Multilayer Fisher extreme learning machine for classification

As a special deep learning algorithm, the multilayer extreme learning machine (ML-ELM) has been extensively studied to solve practical problems in recent years. The ML-ELM is constructed from the extreme learning machine autoencoder (ELM-AE), and its generalization performance is affected by the rep...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Complex & intelligent systems Ročník 9; číslo 2; s. 1975 - 1993
Hlavní autoři: Lai, Jie, Wang, Xiaodan, Xiang, Qian, Wang, Jian, Lei, Lei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.04.2023
Springer Nature B.V
Springer
Témata:
ISSN:2199-4536, 2198-6053
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As a special deep learning algorithm, the multilayer extreme learning machine (ML-ELM) has been extensively studied to solve practical problems in recent years. The ML-ELM is constructed from the extreme learning machine autoencoder (ELM-AE), and its generalization performance is affected by the representation learning of the ELM-AE. However, given label information, the unsupervised learning of the ELM-AE is difficult to build the discriminative feature space for classification tasks. To address this problem, a novel Fisher extreme learning machine autoencoder (FELM-AE) is proposed and is used as the component for the multilayer Fisher extreme leaning machine (ML-FELM). The FELM-AE introduces the Fisher criterion into the ELM-AE by adding the Fisher regularization term to the objective function, aiming to maximize the between-class distance and minimize the within-class distance of abstract feature. Different from the ELM-AE, the FELM-AE requires class labels to calculate the Fisher regularization loss, so that the learned abstract feature contains sufficient category information to complete classification tasks. The ML-FELM stacks the FELM-AE to extract feature and adopts the extreme leaning machine (ELM) to classify samples. Experiments on benchmark datasets show that the abstract feature extracted by the FELM-AE is more discriminative than the ELM-AE, and the classification results of the ML-FELM are more competitive and robust in comparison with the ELM, one-dimensional convolutional neural network (1D-CNN), ML-ELM, denoising multilayer extreme learning machine (D-ML-ELM), multilayer generalized extreme learning machine (ML-GELM), and hierarchical extreme learning machine with L21‑norm loss and regularization (H-LR21-ELM).
AbstractList As a special deep learning algorithm, the multilayer extreme learning machine (ML-ELM) has been extensively studied to solve practical problems in recent years. The ML-ELM is constructed from the extreme learning machine autoencoder (ELM-AE), and its generalization performance is affected by the representation learning of the ELM-AE. However, given label information, the unsupervised learning of the ELM-AE is difficult to build the discriminative feature space for classification tasks. To address this problem, a novel Fisher extreme learning machine autoencoder (FELM-AE) is proposed and is used as the component for the multilayer Fisher extreme leaning machine (ML-FELM). The FELM-AE introduces the Fisher criterion into the ELM-AE by adding the Fisher regularization term to the objective function, aiming to maximize the between-class distance and minimize the within-class distance of abstract feature. Different from the ELM-AE, the FELM-AE requires class labels to calculate the Fisher regularization loss, so that the learned abstract feature contains sufficient category information to complete classification tasks. The ML-FELM stacks the FELM-AE to extract feature and adopts the extreme leaning machine (ELM) to classify samples. Experiments on benchmark datasets show that the abstract feature extracted by the FELM-AE is more discriminative than the ELM-AE, and the classification results of the ML-FELM are more competitive and robust in comparison with the ELM, one-dimensional convolutional neural network (1D-CNN), ML-ELM, denoising multilayer extreme learning machine (D-ML-ELM), multilayer generalized extreme learning machine (ML-GELM), and hierarchical extreme learning machine with L21‑norm loss and regularization (H-LR21-ELM).
Abstract As a special deep learning algorithm, the multilayer extreme learning machine (ML-ELM) has been extensively studied to solve practical problems in recent years. The ML-ELM is constructed from the extreme learning machine autoencoder (ELM-AE), and its generalization performance is affected by the representation learning of the ELM-AE. However, given label information, the unsupervised learning of the ELM-AE is difficult to build the discriminative feature space for classification tasks. To address this problem, a novel Fisher extreme learning machine autoencoder (FELM-AE) is proposed and is used as the component for the multilayer Fisher extreme leaning machine (ML-FELM). The FELM-AE introduces the Fisher criterion into the ELM-AE by adding the Fisher regularization term to the objective function, aiming to maximize the between-class distance and minimize the within-class distance of abstract feature. Different from the ELM-AE, the FELM-AE requires class labels to calculate the Fisher regularization loss, so that the learned abstract feature contains sufficient category information to complete classification tasks. The ML-FELM stacks the FELM-AE to extract feature and adopts the extreme leaning machine (ELM) to classify samples. Experiments on benchmark datasets show that the abstract feature extracted by the FELM-AE is more discriminative than the ELM-AE, and the classification results of the ML-FELM are more competitive and robust in comparison with the ELM, one-dimensional convolutional neural network (1D-CNN), ML-ELM, denoising multilayer extreme learning machine (D-ML-ELM), multilayer generalized extreme learning machine (ML-GELM), and hierarchical extreme learning machine with L21‑norm loss and regularization (H-LR21-ELM).
Author Lai, Jie
Wang, Jian
Lei, Lei
Xiang, Qian
Wang, Xiaodan
Author_xml – sequence: 1
  givenname: Jie
  surname: Lai
  fullname: Lai, Jie
  organization: College of Air and Missile Defense, Air Force Engineering University
– sequence: 2
  givenname: Xiaodan
  orcidid: 0000-0003-2785-9539
  surname: Wang
  fullname: Wang, Xiaodan
  email: afeu_wang@163.com
  organization: College of Air and Missile Defense, Air Force Engineering University
– sequence: 3
  givenname: Qian
  surname: Xiang
  fullname: Xiang, Qian
  organization: College of Air and Missile Defense, Air Force Engineering University
– sequence: 4
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
  organization: College of Air and Missile Defense, Air Force Engineering University
– sequence: 5
  givenname: Lei
  surname: Lei
  fullname: Lei, Lei
  organization: College of Information and Navigation, Air Force Engineering University
BookMark eNp9kEtrHDEQhEVwII7jP5DTQM6TtKTR65BDMH6BjS_JWbSl1lrL7MiRZiH-957sJBh88Kmbpr6iuj6yo6lMxNhnDl85gPnWBjCD6UGIHsBq05t37FhwZ3sNSh4ddtcPSuoP7LS1LQBwY6wEccy-3-7HOY_4RLW7yO1hGfRnrrSjbiSsU5423Q7DQ56oS6V2YcTWcsoB51ymT-x9wrHR6b95wn5dnP88u-pv7i6vz37c9EGBmHtUEBOKmIKUeA-oogvCIndDtPdcKcsjcdSATqZAUohotAZtyQlUaeDyhF2vvrHg1j_WvMP65AtmfziUuvFY5xxG8pFDJLfAWtnBWHSobcRkTUAdSNHi9WX1eqzl957a7LdlX6clvhcWhNaSW7eo7KoKtbRWKfmQ58PPc8U8eg7-b_d-7d4v3ftD994sqHiF_g_8JiRXqC3iaUP1JdUb1DPJWZge
CitedBy_id crossref_primary_10_1016_j_asej_2025_103518
crossref_primary_10_1088_1742_6596_2852_1_012001
crossref_primary_10_1016_j_measurement_2025_118900
crossref_primary_10_1051_matecconf_202439900022
Cites_doi 10.3390/diagnostics11020241
10.1016/j.jmsy.2020.05.005
10.1109/TNNLS.2016.2636834
10.1109/TSMCB.2011.2168604
10.1007/s13042-016-0544-9
10.1177/0144598720903797
10.1007/s11045-016-0437-9
10.1016/j.neucom.2016.12.027
10.1049/iet-gtd.2019.0531
10.1109/JSEN.2020.3019777
10.3390/app10124125
10.1109/ACCESS.2019.2921390
10.1007/s13042-019-00967-w
10.1007/s10489-022-03422-6
10.1016/j.neucom.2017.04.060
10.1109/34.291440
10.1007/s00500-016-2189-8
10.1016/j.sigpro.2020.107915
10.1126/science.1127647
10.1016/j.jclepro.2020.122248
10.1007/s00500-016-2372-y
10.1109/JIOT.2018.2856241
10.1109/TMM.2018.2865834
10.1109/TGRS.2018.2890040
10.1016/j.neucom.2005.12.126
10.1109/TNN.2006.875977
10.1007/s13042-020-01234-z
10.1016/j.asoc.2019.04.019
10.1109/5.726791
10.1016/j.cosrev.2021.100379
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/s40747-022-00867-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central - New (Subscription)
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 2198-6053
EndPage 1993
ExternalDocumentID oai_doaj_org_article_d10de9068658478a9a68daf87ca6ce5e
10_1007_s40747_022_00867_7
GrantInformation_xml – fundername: The National Natural Science Foundation of China
  grantid: 61876189; 61273275; 61806219; 61703426
– fundername: The Natural Science Basic Research Program of Shaanxi Province
  grantid: No.2021JM-226
GroupedDBID 0R~
8FE
8FG
AAJSJ
AAKKN
ABEEZ
ABFTD
ACACY
ACGFS
ACULB
ADINQ
ADMLS
AFGXO
AFKRA
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
BAPOH
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
M~E
OK1
P62
PIMPY
PROAC
RSV
SOJ
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c502t-a50dfa2dfc33ab0a5d9c28a194d8b15581de1a60a93fce322d766068e92a5f413
IEDL.DBID P5Z
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000876841700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2199-4536
IngestDate Tue Oct 14 18:46:24 EDT 2025
Wed Oct 08 14:21:35 EDT 2025
Sat Nov 29 05:48:59 EST 2025
Tue Nov 18 21:14:57 EST 2025
Fri Feb 21 02:43:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Deep learning
Representation learning
Extreme learning machine
Autoencoder
Fisher criterion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-a50dfa2dfc33ab0a5d9c28a194d8b15581de1a60a93fce322d766068e92a5f413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2785-9539
OpenAccessLink https://www.proquest.com/docview/2802663189?pq-origsite=%requestingapplication%
PQID 2802663189
PQPubID 2044308
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_d10de9068658478a9a68daf87ca6ce5e
proquest_journals_2802663189
crossref_citationtrail_10_1007_s40747_022_00867_7
crossref_primary_10_1007_s40747_022_00867_7
springer_journals_10_1007_s40747_022_00867_7
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Complex & intelligent systems
PublicationTitleAbbrev Complex Intell. Syst
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References Wong, Vong, Wong, Cao (CR22) 2016; 29
Xu, Deng, Coutinho, Wu, Zhao (CR10) 2018; 21
Zabala-Blanco, Mora, Barrientos (CR5) 2020; 10
Yan, Chu, Zhang, Liu (CR7) 2018; 22
Dong, Wang, Abbas (CR16) 2021; 40
Huang, Zhu, Siew (CR1) 2006; 70
Hull (CR29) 1994; 16
Zhao, Wu, Gao, Niu, Wang (CR20) 2020; 21
LeCun, Buttou, Bengio, Haffner (CR30) 1998; 86
Li, Wang, Lei, Song (CR8) 2018; 7
CR32
He, Sun, Yan, Shen, Nian (CR6) 2017; 28
CR31
Kasun, Zhou, Huang, Vong (CR17) 2013; 28
Krishnan, Kamath (CR34) 2019; 80
Lu, Yan (CR28) 2020; 56
Labed, Labed (CR11) 2019; 13
Luo, Li, Wang, Ban, Wang, Zhao (CR26) 2020; 11
Zhang, Ding, Shi (CR21) 2016; 171
Wang, Chen, Yang, Zhao, Hu (CR13) 2017; 267
Le, Xiao, Mao, Song (CR27) 2019; 57
Chen, Hai-Yue, Wun, Wang, Li (CR12) 2020; 38
Li, Wang, Song, Lei (CR24) 2021; 12
Du, Song, Chen, Shu, Guo (CR33) 2020; 270
Roul, Asthana, Kumar (CR18) 2017; 21
Lai, Wang, Xiang, Li, Song (CR35) 2022
Luo, Yang, Jiang, Ban (CR4) 2018; 9
Huang, Zhou, Ding, Zhang (CR3) 2011; 42
Lahoura, Singh, Aggarwal, Sharma, Damaševičius (CR14) 2021; 11
Chen, Honeine, Hua, Xia (CR25) 2018; 84
Sun, Zhang, Zhang, Hu (CR23) 2017; 230
Khatab, Gazestani, Ghorashi, Ghavami (CR36) 2021; 181
Chen, Li, Luo, Wang, Wang, Zhao (CR19) 2018; 6
Huang, Chen, Siew (CR2) 2006; 17
Guo, Wang, Dang, Liu, Guan (CR9) 2019; 7
Hinton, Salakhutdinov (CR15) 2006; 313
GB Huang (867_CR3) 2011; 42
GB Huang (867_CR1) 2006; 70
X Luo (867_CR4) 2018; 9
M Wang (867_CR13) 2017; 267
V Lahoura (867_CR14) 2021; 11
867_CR32
867_CR31
D Yan (867_CR7) 2018; 22
I Labed (867_CR11) 2019; 13
X Luo (867_CR26) 2020; 11
LLC Kasun (867_CR17) 2013; 28
R Li (867_CR24) 2021; 12
GB Huang (867_CR2) 2006; 17
H Du (867_CR33) 2020; 270
X Xu (867_CR10) 2018; 21
CM Wong (867_CR22) 2016; 29
GS Krishnan (867_CR34) 2019; 80
K Sun (867_CR23) 2017; 230
ZE Khatab (867_CR36) 2021; 181
S Dong (867_CR16) 2021; 40
JJ Hull (867_CR29) 1994; 16
LJ Chen (867_CR25) 2018; 84
N Zhang (867_CR21) 2016; 171
RK Roul (867_CR18) 2017; 21
BT Le (867_CR27) 2019; 57
Y LeCun (867_CR30) 1998; 86
L Guo (867_CR9) 2019; 7
D Zabala-Blanco (867_CR5) 2020; 10
M Chen (867_CR19) 2018; 6
B He (867_CR6) 2017; 28
GE Hinton (867_CR15) 2006; 313
W Lu (867_CR28) 2020; 56
G Zhao (867_CR20) 2020; 21
J Lai (867_CR35) 2022
XD Chen (867_CR12) 2020; 38
R Li (867_CR8) 2018; 7
References_xml – volume: 11
  start-page: 241
  issue: 2
  year: 2021
  ident: CR14
  article-title: Cloud computing-based framework for breast cancer diagnosis using extreme learning machine
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11020241
– volume: 56
  start-page: 241
  issue: 1
  year: 2020
  end-page: 251
  ident: CR28
  article-title: Deep fisher autoencoder combined with self-organizing map for visual industrial process monitoring
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2020.05.005
– volume: 29
  start-page: 757
  issue: 3
  year: 2016
  end-page: 762
  ident: CR22
  article-title: Kernel-based multilayer extreme learning machines for representation learning
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2636834
– volume: 42
  start-page: 513
  issue: 2
  year: 2011
  end-page: 529
  ident: CR3
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMCB.2011.2168604
– volume: 9
  start-page: 465
  issue: 3
  year: 2018
  end-page: 476
  ident: CR4
  article-title: Timeliness online regularized extreme learning machine
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-016-0544-9
– volume: 38
  start-page: 1194
  issue: 4
  year: 2020
  end-page: 1211
  ident: CR12
  article-title: Power load forecasting in energy system based on improved extreme learning machine
  publication-title: Energy Explor Exploit
  doi: 10.1177/0144598720903797
– volume: 28
  start-page: 1051
  issue: 3
  year: 2017
  end-page: 1069
  ident: CR6
  article-title: A pruning ensemble model of extreme learning machine with L regularizer
  publication-title: Multidimens Syst Signal Process
  doi: 10.1007/s11045-016-0437-9
– volume: 230
  start-page: 374
  issue: 1
  year: 2017
  end-page: 381
  ident: CR23
  article-title: Generalized extreme learning machine autoencoder and a new deep neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.027
– volume: 13
  start-page: 5058
  issue: 22
  year: 2019
  end-page: 5070
  ident: CR11
  article-title: Extreme learning machine-based alleviation for overloaded power system
  publication-title: IET Gener Transm Distrib
  doi: 10.1049/iet-gtd.2019.0531
– volume: 21
  start-page: 2324
  issue: 2
  year: 2020
  end-page: 2333
  ident: CR20
  article-title: Multi-layer extreme learning machine-based keystroke dynamics identification for intelligent keyboard
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2020.3019777
– volume: 10
  start-page: 4125
  issue: 12
  year: 2020
  ident: CR5
  article-title: Fingerprint classification through standard and weighted extreme learning machines
  publication-title: Appl Sci
  doi: 10.3390/app10124125
– volume: 7
  start-page: 75798
  issue: 1
  year: 2019
  end-page: 75809
  ident: CR9
  article-title: Exploration of complementary feature for speech emotion recognition based on kernel extreme learning machine
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921390
– volume: 11
  start-page: 197
  issue: 1
  year: 2020
  end-page: 216
  ident: CR26
  article-title: A robust multilayer extreme learning machine using kernel risk-sensitive loss criterion
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-019-00967-w
– volume: 84
  start-page: 357
  issue: 1
  year: 2018
  end-page: 370
  ident: CR25
  article-title: Correntropy-based robust multilayer extreme learning machines
  publication-title: Pattern Recogn
– year: 2022
  ident: CR35
  article-title: FVAE: a regularized variational autoencoder using the Fisher criterion
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-03422-6
– volume: 267
  start-page: 69
  issue: 1
  year: 2017
  end-page: 84
  ident: CR13
  article-title: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.060
– volume: 16
  start-page: 550
  issue: 5
  year: 1994
  end-page: 554
  ident: CR29
  article-title: A database for handwritten text recognition research
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.291440
– volume: 21
  start-page: 4239
  issue: 15
  year: 2017
  end-page: 4256
  ident: CR18
  article-title: Study on suitability and importance of multilayer extreme learning machine for classification of text data
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2189-8
– volume: 181
  year: 2021
  ident: CR36
  article-title: A fingerprint technique for indoor localization using autoencoder based semi-supervised deep extreme learning machine
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2020.107915
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  end-page: 507
  ident: CR15
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 171
  start-page: 1066
  issue: 1
  year: 2016
  end-page: 1074
  ident: CR21
  article-title: Denoising Laplacian multi-layer extreme learning machine
  publication-title: Neurocomputing
– volume: 270
  issue: 1
  year: 2020
  ident: CR33
  article-title: Prediction model oriented for landslide displacement with step-like curve by applying ensemble empirical mode decomposition and the PSO-ELM method
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.122248
– volume: 22
  start-page: 677
  issue: 2
  year: 2018
  end-page: 689
  ident: CR7
  article-title: Information discriminative extreme learning machine
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2372-y
– volume: 6
  start-page: 1410
  issue: 2
  year: 2018
  end-page: 1418
  ident: CR19
  article-title: A novel human activity recognition scheme for smart health using multilayer extreme learning machine
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2018.2856241
– volume: 21
  start-page: 795
  issue: 3
  year: 2018
  end-page: 808
  ident: CR10
  article-title: Connecting subspace learning and extreme learning machine in speech emotion recognition
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2018.2865834
– volume: 57
  start-page: 4192
  issue: 7
  year: 2019
  end-page: 4201
  ident: CR27
  article-title: Coal quality exploration technology based on an incremental multilayer extreme learning machine and remote sensing images
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2018.2890040
– ident: CR31
– volume: 70
  start-page: 489
  issue: 1
  year: 2006
  end-page: 501
  ident: CR1
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 28
  start-page: 31
  issue: 6
  year: 2013
  end-page: 34
  ident: CR17
  article-title: Representational learning with extreme learning machine for big data
  publication-title: IEEE Intell Syst
– volume: 7
  start-page: 6575
  issue: 1
  year: 2018
  end-page: 6586
  ident: CR8
  article-title: L21-norm based loss function and regularization extreme learning machine
  publication-title: IEEE Access
– ident: CR32
– volume: 17
  start-page: 879
  issue: 4
  year: 2006
  end-page: 892
  ident: CR2
  article-title: Universal approximation using incremental constructive feedforward networks with random hidden nodes
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNN.2006.875977
– volume: 12
  start-page: 1297
  issue: 5
  year: 2021
  end-page: 1310
  ident: CR24
  article-title: Hierarchical extreme learning machine with L21-norm loss and regularization
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-020-01234-z
– volume: 80
  start-page: 525
  issue: 1
  year: 2019
  end-page: 533
  ident: CR34
  article-title: A novel GA-ELM model for patient-specific mortality prediction over large-scale lab event data
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.04.019
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  end-page: 2324
  ident: CR30
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– volume: 40
  issue: 1
  year: 2021
  ident: CR16
  article-title: A survey on deep learning and its applications
  publication-title: Comput Sci Rev
  doi: 10.1016/j.cosrev.2021.100379
– volume: 21
  start-page: 4239
  issue: 15
  year: 2017
  ident: 867_CR18
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2189-8
– volume: 70
  start-page: 489
  issue: 1
  year: 2006
  ident: 867_CR1
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 7
  start-page: 75798
  issue: 1
  year: 2019
  ident: 867_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921390
– volume: 21
  start-page: 2324
  issue: 2
  year: 2020
  ident: 867_CR20
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2020.3019777
– volume: 42
  start-page: 513
  issue: 2
  year: 2011
  ident: 867_CR3
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMCB.2011.2168604
– volume: 270
  issue: 1
  year: 2020
  ident: 867_CR33
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.122248
– volume: 84
  start-page: 357
  issue: 1
  year: 2018
  ident: 867_CR25
  publication-title: Pattern Recogn
– volume: 6
  start-page: 1410
  issue: 2
  year: 2018
  ident: 867_CR19
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2018.2856241
– volume: 56
  start-page: 241
  issue: 1
  year: 2020
  ident: 867_CR28
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2020.05.005
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 867_CR15
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 17
  start-page: 879
  issue: 4
  year: 2006
  ident: 867_CR2
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNN.2006.875977
– volume: 29
  start-page: 757
  issue: 3
  year: 2016
  ident: 867_CR22
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2636834
– volume: 21
  start-page: 795
  issue: 3
  year: 2018
  ident: 867_CR10
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2018.2865834
– volume: 230
  start-page: 374
  issue: 1
  year: 2017
  ident: 867_CR23
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.027
– ident: 867_CR31
– volume: 11
  start-page: 197
  issue: 1
  year: 2020
  ident: 867_CR26
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-019-00967-w
– volume: 171
  start-page: 1066
  issue: 1
  year: 2016
  ident: 867_CR21
  publication-title: Neurocomputing
– volume: 181
  year: 2021
  ident: 867_CR36
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2020.107915
– volume: 10
  start-page: 4125
  issue: 12
  year: 2020
  ident: 867_CR5
  publication-title: Appl Sci
  doi: 10.3390/app10124125
– volume: 80
  start-page: 525
  issue: 1
  year: 2019
  ident: 867_CR34
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.04.019
– volume: 13
  start-page: 5058
  issue: 22
  year: 2019
  ident: 867_CR11
  publication-title: IET Gener Transm Distrib
  doi: 10.1049/iet-gtd.2019.0531
– volume: 12
  start-page: 1297
  issue: 5
  year: 2021
  ident: 867_CR24
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-020-01234-z
– volume: 16
  start-page: 550
  issue: 5
  year: 1994
  ident: 867_CR29
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.291440
– volume: 22
  start-page: 677
  issue: 2
  year: 2018
  ident: 867_CR7
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2372-y
– year: 2022
  ident: 867_CR35
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-03422-6
– volume: 28
  start-page: 31
  issue: 6
  year: 2013
  ident: 867_CR17
  publication-title: IEEE Intell Syst
– volume: 9
  start-page: 465
  issue: 3
  year: 2018
  ident: 867_CR4
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-016-0544-9
– volume: 7
  start-page: 6575
  issue: 1
  year: 2018
  ident: 867_CR8
  publication-title: IEEE Access
– volume: 28
  start-page: 1051
  issue: 3
  year: 2017
  ident: 867_CR6
  publication-title: Multidimens Syst Signal Process
  doi: 10.1007/s11045-016-0437-9
– volume: 38
  start-page: 1194
  issue: 4
  year: 2020
  ident: 867_CR12
  publication-title: Energy Explor Exploit
  doi: 10.1177/0144598720903797
– volume: 40
  issue: 1
  year: 2021
  ident: 867_CR16
  publication-title: Comput Sci Rev
  doi: 10.1016/j.cosrev.2021.100379
– volume: 57
  start-page: 4192
  issue: 7
  year: 2019
  ident: 867_CR27
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2018.2890040
– volume: 11
  start-page: 241
  issue: 2
  year: 2021
  ident: 867_CR14
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11020241
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 867_CR30
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– volume: 267
  start-page: 69
  issue: 1
  year: 2017
  ident: 867_CR13
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.060
– ident: 867_CR32
SSID ssj0001778302
ssib044733412
ssib045327741
Score 2.2360566
Snippet As a special deep learning algorithm, the multilayer extreme learning machine (ML-ELM) has been extensively studied to solve practical problems in recent...
Abstract As a special deep learning algorithm, the multilayer extreme learning machine (ML-ELM) has been extensively studied to solve practical problems in...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1975
SubjectTerms Algorithms
Artificial neural networks
Autoencoder
Classification
Complexity
Computational Intelligence
Data Structures and Information Theory
Deep learning
Engineering
Extreme learning machine
Fisher criterion
Machine learning
Multilayers
Original Article
Regularization
Representation learning
Unsupervised learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSxnYIMKJk9geGABRsYAYQGKzLn4gpFJQW_j93DlpCkjAwpo4knN3tj_7zt_H2CHOuwJAQlpCoDSjqFOFLVPHtSscd7qGEMUm5M2NenjQt5-kvqgmrKEHbgx34jLuvKaLDJTQU6ChUg6CkhYq60tPsy-X-tNmCiOpKKQQxXzhLkqRy5nGTDx9kZKIr0h5LtPYx5jD3Onu1RVEK59SoTtBfpnKL6tWJPf_gki_JVHj2jRYZSstqEzOmp9ZYwt-tM6WrztG1skGO403bYeACDtp5M4TnJbpcDBphSMek-dYWOkTxLGJJVRNZUTRc5vsfnB5d3GVttIJqS15Pk2h5C5A7oIVAmoOpdM2V5DpwqkaIQSiVJ9BxUGLYD0Oaicr3Moor3MoA7psi_VGLyO_zRKfhZpbH3IcrkXphELvWSuykKNdVRB9ls1MY2zLK07yFkPTMSJHcxo0p4nmNLLPjrpvXhtWjV9bn5PFu5bEiB0fYJyYNk7MX3HSZ3szf5l2mE5MrnALWuG0pvvseObD-eufu7TzH13aZUskXt_UAe2x3nT85vfZon2fPk3GBzGgPwCMSvMx
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLINK
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYYCBN6K8lIENIiVxEtsDAyAqFioGkLpZFz8qJCioLfx-zm4SHlKRYExyiZw7-_zZd_4O4IT8LkPkGBfofJiRVbEgydgk0uQmMbJCF4pN8H5fDAbyrj4UNmmy3ZuQZPDU7WG33HO9xz773ONwHvNFWCpSIX0i39Un53iec8byetIOOy2ce5IrX2UuldSeEK_cn__ZbzNUIPL_hj5_BEzDPNRb_98fbMBajTuji1lH2YQFO9qC1S9shHR121K4TrbhPBzNfUKC5NGsPnpEftzvJkZ1pYlh9BwyMW1EwDfSHob7vKNg6h146F3fX93Eda2FWBdJNo2xSIzDzDjNGFYJFkbqTGAqcyMqwhwEa22KZYKSOW3JCxhe0tpHWJlh4cjGu9AZvYzsHkQ2dVWirctofOeFYYLMrTVLXUbGEY51IW30q3RNRO7rYTyplkI5KEqRolRQlOJdOG3feZ3RcPwqfenN1kp6Cu1w42U8VPWIVCZNjJX-hIyPFAuUWAqDTnCNpbaF7cJhY3RVj-uJygStWUvyg7ILZ42RPx_Pb9L-38QPYMXXtZ-lCB1CZzp-s0ewrN-nj5PxcejvH_sB9wk
  priority: 102
  providerName: Springer Nature
Title Multilayer Fisher extreme learning machine for classification
URI https://link.springer.com/article/10.1007/s40747-022-00867-7
https://www.proquest.com/docview/2802663189
https://doaj.org/article/d10de9068658478a9a68daf87ca6ce5e
Volume 9
WOSCitedRecordID wos000876841700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044733412
  issn: 2199-4536
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: P5Z
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: BENPR
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: PIMPY
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2198-6053
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001778302
  issn: 2199-4536
  databaseCode: C24
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgM98EZsKascuIFF4kdsHxCiVSs4dBUhkAoXy_GjQiq77e7C78fjdbIqEr1wTZwoyYzHX2bG3wfwKsVdZq20RNiIZUbWE5VGEl9rz33tdW9jFpuQs5k6P9ddSbitSlvlEBNzoPYLhznyt1Slv4U2eaB-f3VNUDUKq6tFQmMH9pAlAaUbOvF98CfOJWN8u3xzwagclGZyDkZKpL9C_blGpyfNlcyDcXcdR3J5gu3uCPwlkTfWrkzxfwOX_lVKzSvU6YP_fbeHcL9g0-rDxpkewZ0wfwz7ZyOx6-oJvMsbdi9tAurVRjW9StEdc4xV0Z-4qH7m_sxQJThcOQTn2I2UHeApfD09-XL8kRQFBuJETdfEitpHS310jNm-tsJrR5VtNPeqT0gkgd3Q2La2mkUXUmzwsk1_RCpoakVMln8Gu_PFPDyHKjSxr12INM16LjxTyQmcY02kyTAqsgk0w7c1rtCTo0rGpRmJlbM9TLKHyfYwcgKvx2uuNuQct44-QpONI5FYOx9YLC9MmafGN7UPGvfNYP1YWW1b5W1U0tnWBREmcDiY0JTZvjJb-03gzeAE29P_fqSD2-_2Au6huv2mUegQdtfLX-El3HW_1z9WyynsHZ3Mus9T2DmmfJqTCdPs_-lM9-ms-_YHlkkF0A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRLlwBuxpUAOcIKIxE5i-1AhXlVX7a72UKRyMo4fFVK7W3YXEH-K38iM81gVid564Jo4luP5PJ7xjOcDeI56lxsjTFqaQGFGXqcSW6YuU65wmVO1CZFsQkwm8vhYTTfgd3cXhtIqO50YFbWbWzojf80kegsVIlC9Of-WEmsURVc7Co0GFgf-10902Za7ow8o3xeM7X08er-ftqwCqS0ztkpNmblgmAuWc1NnpnTKMmnQmXeyxt0VDTifmyozigfrEe9OVGjlS6-YKQP-DfZ7DTYLAvsANqej8fRzh-CiEJwXa4OhKDkTHbdNPPURggpuEeNdrnBuYux0u7_PV1A5-5QS7MnVEKm4sFtGUoELlvBfwdu4J-7d_t9m8w7caq3v5G2zXO7Chp_dg5vjvnTt8j7sxivJpwZdkaThhU9w_6JT1KRl2DhJzmIGqk_Q4E8suR-UbxUh_gA-Xcn4H8JgNp_5R5D4PNSZ9YGhXitKxyXC3FqeB4ZAkIEPIe9kqW1bgJ14QE51Xzo6yl-j_HWUvxZDeNl_c96UH7m09TuCSN-SSofHB_PFiW41kXZ55ryim0EUIZdGmUo6E6SwprK-9EPY6SCjW3221Gu8DOFVB7r1638Pafvy3p7Bjf2j8aE-HE0OHsMWQwuySYvagcFq8d0_gev2x-rrcvG0XWkJfLlqOP4BuItfqg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61FCE4tAVasZS2OXBrI5I4ie0DB16rItoVB5C4WRM_UCW6oN1tfz8zTjY8JJBQj0mcyPHM2J89M98AbNO8KxAlphUGdjOKJlXUMnWZdqXLnG4wxGITcjRSFxf69F4Wf4x2n7sk25wGZmkaz3ZuXNjpE99K5n1PORKdMblM5Wt4wx4p1vGDO_7xspRClN0CHk9dpGTCK644l2vqW_Rdbj792QerVST1f4BEHzlP45o0fPf_f_Me3nZ4NNlrFWgVXvnxGqzcYymkq189tet0HXZjyu4VElRP2rrpCc3vfMqYdBUoLpM_MULTJwSIE8vwnOORogp8gPPh0dnBj7SrwZDaKitmKVaZC1i4YIXAJsPKaVsozHXpVENYhOCuz7HOUItgPc0OTta0J1JeF1gFkv1HWBhfj_0GJD4PTWZ9KMjuy8oJRWpgrchDQYJSQQwgn4-1sR1BOdfJuDI9tXIcKEMDZeJAGTmAb_07Ny09x7Ot91mEfUum1o43rieXprNU4_LMec2ZM-xBVqixVg6DkhZr6ys_gK25ApjO3qemULSXrWl-1AP4Phf43eOnu7T5suZfYen0cGh-Ho9OPsFyQYCrjSLagoXZ5K__DIv23-z3dPIlmsEt6kwC4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilayer+Fisher+extreme+learning+machine+for+classification&rft.jtitle=Complex+%26+intelligent+systems&rft.au=Lai%2C+Jie&rft.au=Wang%2C+Xiaodan&rft.au=Xiang%2C+Qian&rft.au=Wang%2C+Jian&rft.date=2023-04-01&rft.pub=Springer+Nature+B.V&rft.issn=2199-4536&rft.eissn=2198-6053&rft.volume=9&rft.issue=2&rft.spage=1975&rft.epage=1993&rft_id=info:doi/10.1007%2Fs40747-022-00867-7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-4536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-4536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-4536&client=summon