 30 year: 1996 ident: 1181_CR8 publication-title: Comput Sci Inform – ident: 1181_CR12 doi: 10.1109/CEC.2016.7743830 – ident: 1181_CR41 – volume: 51 start-page: 5525 issue: 8 year: 2021 ident: 1181_CR36 publication-title: Appl Intell doi: 10.1007/s10489-020-01976-x – volume: 1 start-page: 28 issue: 1 year: 2006 ident: 1181_CR4 publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2006.1597059 – ident: 1181_CR22 doi: 10.1007/s40747-022-00851-1 – volume: 9 start-page: 115 issue: 2 year: 1995 ident: 1181_CR7 publication-title: Complex Syst – year: 2021 ident: 1181_CR24 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2021.3131124 – ident: 1181_CR3 doi: 10.1109/CEC.1999.781901 – ident: 1181_CR39 doi: 10.1007/978-3-540-30217-9_84 – volume: 44 start-page: 665 year: 2019 ident: 1181_CR13 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2018.08.017 – volume: 20 start-page: 773 issue: 5 year: 2016 ident: 1181_CR2 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2016.2519378 – ident: 1181_CR32 doi: 10.1109/ICGTSPICC.2016.7955308 – volume: 9 start-page: 159 issue: 1 year: 2009 ident: 1181_CR26 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2008.04.001 – volume: 3 start-page: 257 issue: 4 year: 1999 ident: 1181_CR40 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.797969 – ident: 1181_CR16 doi: 10.1007/s40747-022-00812-8 – ident: 1181_CR38 – volume: 46 start-page: 2938 issue: 12 year: 2015 ident: 1181_CR33 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2015.2493239 – ident: 1181_CR10 doi: 10.1201/9781315183176-4 – year: 2021 ident: 1181_CR21 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2021.3056176 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 1181_CR9 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – ident: 1181_CR25 doi: 10.1145/2463372.2463449 – volume: 23 start-page: 870 issue: 5 year: 2019 ident: 1181_CR20 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2019.2894743 – ident: 1181_CR37 doi: 10.1109/TEVC.2007.892759 – volume-title: Nonparametric statistical methods year: 2013 ident: 1181_CR17 – ident: 1181_CR11 doi: 10.1109/MHS.1995.494215 – volume: 8 start-page: 117 issue: 1 year: 2016 ident: 1181_CR15 publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2016.2598678 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 1181_CR27 publication-title: J Global Optim doi: 10.1023/A:1008202821328 – volume: 7 start-page: 174 issue: 2 year: 2003 ident: 1181_CR1 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2003.810761 – volume: 12 start-page: 73 issue: 4 year: 2017 ident: 1181_CR29 publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2017.2742868 – ident: 1181_CR28 – year: 2022 ident: 1181_CR14 publication-title: Appl Intell doi: 10.1007/s10489-022-03421-7 – year: 2022 ident: 1181_CR19 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2022.3155533 – volume: 518 start-page: 256 year: 2020 ident: 1181_CR5 publication-title: Inf Sci doi: 10.1016/j.ins.2020.01.018 – volume: 51 start-page: 5631 issue: 11 year: 2020 ident: 1181_CR34 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2020.3031687 |
| SSID | ssj0001778302 ssib044733412 ssib045327741 |
| Score | 2.3042054 |
| Snippet | Lots of real-world optimization problems are inherently constrained multi-objective optimization problems (CMOPs), but the existing constrained multi-objective... Abstract Lots of real-world optimization problems are inherently constrained multi-objective optimization problems (CMOPs), but the existing constrained... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 655 |
| SubjectTerms | Coevolution Complexity Computational Intelligence Constrained multi-objective optimization problems (CMOPs) Constraints Convergence Data Structures and Information Theory Engineering Evolutionary algorithms Genetic algorithms Multiple objective analysis Optimization Original Article Parallel algorithm Pareto optimization Search process Staging strategy |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOiKdoKcgHbmARv-L4WBAVB6g4AOotcpyZUrTdlN2wUv99x443bZGAC9fEVmzP2PNNxvMNYy9l6CrjIgonQyMIgQcRVBeEiUZXvY-gMn3xt4_u6Kg5Pvafr5X6SnfCJnrgaeHeSJdCN4mVJmUyqKrzMTYIAXXEBqY8ckI915wp0iRjnNbmynAbq5Xb1pjJf1-cS8RXqfKc9F6YHMPcm_PqTKKVF2TORE7MFPUNq5XJ_W8g0t-CqNk2Hd5n9wqo5AfTZB6wW7B8yO5-mhlZ14_YzwO-HDaw4CMJDwRhwhPg-TahOJ9reHHYFE0MqwseFifD6nT8fsYJ2PKYgGSqJwF96Td0P6bTkg907pyVhE5eStSsH7Ovh--_vPsgSrkFEW2lRhFl1YMy6G3snUXrJKLR4NCTF6ulhmgVRgsWXAVGO-w8BuwRyWOysYn6CdtZDkt4yngD5AapGivZIHlEfaeCtBB0jbWvIda7TG6Xs42FizxNYdHOLMpZBC2JoM0iaKnPq7nP-cTE8dfWb5OU5paJRTs_IN1qi261_9KtXba_lXFbtva6VeSxkpNmGvrG663cr17_eUh7_2NIz9gdRbBquje-z3bG1S94zm7HzXi6Xr3Im-ASvQwErg priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Journals Complete - Open Access dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagcIAD76otBfnADSzFr9g-loqqh1JxANSb5TjjpWi7aZOwEv8e2-ukFKlIcExiJ7E9mfkm4_kGoTfUNZVQPhBFnSYRgTviWOOI8IJXrfHAMn3x1xN1eqrPzsynkhQ2TLvdp5Bk1tRzsptIXO8k2hiSsyVJfRfdk1SbJNeH15zjQijORTHa-U-LUonkKlWZo8YQkeOVe7ff9oaFykT-N9DnHwHTbIeOHv_fCJ6gRwV34oONoDxFd2D1DD38jY0wHn2cKVyH5-jqAK-6NSzxGFcbSASRC8B5-yG5nIt-YVgX0XX9T-yWi64_H79d4IiEsU_IMxWggLb065rvG_WKu6ioLkoGKC41bYYX6MvRh8-Hx6TUZyBeVmwknlYtMBGM9K2SQSoaguCggoluL6ccvGTBS5CgKhBchcYEF9oQooslvfZ8G22tuhXsIKwh-k2sDhXVIbpQbcMcleB4HWpTg693EZ3WxPpCXp6GsLQz7XKeXBsn1-bJtbHP27nP5Ya646-t36elnlsm2u18ousXtnzFlqoUR0wUSSmthlWN8V4HcIH7oKFSu2h_EhRbdMFgWXRxo1cndHzGu0kwri_f_kp7_9b8JXrAIuLabCnfR1tj_wNeoft-PZ4P_ev8jfwCLSkJzQ priority: 102 providerName: Springer Nature |
| Title | A novel three-stage multi-population evolutionary algorithm for constrained multi-objective optimization problems |
| URI | https://link.springer.com/article/10.1007/s40747-023-01181-6 https://www.proquest.com/docview/2924576486 https://doaj.org/article/1709900070624220b9cc8feaf3cf8e07 |
| Volume | 10 |
| WOSCitedRecordID | wos001040220400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals - NZ customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044733412 issn: 2199-4536 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: P5Z dateStart: 20151201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: AUTh Library subscriptions: ProQuest Central customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: BENPR dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: PIMPY dateStart: 20151201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2198-6053 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001778302 issn: 2199-4536 databaseCode: C24 dateStart: 20151201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLdYxwEOjE_RsVU-cAOL-CtOTmibNg2JVRECNLhEjvNcQF3TNaES_z2266QaErvskkNiJ7He8_v0-z2EXlNdJUIZSxTVGXEWuCaaVZoII3hS5wZYgC_--lFNp9nlZV7EgFsbj1X2MjEI6roxPkb-jjlHwdnGIkvfL6-J7xrls6uxhcYO2vVIZWKEdo9Pp8WnnqOEUJyLrQIXkjPV95oJURilPACW70BH85yIkMvcH-rrhIeXJ06tkVCgSdIb2iuA_N-wTP9JpgYddbZ319U9Ro-idYqPNuz0BN2DxVP08GKAdm2foesjvGjWMMed4wIgzricAQ7HEslyaAaGYR1ZWq_-YD2fuW91P66ws5Cx8Rapb0wBdZzXVL82Yhc3ToBdxcpQHHvdtM_Rl7PTzyfnJPZtIEYmrCOGJjUwYXNpaiWtVNRawUHZ3LnDnHIwklkjQYJKQHBlq9xqW1vrXC9pMsNfoNGiWcBLhDNw_hRLbUIz61yrumKaStA8tWmegknHiPb0KE0ENfdLmJcDHHOgYeloWAYalm7Om2HOcgPpcevoY0_mYaSH4w43mtWsjLu7pMrnFz10ki-3YUmVG5NZ0JYbm0GixuigJ3sZZURbbmk-Rm97xtk-_v8v7d_-tlfoAXOW1-Zo-QEadavfcIjum3X3s11N4g6ZoJ0TJiYhBOGuhfzunhQfLopvfwEXghlc |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFLVKigQseCNSCngBK7AYv8YzC4TKo2rUJMqioLKaejzXAZRm0mQI6k_xjdieR1QkuuuC7YxtjcfH1_favucg9ILqPBLKWKKoTojzwDXRLNdEGMGjIjXAAn3xl6Eaj5Pj43SyhX63uTD-WmVrE4OhLkrj98jfMBcoON9YJPG7xRnxqlH-dLWV0KhhcQjnv1zItno7-OjG9yVj-5-OPhyQRlWAGBmxihgaFcCETaUplLRSUWsFB2VTF6xxysFIZo0ECSoCwZXNU6ttYa0LDKRJDHftXkPbwoE96aHtyWA0-doiWAjFudg4DEJyplptm7Dro5Qn3PKKdzRNiQhnpztdPp_wdPbELaMkJISS-MJqGUQFLnjCfx3ehjVx_87_9jfvotuN94336ulyD23B_D66Neqoa1cP0NkenpdrmOHKoRyIc56ngMO1S7LoxM4wrJspq5fnWM-mrm_Vt1PsIgBsvMfthTegaOqV-Y96WcGlM9CnTeYrbrR8Vg_R5yvp8yPUm5dzeIxwAi5eZLGNaGJd6FjkTFMJmsc2TmMwcR_Rdvwz05C2-y7Mso5uOmAmc5jJAmYyV-dVV2dRU5ZcWvq9h1VX0tONhwflcpo11iujyp-femoon07Eojw1JrGgLTc2gUj10W4Ls6yxgatsg7E-et0CdfP635-0c3lrz9GNg6PRMBsOxodP0E3mvMz6Gv0u6lXLn_AUXTfr6vtq-ayZnRidXDWE_wBXMnRg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIAQH3oiWAj5wA6vxI3FyLIUViLLqAVBvluPMbIu2yZINK_Hvsb3etEUqEuKYxE78GHu-yXi-IeQVt3WmtEOmuS2ZR-CWWVFbppySWVM5EJG--Nuhnk7L4-Pq6EIUfzztvnFJrmMaAktTO-wtGtwbA99U4H1nXt-wGDnJiuvkRvBIBfPr4Jx_XCktpUoKPP510ToQXoWMc7yqmIq-y52rX3tJW0VS_0tI9A_nadRJk3v_35v75G7Co3R_LUAPyDVoH5I7F1gK_dXnkdp1-Yj82Kdtt4I5HbwUAPPgcgY0HktkizEZGIVVEmnb_6J2Puv60-HkjHqETF1ApCExBTSpXld_X2-7tPMb2FmKDKUp183yMfk6ef_l4ANLeRuYyzMxMMezBoTCKneNzjHXHFFJ0Fh5c1hyCS4X6HLIQWegpMa6QosNoje9clc6-YRstV0LTwktwdtTosCMl-hNq6YWludgZYFFVYArtgnfzI9xidQ8dGFuRjrmOLjGD66Jg2t8nddjncWa0uOvpd-GaR9LBjrueKPrZyatbsN18C8G6qQQbiOyunKuRLAoHZaQ6W2yuxEak_aIpRHe9PXWnir9N95shOT88dVN2vm34i_JraN3E3P4cfrpGbktPChbnzrfJVtD_xOek5tuNZwu-xdx6fwGrOQVlg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+three-stage+multi-population+evolutionary+algorithm+for+constrained+multi-objective+optimization+problems&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Shi%2C+Chenli&rft.au=Wang%2C+Ziqi&rft.au=Jin%2C+Xiaohang&rft.au=Xu%2C+Zhengguo&rft.date=2024-02-01&rft.pub=Springer+Nature+B.V&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=10&rft.issue=1&rft.spage=655&rft.epage=675&rft_id=info:doi/10.1007%2Fs40747-023-01181-6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon |