Swin-Diff: a single defocus image deblurring network based on diffusion model

Single Image Defocus Deblurring (SIDD) remains challenging due to spatially varying blur kernels, particularly in processing high-resolution images where traditional methods often struggle with artifact generation, detail preservation, and computational efficiency. This paper presents Swin-Diff, a n...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Complex & intelligent systems Ročník 11; číslo 3; s. 170 - 13
Hlavní autoři: Liang, Hanyan, Chai, Shuyao, Zhao, Xixuan, Kan, Jiangming
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.03.2025
Springer Nature B.V
Springer
Témata:
ISSN:2199-4536, 2198-6053
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Single Image Defocus Deblurring (SIDD) remains challenging due to spatially varying blur kernels, particularly in processing high-resolution images where traditional methods often struggle with artifact generation, detail preservation, and computational efficiency. This paper presents Swin-Diff, a novel architecture integrating diffusion models with Transformer-based networks for robust defocus deblurring. Our approach employs a two-stage training strategy where a diffusion model generates prior information in a compact latent space, which is then hierarchically fused with intermediate features to guide the regression model. The architecture incorporates a dual-dimensional self-attention mechanism operating across channel and spatial domains, enhancing long-range modeling capabilities while maintaining linear computational complexity. Extensive experiments on three public datasets (DPDD, RealDOF, and RTF) demonstrate Swin-Diff’s superior performance, achieving average improvements of 1.37% in PSNR, 3.6% in SSIM, 2.3% in MAE, and 25.2% in LPIPS metrics compared to state-of-the-art methods. Our results validate the effectiveness of combining diffusion models with hierarchical attention mechanisms for high-quality defocus blur removal.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2199-4536
2198-6053
DOI:10.1007/s40747-025-01789-w