A fully Bayesian approach for comprehensive mapping of magnitude and phase brain activation in complex-valued fMRI data
Functional magnetic resonance imaging (fMRI) plays a crucial role in neuroimaging, enabling the exploration of brain activity through complex-valued signals. These signals, composed of magnitude and phase, offer a rich source of information for understanding brain functions. Traditional fMRI analyse...
Saved in:
| Published in: | Magnetic resonance imaging Vol. 109; pp. 271 - 285 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Netherlands
Elsevier Inc
01.06.2024
|
| Subjects: | |
| ISSN: | 0730-725X, 1873-5894, 1873-5894 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Functional magnetic resonance imaging (fMRI) plays a crucial role in neuroimaging, enabling the exploration of brain activity through complex-valued signals. These signals, composed of magnitude and phase, offer a rich source of information for understanding brain functions. Traditional fMRI analyses have largely focused on magnitude information, often overlooking the potential insights offered by phase data. In this paper, we propose a novel fully Bayesian model designed for analyzing single-subject complex-valued fMRI (cv-fMRI) data. Our model, which we refer to as the CV-M&P model, is distinctive in its comprehensive utilization of both magnitude and phase information in fMRI signals, allowing for independent prediction of different types of activation maps. We incorporate Gaussian Markov random fields (GMRFs) to capture spatial correlations within the data, and employ image partitioning and parallel computation to enhance computational efficiency. Our model is rigorously tested through simulation studies, and then applied to a real dataset from a unilateral finger-tapping experiment. The results demonstrate the model's effectiveness in accurately identifying brain regions activated in response to specific tasks, distinguishing between magnitude and phase activation.
•Most fMRI studies use real-valued, magnitude only data, ignoring information in the complex part.•Identifying changes in magnitude and phase allows for detection of meaningful neuronal activity that would be missed by studying magnitude alone.•We propose a fully Bayesian model for identifying magnitude and phase changes in task-based BOLD fMRI.•The model accounts for spatial association via sparse Gaussian Markov random fields and is computationally scalable via parcellation.•We demonstrate that the model is able to not only identify task-related changes in BOLD signal, but the type of change (magnitude, phase, or both). |
|---|---|
| AbstractList | Functional magnetic resonance imaging (fMRI) plays a crucial role in neuroimaging, enabling the exploration of brain activity through complex-valued signals. These signals, composed of magnitude and phase, offer a rich source of information for understanding brain functions. Traditional fMRI analyses have largely focused on magnitude information, often overlooking the potential insights offered by phase data. In this paper, we propose a novel fully Bayesian model designed for analyzing single-subject complex-valued fMRI (cv-fMRI) data. Our model, which we refer to as the CV-M&P model, is distinctive in its comprehensive utilization of both magnitude and phase information in fMRI signals, allowing for independent prediction of different types of activation maps. We incorporate Gaussian Markov random fields (GMRFs) to capture spatial correlations within the data, and employ image partitioning and parallel computation to enhance computational efficiency. Our model is rigorously tested through simulation studies, and then applied to a real dataset from a unilateral finger-tapping experiment. The results demonstrate the model's effectiveness in accurately identifying brain regions activated in response to specific tasks, distinguishing between magnitude and phase activation. Functional magnetic resonance imaging (fMRI) plays a crucial role in neuroimaging, enabling the exploration of brain activity through complex-valued signals. These signals, composed of magnitude and phase, offer a rich source of information for understanding brain functions. Traditional fMRI analyses have largely focused on magnitude information, often overlooking the potential insights offered by phase data. In this paper, we propose a novel fully Bayesian model designed for analyzing single-subject complex-valued fMRI (cv-fMRI) data. Our model, which we refer to as the CV-M&P model, is distinctive in its comprehensive utilization of both magnitude and phase information in fMRI signals, allowing for independent prediction of different types of activation maps. We incorporate Gaussian Markov random fields (GMRFs) to capture spatial correlations within the data, and employ image partitioning and parallel computation to enhance computational efficiency. Our model is rigorously tested through simulation studies, and then applied to a real dataset from a unilateral finger-tapping experiment. The results demonstrate the model's effectiveness in accurately identifying brain regions activated in response to specific tasks, distinguishing between magnitude and phase activation.Functional magnetic resonance imaging (fMRI) plays a crucial role in neuroimaging, enabling the exploration of brain activity through complex-valued signals. These signals, composed of magnitude and phase, offer a rich source of information for understanding brain functions. Traditional fMRI analyses have largely focused on magnitude information, often overlooking the potential insights offered by phase data. In this paper, we propose a novel fully Bayesian model designed for analyzing single-subject complex-valued fMRI (cv-fMRI) data. Our model, which we refer to as the CV-M&P model, is distinctive in its comprehensive utilization of both magnitude and phase information in fMRI signals, allowing for independent prediction of different types of activation maps. We incorporate Gaussian Markov random fields (GMRFs) to capture spatial correlations within the data, and employ image partitioning and parallel computation to enhance computational efficiency. Our model is rigorously tested through simulation studies, and then applied to a real dataset from a unilateral finger-tapping experiment. The results demonstrate the model's effectiveness in accurately identifying brain regions activated in response to specific tasks, distinguishing between magnitude and phase activation. Functional magnetic resonance imaging (fMRI) plays a crucial role in neuroimaging, enabling the exploration of brain activity through complex-valued signals. These signals, composed of magnitude and phase, offer a rich source of information for understanding brain functions. Traditional fMRI analyses have largely focused on magnitude information, often overlooking the potential insights offered by phase data. In this paper, we propose a novel fully Bayesian model designed for analyzing single-subject complex-valued fMRI (cv-fMRI) data. Our model, which we refer to as the CV-M&P model, is distinctive in its comprehensive utilization of both magnitude and phase information in fMRI signals, allowing for independent prediction of different types of activation maps. We incorporate Gaussian Markov random fields (GMRFs) to capture spatial correlations within the data, and employ image partitioning and parallel computation to enhance computational efficiency. Our model is rigorously tested through simulation studies, and then applied to a real dataset from a unilateral finger-tapping experiment. The results demonstrate the model's effectiveness in accurately identifying brain regions activated in response to specific tasks, distinguishing between magnitude and phase activation. •Most fMRI studies use real-valued, magnitude only data, ignoring information in the complex part.•Identifying changes in magnitude and phase allows for detection of meaningful neuronal activity that would be missed by studying magnitude alone.•We propose a fully Bayesian model for identifying magnitude and phase changes in task-based BOLD fMRI.•The model accounts for spatial association via sparse Gaussian Markov random fields and is computationally scalable via parcellation.•We demonstrate that the model is able to not only identify task-related changes in BOLD signal, but the type of change (magnitude, phase, or both). |
| Author | Wang, Zhengxin Brown, D. Andrew Rowe, Daniel B. Li, Xinyi |
| AuthorAffiliation | b Department of Mathematical and Statistical Sciences, Marquette University, Milwaukee, 53233, Wisconsin, U.S.A a School of Mathematical and Statistical Sciences, Clemson University, Clemson, 29634, South Carolina, U.S.A |
| AuthorAffiliation_xml | – name: b Department of Mathematical and Statistical Sciences, Marquette University, Milwaukee, 53233, Wisconsin, U.S.A – name: a School of Mathematical and Statistical Sciences, Clemson University, Clemson, 29634, South Carolina, U.S.A |
| Author_xml | – sequence: 1 givenname: Zhengxin surname: Wang fullname: Wang, Zhengxin organization: School of Mathematical and Statistical Sciences, Clemson University, Clemson 29634, SC, USA – sequence: 2 givenname: Daniel B. surname: Rowe fullname: Rowe, Daniel B. organization: Department of Mathematical and Statistical Sciences, Marquette University, Milwaukee 53233, WI, USA – sequence: 3 givenname: Xinyi surname: Li fullname: Li, Xinyi organization: School of Mathematical and Statistical Sciences, Clemson University, Clemson 29634, SC, USA – sequence: 4 givenname: D. Andrew surname: Brown fullname: Brown, D. Andrew email: ab7@clemson.edu organization: School of Mathematical and Statistical Sciences, Clemson University, Clemson 29634, SC, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38537891$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtv1DAUhS1URKeFH8AGeckmwY-8LBaoVDwqFSEhkNhZjnM948Gxg50MzL_Hw7QIuigrP-79zpHOOUMnPnhA6CklJSW0ebEtx2hLRlhVEl4SJh6gFe1aXtSdqE7QirScFC2rv56is5S2hJCa8foROuVdzdtO0BX6cYHN4twev1Z7SFZ5rKYpBqU32ISIdRinCBvwye4Aj3lm_RoHk69rb-dlAKz8gKeNSoD7qGzm9Wx3arbB4_w6CDj4WeyUW2DA5sOnKzyoWT1GD41yCZ7cnOfoy9s3ny_fF9cf311dXlwXuiZsLmjbmB4GM1SVMAw4JZyzrumbgVJDgHGthaBGEN2qnhktdNW2HRG6pvlDU36OXh11p6UfYdDg56icnKIdVdzLoKz8d-LtRq7DTlJKhBBVkxWe3yjE8H2BNMvRJg3OKQ9hSZITWhHKOGF59dnfZn9cbuPOC-1xQceQUgQjtZ1_Z5W9rZOUyEOxcitzsfJQrCRc5mIzSe-Qt-L3MS-PDOSAdxaiTNqC1zDYCHqWQ7D30uIOrZ31Viv3Dfb_YX8BEjTRBw |
| CitedBy_id | crossref_primary_10_1016_j_neuroimage_2025_121290 crossref_primary_10_1016_j_sigpro_2025_110004 |
| Cites_doi | 10.1214/09-STS282 10.1038/33402 10.1002/hbm.460020402 10.1016/j.mri.2009.05.048 10.1016/j.neuroimage.2004.09.038 10.1093/biostatistics/kxv044 10.1093/brain/60.4.389 10.1089/brain.2014.0278 10.1063/1.1699114 10.1093/biomet/57.1.97 10.1002/mrm.1910340618 10.1111/j.1467-9868.2012.01041.x 10.1016/j.conb.2006.03.005 10.1109/TMI.2003.823065 10.1016/j.neuroimage.2009.04.076 10.1016/j.jneumeth.2006.10.024 10.1002/j.1538-7305.1944.tb00874.x 10.1002/mrm.21882 10.1073/pnas.95.3.773 10.1080/01621459.2018.1476244 10.1016/j.jneumeth.2009.05.007 10.1016/j.neuroimage.2005.01.034 10.1523/JNEUROSCI.16-13-04207.1996 10.1016/j.brainres.2023.148634 10.1111/j.1541-0420.2006.00617.x 10.1198/016214506000001031 10.1214/08-STS257 10.1016/j.mri.2016.03.011 10.1080/01621459.1988.10478694 10.1097/00004647-199611000-00020 10.18637/jss.v044.i10 10.1073/pnas.0603219103 10.1080/01621459.1990.10476213 10.1111/biom.13631 10.1038/382805a0 10.1038/nature06976 10.1016/j.neuroimage.2004.06.042 10.1016/j.neuroimage.2004.12.048 10.1002/mrm.21195 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Inc. Copyright © 2024 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2024 Elsevier Inc. – notice: Copyright © 2024 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1016/j.mri.2024.03.029 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1873-5894 |
| EndPage | 285 |
| ExternalDocumentID | PMC11099946 38537891 10_1016_j_mri_2024_03_029 S0730725X24000857 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P20 GM139769 |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 3O- 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABDPE ABFNM ABGSF ABJNI ABMAC ABMZM ABNEU ABOCM ABUDA ABWVN ABXDB ACDAQ ACFVG ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEI HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OGIMB OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSQ SSU SSZ T5K WUQ XPP Z5R ZGI ZMT ~G- ~HD ~S- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJOXV AMFUW G8K RIG 9DU AAYXX CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c502t-176fbedfd449f2e31033286b6d11f0e23cc991f90c7ab2fc9c477809c517abc13 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001289120200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0730-725X 1873-5894 |
| IngestDate | Tue Sep 30 17:04:20 EDT 2025 Mon Sep 29 02:09:17 EDT 2025 Mon Jul 21 06:06:13 EDT 2025 Tue Nov 18 22:18:58 EST 2025 Sat Nov 29 07:49:14 EST 2025 Sat May 04 15:44:32 EDT 2024 Tue Oct 14 19:40:26 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Spike and slab prior Parallel computation Gibbs sampling Phase analysis Rowe–Logan Variable selection |
| Language | English |
| License | Copyright © 2024 Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c502t-176fbedfd449f2e31033286b6d11f0e23cc991f90c7ab2fc9c477809c517abc13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author Statement The authors of the manuscript titled, “A fully Bayesian approach for comprehensive mapping of magnitude and phase brain activation in complex-valued fMRI data,” hereby declare no competing interests. |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/11099946 |
| PMID | 38537891 |
| PQID | 3014012302 |
| PQPubID | 23479 |
| PageCount | 15 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11099946 proquest_miscellaneous_3014012302 pubmed_primary_38537891 crossref_citationtrail_10_1016_j_mri_2024_03_029 crossref_primary_10_1016_j_mri_2024_03_029 elsevier_sciencedirect_doi_10_1016_j_mri_2024_03_029 elsevier_clinicalkey_doi_10_1016_j_mri_2024_03_029 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Magnetic resonance imaging |
| PublicationTitleAlternate | Magn Reson Imaging |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Yu, Prado, Ombao, Rowe (bb0110) 2023; 79 Rowe (bb0065) 2005; 25 Rowe, Logan (bb0060) 2005; 24 Mitchell, Beauchamp (bb0145) 1988; 83 Welvaert, Durnez, Moerkerke, Berdoolaege, Rosseel (bb0190) 2011; 44 Boynton, Engel, Glover, Heeger (bb0010) 1996; 16 Reich, Hodges, Zadnik (bb0165) 2006; 62 Wang, Rowe, Li, Brown (bb0115) 2023 Rice (bb0050) 1944; 23 Wilder Penfield (bb0205) 1937; 60 Hughes, Haran (bb0170) 2013; 75 Culham, Valyear (bb0215) 2006; 16 Brown, Cheng, Haacke, Thompson, Venkatesan (bb0005) 2014 Hastings (bb0180) 1970; 57 Geyer, Ledberg, Schleicher, Kinomura, Schormann, Bürgel (bb0210) 1996; 382 Friston, Holmes, Worsley, Poline, Frith, Frackowiak (bb0040) 1994; 2 Smith, Fahrmeir (bb0150) 2007; 102 Rowe, Logan (bb0030) 2004; 23 Kociuba, Rowe (bb0225) 2016; 34 Rue, Held (bb0120) 2005 R Core Team (bb0195) 2023 Musgrove, Hughes, Eberly (bb0105) 2016; 17 Lee, Shahram, Schwartzman, Pauly (bb0090) 2007; 57 Rowe, Hahn, Nencka (bb0130) 2009; 27 Wei, Zhang, Chang, Zhang, Ma, Wang (bb0220) 2024; 1822 Lindquist (bb0045) 2008; 23 Logothetis (bb0015) 2008; 453 Nenckaa, Hahna, Rowe (bb0135) 2009; 181 Adrian, Maitra, Rowe (bb0085) 2018; 12 Petridou, Plenz, Silva, Loew, Bodurka, Bandettini (bb0025) 2006; 103 Rao, Bandettini, Binder, Bobholz, Hammeke, Stein (bb0155) 1996; 16 Woolrich, Jenkinson, Brady, Smith (bb0100) 2004; 23 Rowe (bb0080) 2009; 62 Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (bb0175) 1953; 21 Yu, Prado, Ombao, Rowe (bb0095) 2018; 113 Gelfand, Smith (bb0125) 1990; 85 Epstein, Kanwisher (bb0160) 1998; 392 Flegal, Haran, Jones (bb0185) 2008; 23 Feng, Caprihan, K. B. B. c, V. D. Calhoun (bb0035) 2009; 47 Karaman, Nencka, Bruce, Rowe (bb0140) 2014; 4 Gudbjartsson, Patz (bb0055) 1995; 34 Rosen, Buckner, Dale (bb0200) 1998; 95 Rowe (bb0070) 2005; 25 Rowe, Meller, Hoffmann (bb0075) 2007; 161 Rowe (bb0020) 2019 Welvaert (10.1016/j.mri.2024.03.029_bb0190) 2011; 44 Kociuba (10.1016/j.mri.2024.03.029_bb0225) 2016; 34 Wilder Penfield (10.1016/j.mri.2024.03.029_bb0205) 1937; 60 Smith (10.1016/j.mri.2024.03.029_bb0150) 2007; 102 Musgrove (10.1016/j.mri.2024.03.029_bb0105) 2016; 17 Brown (10.1016/j.mri.2024.03.029_bb0005) 2014 Rowe (10.1016/j.mri.2024.03.029_bb0070) 2005; 25 Petridou (10.1016/j.mri.2024.03.029_bb0025) 2006; 103 Wei (10.1016/j.mri.2024.03.029_bb0220) 2024; 1822 Rue (10.1016/j.mri.2024.03.029_bb0120) 2005 Rao (10.1016/j.mri.2024.03.029_bb0155) 1996; 16 Gudbjartsson (10.1016/j.mri.2024.03.029_bb0055) 1995; 34 Hughes (10.1016/j.mri.2024.03.029_bb0170) 2013; 75 Hastings (10.1016/j.mri.2024.03.029_bb0180) 1970; 57 Nenckaa (10.1016/j.mri.2024.03.029_bb0135) 2009; 181 Mitchell (10.1016/j.mri.2024.03.029_bb0145) 1988; 83 Metropolis (10.1016/j.mri.2024.03.029_bb0175) 1953; 21 Boynton (10.1016/j.mri.2024.03.029_bb0010) 1996; 16 Reich (10.1016/j.mri.2024.03.029_bb0165) 2006; 62 Rowe (10.1016/j.mri.2024.03.029_bb0060) 2005; 24 Lindquist (10.1016/j.mri.2024.03.029_bb0045) 2008; 23 Friston (10.1016/j.mri.2024.03.029_bb0040) 1994; 2 Rowe (10.1016/j.mri.2024.03.029_bb0030) 2004; 23 Feng (10.1016/j.mri.2024.03.029_bb0035) 2009; 47 Rowe (10.1016/j.mri.2024.03.029_bb0065) 2005; 25 Rowe (10.1016/j.mri.2024.03.029_bb0130) 2009; 27 Culham (10.1016/j.mri.2024.03.029_bb0215) 2006; 16 Logothetis (10.1016/j.mri.2024.03.029_bb0015) 2008; 453 Wang (10.1016/j.mri.2024.03.029_bb0115) R Core Team (10.1016/j.mri.2024.03.029_bb0195) Rice (10.1016/j.mri.2024.03.029_bb0050) 1944; 23 Lee (10.1016/j.mri.2024.03.029_bb0090) 2007; 57 Geyer (10.1016/j.mri.2024.03.029_bb0210) 1996; 382 Epstein (10.1016/j.mri.2024.03.029_bb0160) 1998; 392 Woolrich (10.1016/j.mri.2024.03.029_bb0100) 2004; 23 Rowe (10.1016/j.mri.2024.03.029_bb0075) 2007; 161 Gelfand (10.1016/j.mri.2024.03.029_bb0125) 1990; 85 Adrian (10.1016/j.mri.2024.03.029_bb0085) 2018; 12 Rowe (10.1016/j.mri.2024.03.029_bb0020) 2019 Yu (10.1016/j.mri.2024.03.029_bb0110) 2023; 79 Rowe (10.1016/j.mri.2024.03.029_bb0080) 2009; 62 Rosen (10.1016/j.mri.2024.03.029_bb0200) 1998; 95 Yu (10.1016/j.mri.2024.03.029_bb0095) 2018; 113 Karaman (10.1016/j.mri.2024.03.029_bb0140) 2014; 4 Flegal (10.1016/j.mri.2024.03.029_bb0185) 2008; 23 |
| References_xml | – volume: 57 start-page: 905 year: 2007 end-page: 917 ident: bb0090 article-title: Complex data analysis in high-resolution SSFP fMRI publication-title: Magn Reson Med – volume: 16 start-page: 4207 year: 1996 end-page: 4221 ident: bb0010 article-title: Linear systems analysis of functional magnetic resonance imaging in human V1 publication-title: J Neurosci – volume: 62 start-page: 1356 year: 2009 end-page: 1360 ident: bb0080 article-title: Magnitude and phase signal detection in complex-valued fMRI data publication-title: Magn Reson Med – volume: 34 start-page: 765 year: 2016 end-page: 770 ident: bb0225 article-title: Complex-valued time-series correlation increases sensitivity in fMRI analysis publication-title: Magn Reson Imaging – volume: 1822 year: 2024 ident: bb0220 article-title: Analyzing 20 years of resting-state fmri research: trends and collaborative networks revealed publication-title: Brain Res – volume: 103 start-page: 16015 year: 2006 end-page: 16020 ident: bb0025 article-title: Direct magnetic resonance detection of neuronal electrical activity publication-title: Proc Natl Acad Sci – volume: 16 start-page: 1250 year: 1996 end-page: 1254 ident: bb0155 article-title: Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex publication-title: J Cereb Blood Flow Metab – volume: 16 start-page: 205 year: 2006 end-page: 212 ident: bb0215 article-title: Human parietal cortex in action publication-title: Curr Opin Neurobiol – volume: 27 start-page: 1370 year: 2009 end-page: 1381 ident: bb0130 article-title: Functional magnetic resonance imaging brain activation directly from k-space publication-title: Magn Reson Imaging – volume: 382 start-page: 805 year: 1996 end-page: 807 ident: bb0210 article-title: Two different areas within the primary motor cortex of man publication-title: Nature – year: 2019 ident: bb0020 article-title: Handbook of neuroimaging data analysis, chapter 8 – volume: 12 start-page: 1451 year: 2018 end-page: 1478 ident: bb0085 article-title: Complex-valued time series modeling for improved activation detection in fMRI studies publication-title: Anna Applied Statist – volume: 44 start-page: 1 year: 2011 end-page: 18 ident: bb0190 article-title: neuRosim: an R package for generating fMRI data publication-title: J Stat Softw – volume: 102 start-page: 417 year: 2007 end-page: 431 ident: bb0150 article-title: Spatial Bayesian variable selection with application to functional magnetic resonance imaging publication-title: J Am Stat Assoc – volume: 25 start-page: 1124 year: 2005 end-page: 1132 ident: bb0070 article-title: Parameter estimation in the magnitude-only and complex-valued fMRI data models publication-title: NeuroImage – year: 2014 ident: bb0005 article-title: Magnetic resonance imaging: Physical principles and sequence design – volume: 47 start-page: 540 year: 2009 end-page: 548 ident: bb0035 article-title: Biophysical modeling of phase changes in BOLD fMRI publication-title: NeuroImage – volume: 57 start-page: 97 year: 1970 end-page: 109 ident: bb0180 article-title: Monte Carlo sampling methods using Markov chains and their applications publication-title: Biometrika – volume: 2 start-page: 189 year: 1994 end-page: 210 ident: bb0040 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum Brain Mapp – volume: 181 start-page: 268 year: 2009 end-page: 282 ident: bb0135 article-title: A mathematical model for understanding the statistical effects of k-space (AMMUST-k) preprocessing on observed voxel measurements in fcMRI and fMRI publication-title: J Neurosci Methods – volume: 79 start-page: 616 year: 2023 end-page: 628 ident: bb0110 article-title: Bayesian spatiotemporal modeling on complex-valued fMRI signals via kernel convolutions publication-title: Biometrics – volume: 392 start-page: 598 year: 1998 end-page: 601 ident: bb0160 article-title: A cortical representation of the local visual environment publication-title: Nature – volume: 161 start-page: 331 year: 2007 end-page: 341 ident: bb0075 article-title: Characterizing phase-only fMRI data with an angular regression model publication-title: J Neurosci Methods – volume: 95 start-page: 773 year: 1998 end-page: 780 ident: bb0200 article-title: Event-related functional MRI: past, present, and future publication-title: Procced National Acad Sci – volume: 24 start-page: 603 year: 2005 end-page: 606 ident: bb0060 article-title: Complex fMRI analysis with unrestricted phase is equivalent to a magnitude-only model publication-title: NeuroImage – volume: 34 start-page: 910 year: 1995 end-page: 914 ident: bb0055 article-title: The Rician distribution of noisy MRI data publication-title: Magn Reson Med – volume: 62 start-page: 1197 year: 2006 end-page: 1206 ident: bb0165 article-title: Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models publication-title: Biometrics – volume: 23 start-page: 250 year: 2008 end-page: 260 ident: bb0185 article-title: Markov chain Monte Carlo: can we trust the third significant figure? publication-title: Statist Sci – volume: 83 start-page: 1023 year: 1988 end-page: 1032 ident: bb0145 article-title: Bayesian variable selection in linear regression publication-title: J Am Stat Assoc – year: 2023 ident: bb0195 article-title: R: A Language and Environment For Statistical Computing, R Foundation For Statistical Computing – volume: 21 start-page: 1087 year: 1953 end-page: 1092 ident: bb0175 article-title: Equation of state calculations by fast computing machines publication-title: J Chem Phys – year: 2023 ident: bb0115 article-title: Efficient fully Bayesian approach to brain activity mapping with complex-valued fMRI data – volume: 60 start-page: 389 year: 1937 end-page: 443 ident: bb0205 article-title: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation publication-title: Brain – volume: 25 start-page: 1310 year: 2005 end-page: 1324 ident: bb0065 article-title: Modeling both the magnitude and phase of complex-valued fMRI data publication-title: NeuroImage – volume: 23 start-page: 439 year: 2008 end-page: 464 ident: bb0045 article-title: The statistical analysis of fMRI data publication-title: Statist Sci – volume: 85 start-page: 398 year: 1990 end-page: 409 ident: bb0125 article-title: Sampling-based approaches to calculating marginal densities publication-title: J Am Stat Assoc – volume: 17 start-page: 291 year: 2016 end-page: 303 ident: bb0105 article-title: Fast, fully Bayesian spatiotemporal inference for fMRI data publication-title: Biostatistics – volume: 23 start-page: 1078 year: 2004 end-page: 1092 ident: bb0030 article-title: A complex way to compute fMRI activation publication-title: NeuroImage – volume: 113 start-page: 1395 year: 2018 end-page: 1410 ident: bb0095 article-title: A Bayesian variable selection approach yields improved detection of brain activation from complex-valued fMRI publication-title: J Am Stat Assoc – volume: 23 start-page: 282 year: 1944 end-page: 332 ident: bb0050 article-title: Mathematical analysis of random noise publication-title: Bell Syst Tech J – volume: 75 start-page: 139 year: 2013 end-page: 159 ident: bb0170 article-title: Dimension reduction and alleviation of confounding for spatial generalized linear mixed models, journal of the Royal Statistical Society publication-title: Series B (Statistical Methodology) – year: 2005 ident: bb0120 article-title: Gaussian Markov Random Fields – volume: 4 start-page: 649 year: 2014 end-page: 661 ident: bb0140 article-title: Quantification of the statistical effects of spatiotemporal processing of nontask fMRI data publication-title: Brain Connect – volume: 453 start-page: 869 year: 2008 end-page: 878 ident: bb0015 article-title: What we can do and what we cannot do with fMRI publication-title: Nature – volume: 23 start-page: 213 year: 2004 end-page: 231 ident: bb0100 article-title: Fully Bayesian spatio-temporal modeling of fMRI data publication-title: IEEE Trans Med Imaging – volume: 23 start-page: 439 issue: 4 year: 2008 ident: 10.1016/j.mri.2024.03.029_bb0045 article-title: The statistical analysis of fMRI data publication-title: Statist Sci doi: 10.1214/09-STS282 – volume: 12 start-page: 1451 issue: 3 year: 2018 ident: 10.1016/j.mri.2024.03.029_bb0085 article-title: Complex-valued time series modeling for improved activation detection in fMRI studies publication-title: Anna Applied Statist – volume: 392 start-page: 598 issue: 6676 year: 1998 ident: 10.1016/j.mri.2024.03.029_bb0160 article-title: A cortical representation of the local visual environment publication-title: Nature doi: 10.1038/33402 – volume: 2 start-page: 189 issue: 4 year: 1994 ident: 10.1016/j.mri.2024.03.029_bb0040 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum Brain Mapp doi: 10.1002/hbm.460020402 – volume: 27 start-page: 1370 issue: 10 year: 2009 ident: 10.1016/j.mri.2024.03.029_bb0130 article-title: Functional magnetic resonance imaging brain activation directly from k-space publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2009.05.048 – volume: 24 start-page: 603 issue: 2 year: 2005 ident: 10.1016/j.mri.2024.03.029_bb0060 article-title: Complex fMRI analysis with unrestricted phase is equivalent to a magnitude-only model publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.09.038 – volume: 17 start-page: 291 issue: 2 year: 2016 ident: 10.1016/j.mri.2024.03.029_bb0105 article-title: Fast, fully Bayesian spatiotemporal inference for fMRI data publication-title: Biostatistics doi: 10.1093/biostatistics/kxv044 – volume: 60 start-page: 389 issue: 4 year: 1937 ident: 10.1016/j.mri.2024.03.029_bb0205 article-title: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation publication-title: Brain doi: 10.1093/brain/60.4.389 – volume: 4 start-page: 649 issue: 9 year: 2014 ident: 10.1016/j.mri.2024.03.029_bb0140 article-title: Quantification of the statistical effects of spatiotemporal processing of nontask fMRI data publication-title: Brain Connect doi: 10.1089/brain.2014.0278 – volume: 21 start-page: 1087 issue: 6 year: 1953 ident: 10.1016/j.mri.2024.03.029_bb0175 article-title: Equation of state calculations by fast computing machines publication-title: J Chem Phys doi: 10.1063/1.1699114 – volume: 57 start-page: 97 issue: 1 year: 1970 ident: 10.1016/j.mri.2024.03.029_bb0180 article-title: Monte Carlo sampling methods using Markov chains and their applications publication-title: Biometrika doi: 10.1093/biomet/57.1.97 – volume: 34 start-page: 910 issue: 6 year: 1995 ident: 10.1016/j.mri.2024.03.029_bb0055 article-title: The Rician distribution of noisy MRI data publication-title: Magn Reson Med doi: 10.1002/mrm.1910340618 – volume: 75 start-page: 139 issue: 1 year: 2013 ident: 10.1016/j.mri.2024.03.029_bb0170 article-title: Dimension reduction and alleviation of confounding for spatial generalized linear mixed models, journal of the Royal Statistical Society publication-title: Series B (Statistical Methodology) doi: 10.1111/j.1467-9868.2012.01041.x – volume: 16 start-page: 205 issue: 2 year: 2006 ident: 10.1016/j.mri.2024.03.029_bb0215 article-title: Human parietal cortex in action publication-title: Curr Opin Neurobiol doi: 10.1016/j.conb.2006.03.005 – volume: 23 start-page: 213 issue: 2 year: 2004 ident: 10.1016/j.mri.2024.03.029_bb0100 article-title: Fully Bayesian spatio-temporal modeling of fMRI data publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2003.823065 – volume: 47 start-page: 540 issue: 2 year: 2009 ident: 10.1016/j.mri.2024.03.029_bb0035 article-title: Biophysical modeling of phase changes in BOLD fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.04.076 – volume: 161 start-page: 331 issue: 2 year: 2007 ident: 10.1016/j.mri.2024.03.029_bb0075 article-title: Characterizing phase-only fMRI data with an angular regression model publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2006.10.024 – year: 2014 ident: 10.1016/j.mri.2024.03.029_bb0005 – volume: 23 start-page: 282 issue: 3 year: 1944 ident: 10.1016/j.mri.2024.03.029_bb0050 article-title: Mathematical analysis of random noise publication-title: Bell Syst Tech J doi: 10.1002/j.1538-7305.1944.tb00874.x – volume: 62 start-page: 1356 issue: 5 year: 2009 ident: 10.1016/j.mri.2024.03.029_bb0080 article-title: Magnitude and phase signal detection in complex-valued fMRI data publication-title: Magn Reson Med doi: 10.1002/mrm.21882 – volume: 95 start-page: 773 year: 1998 ident: 10.1016/j.mri.2024.03.029_bb0200 article-title: Event-related functional MRI: past, present, and future publication-title: Procced National Acad Sci doi: 10.1073/pnas.95.3.773 – year: 2005 ident: 10.1016/j.mri.2024.03.029_bb0120 – volume: 113 start-page: 1395 issue: 524 year: 2018 ident: 10.1016/j.mri.2024.03.029_bb0095 article-title: A Bayesian variable selection approach yields improved detection of brain activation from complex-valued fMRI publication-title: J Am Stat Assoc doi: 10.1080/01621459.2018.1476244 – volume: 181 start-page: 268 issue: 2 year: 2009 ident: 10.1016/j.mri.2024.03.029_bb0135 article-title: A mathematical model for understanding the statistical effects of k-space (AMMUST-k) preprocessing on observed voxel measurements in fcMRI and fMRI publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2009.05.007 – volume: 25 start-page: 1310 issue: 4 year: 2005 ident: 10.1016/j.mri.2024.03.029_bb0065 article-title: Modeling both the magnitude and phase of complex-valued fMRI data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.01.034 – volume: 16 start-page: 4207 issue: 13 year: 1996 ident: 10.1016/j.mri.2024.03.029_bb0010 article-title: Linear systems analysis of functional magnetic resonance imaging in human V1 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.16-13-04207.1996 – volume: 1822 year: 2024 ident: 10.1016/j.mri.2024.03.029_bb0220 article-title: Analyzing 20 years of resting-state fmri research: trends and collaborative networks revealed publication-title: Brain Res doi: 10.1016/j.brainres.2023.148634 – volume: 62 start-page: 1197 issue: 4 year: 2006 ident: 10.1016/j.mri.2024.03.029_bb0165 article-title: Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models publication-title: Biometrics doi: 10.1111/j.1541-0420.2006.00617.x – volume: 102 start-page: 417 issue: 478 year: 2007 ident: 10.1016/j.mri.2024.03.029_bb0150 article-title: Spatial Bayesian variable selection with application to functional magnetic resonance imaging publication-title: J Am Stat Assoc doi: 10.1198/016214506000001031 – year: 2019 ident: 10.1016/j.mri.2024.03.029_bb0020 – volume: 23 start-page: 250 issue: 2 year: 2008 ident: 10.1016/j.mri.2024.03.029_bb0185 article-title: Markov chain Monte Carlo: can we trust the third significant figure? publication-title: Statist Sci doi: 10.1214/08-STS257 – volume: 34 start-page: 765 issue: 6 year: 2016 ident: 10.1016/j.mri.2024.03.029_bb0225 article-title: Complex-valued time-series correlation increases sensitivity in fMRI analysis publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2016.03.011 – volume: 83 start-page: 1023 issue: 404 year: 1988 ident: 10.1016/j.mri.2024.03.029_bb0145 article-title: Bayesian variable selection in linear regression publication-title: J Am Stat Assoc doi: 10.1080/01621459.1988.10478694 – volume: 16 start-page: 1250 issue: 6 year: 1996 ident: 10.1016/j.mri.2024.03.029_bb0155 article-title: Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex publication-title: J Cereb Blood Flow Metab doi: 10.1097/00004647-199611000-00020 – volume: 44 start-page: 1 issue: 10 year: 2011 ident: 10.1016/j.mri.2024.03.029_bb0190 article-title: neuRosim: an R package for generating fMRI data publication-title: J Stat Softw doi: 10.18637/jss.v044.i10 – volume: 103 start-page: 16015 issue: 43 year: 2006 ident: 10.1016/j.mri.2024.03.029_bb0025 article-title: Direct magnetic resonance detection of neuronal electrical activity publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0603219103 – volume: 85 start-page: 398 issue: 410 year: 1990 ident: 10.1016/j.mri.2024.03.029_bb0125 article-title: Sampling-based approaches to calculating marginal densities publication-title: J Am Stat Assoc doi: 10.1080/01621459.1990.10476213 – volume: 79 start-page: 616 issue: 2 year: 2023 ident: 10.1016/j.mri.2024.03.029_bb0110 article-title: Bayesian spatiotemporal modeling on complex-valued fMRI signals via kernel convolutions publication-title: Biometrics doi: 10.1111/biom.13631 – volume: 382 start-page: 805 issue: 6594 year: 1996 ident: 10.1016/j.mri.2024.03.029_bb0210 article-title: Two different areas within the primary motor cortex of man publication-title: Nature doi: 10.1038/382805a0 – volume: 453 start-page: 869 issue: 7197 year: 2008 ident: 10.1016/j.mri.2024.03.029_bb0015 article-title: What we can do and what we cannot do with fMRI publication-title: Nature doi: 10.1038/nature06976 – volume: 23 start-page: 1078 issue: 3 year: 2004 ident: 10.1016/j.mri.2024.03.029_bb0030 article-title: A complex way to compute fMRI activation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.06.042 – ident: 10.1016/j.mri.2024.03.029_bb0115 – volume: 25 start-page: 1124 issue: 4 year: 2005 ident: 10.1016/j.mri.2024.03.029_bb0070 article-title: Parameter estimation in the magnitude-only and complex-valued fMRI data models publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.12.048 – volume: 57 start-page: 905 issue: 5 year: 2007 ident: 10.1016/j.mri.2024.03.029_bb0090 article-title: Complex data analysis in high-resolution SSFP fMRI publication-title: Magn Reson Med doi: 10.1002/mrm.21195 – ident: 10.1016/j.mri.2024.03.029_bb0195 |
| SSID | ssj0005235 |
| Score | 2.4315758 |
| Snippet | Functional magnetic resonance imaging (fMRI) plays a crucial role in neuroimaging, enabling the exploration of brain activity through complex-valued signals.... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 271 |
| SubjectTerms | Bayes Theorem Brain - diagnostic imaging Brain - physiology Brain Mapping - methods Computer Simulation Gibbs sampling Magnetic Resonance Imaging - methods Parallel computation Phase analysis Rowe–Logan Spike and slab prior Variable selection |
| Title | A fully Bayesian approach for comprehensive mapping of magnitude and phase brain activation in complex-valued fMRI data |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X24000857 https://dx.doi.org/10.1016/j.mri.2024.03.029 https://www.ncbi.nlm.nih.gov/pubmed/38537891 https://www.proquest.com/docview/3014012302 https://pubmed.ncbi.nlm.nih.gov/PMC11099946 |
| Volume | 109 |
| WOSCitedRecordID | wos001289120200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6XYS4IN6Ux8pIiANVqsRxGudYoCsWtQWhrhRxsfJwaFZtGrrtbvs3-MWMHSdNt7AsBy5R68ax1fkyHo-_mUHoNaFBSJ2gK2kVzKB2EBuhDM6xY1j8QP8lIlTZ9QfuaMR83_vSaPwsY2Eupm6WsfXay_-rqKENhC1DZ_9B3NVDoQE-g9DhCmKH640E32tLl_qm_S7YCBUhWaYNV4xCSSFfiImmrc-CPNe051kgeUSruDhOyCewurVDWT9CpdsoHLdtTVqfirUhs4SDsZoMv560dYBbZeUO4VmiSA4tLX2pO9KZKoe09d8XOuYbzOT7Oq2Fo12KbeR7rSS0Ih34abZJ9xwIH-qsTO3AIHRLtNI6l7m24bCi1nFH_KatVNSmV1e1RemWvSWg8EacdWaLtCOHUzlstVdlJ9326DM_Ph0M-Ljvj9_kPwxZiUye2OuyLAfokLiOx5rosHfS9z_ViEOqbGs1xfKsXLEGr4z6J2tnfzdzlZRbs3LG99BdvT3BvQJW91FDZA_Q7aEmYDxElz2s0IVLdOESXRjQhXfQhTW68DzBFbowoAsrdGGFLrxFF4Zvu-jCEl1YousROj3uj99_NHTtDiNyTLKUeUeTUMRJTKmXECGr2dmEdcNubFmJKYgdRbAzSTwzcoOQJJEXUddlphc5FjRElv0YNbN5Jp4iLD0GEaVh4DCXMiEYdSw7IS5jcRTAdruFzPI_5pFObC_rq0x5yWA84yAWLsXCTZuDWFrobdUlL7K6XHczKQXHy3BlWGA5AO66TrTqpG3Zwkb9W7dXJTI46Hl5eBdkYr4654UrhNgmaaEnBVKqqdtgc7vMs1qI7WCoukHmkN_9JUsnKpe8TDjsebT77AYDP0d3tu_vC9RcLlbiJboVXSzT88UROnB9dqRfll9FHup4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fully+Bayesian+approach+for+comprehensive+mapping+of+magnitude+and+phase+brain+activation+in+complex-valued+fMRI+data&rft.jtitle=Magnetic+resonance+imaging&rft.au=Wang%2C+Zhengxin&rft.au=Rowe%2C+Daniel+B&rft.au=Li%2C+Xinyi&rft.au=Brown%2C+D+Andrew&rft.date=2024-06-01&rft.issn=1873-5894&rft.eissn=1873-5894&rft.volume=109&rft.spage=271&rft_id=info:doi/10.1016%2Fj.mri.2024.03.029&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon |