Swin-Diff: a single defocus image deblurring network based on diffusion model
Single Image Defocus Deblurring (SIDD) remains challenging due to spatially varying blur kernels, particularly in processing high-resolution images where traditional methods often struggle with artifact generation, detail preservation, and computational efficiency. This paper presents Swin-Diff, a n...
Uloženo v:
| Vydáno v: | Complex & intelligent systems Ročník 11; číslo 3; s. 170 - 13 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.03.2025
Springer Nature B.V Springer |
| Témata: | |
| ISSN: | 2199-4536, 2198-6053 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Single Image Defocus Deblurring (SIDD) remains challenging due to spatially varying blur kernels, particularly in processing high-resolution images where traditional methods often struggle with artifact generation, detail preservation, and computational efficiency. This paper presents Swin-Diff, a novel architecture integrating diffusion models with Transformer-based networks for robust defocus deblurring. Our approach employs a two-stage training strategy where a diffusion model generates prior information in a compact latent space, which is then hierarchically fused with intermediate features to guide the regression model. The architecture incorporates a dual-dimensional self-attention mechanism operating across channel and spatial domains, enhancing long-range modeling capabilities while maintaining linear computational complexity. Extensive experiments on three public datasets (DPDD, RealDOF, and RTF) demonstrate Swin-Diff’s superior performance, achieving average improvements of 1.37% in PSNR, 3.6% in SSIM, 2.3% in MAE, and 25.2% in LPIPS metrics compared to state-of-the-art methods. Our results validate the effectiveness of combining diffusion models with hierarchical attention mechanisms for high-quality defocus blur removal. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2199-4536 2198-6053 |
| DOI: | 10.1007/s40747-025-01789-w |