Data mining algorithm predicts a range of adverse outcomes in major depression
•The course of major depression is highly varied.•Genetic and environmental risk factors influence the course of depression.•Data mining techniques can be used to predict the course of depression.•Replication in new samples is crucial to test these prediction models.•Prediction models may assist cli...
Saved in:
| Published in: | Journal of affective disorders Vol. 276; pp. 945 - 953 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Netherlands
Elsevier B.V
01.11.2020
|
| Subjects: | |
| ISSN: | 0165-0327, 1573-2517, 1573-2517 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •The course of major depression is highly varied.•Genetic and environmental risk factors influence the course of depression.•Data mining techniques can be used to predict the course of depression.•Replication in new samples is crucial to test these prediction models.•Prediction models may assist clinicians in treatment decisions.
Course of illness in major depression (MD) is highly varied, which might lead to both under- and overtreatment if clinicians adhere to a 'one-size-fits-all' approach. Novel opportunities in data mining could lead to prediction models that can assist clinicians in treatment decisions tailored to the individual patient. This study assesses the performance of a previously developed data mining algorithm to predict future episodes of MD based on clinical information in new data.
We applied a prediction model utilizing baseline clinical characteristics in subjects who reported lifetime MD to two independent test samples (total n = 4226). We assessed the model's performance to predict future episodes of MD, anxiety disorders, and disability during follow-up (1–9 years after baseline). In addition, we compared its prediction performance with well-known risk factors for a severe course of illness.
Our model consistently predicted future episodes of MD in both test samples (AUC 0.68–0.73, modest prediction). Equally accurately, it predicted episodes of generalized anxiety disorder, panic disorder and disability (AUC 0.65–0.78). Our model predicted these outcomes more accurately than risk factors for a severe course of illness such as family history of MD and lifetime traumas.
Prediction accuracy might be different for specific subgroups, such as hospitalized patients or patients with a different cultural background.
Our prediction model consistently predicted a range of adverse outcomes in MD across two independent test samples derived from studies in different subpopulations, countries, using different measurement procedures. This replication study holds promise for application in clinical practice. |
|---|---|
| AbstractList | Course of illness in major depression (MD) is highly varied, which might lead to both under- and overtreatment if clinicians adhere to a 'one-size-fits-all' approach. Novel opportunities in data mining could lead to prediction models that can assist clinicians in treatment decisions tailored to the individual patient. This study assesses the performance of a previously developed data mining algorithm to predict future episodes of MD based on clinical information in new data.
We applied a prediction model utilizing baseline clinical characteristics in subjects who reported lifetime MD to two independent test samples (total n = 4226). We assessed the model's performance to predict future episodes of MD, anxiety disorders, and disability during follow-up (1-9 years after baseline). In addition, we compared its prediction performance with well-known risk factors for a severe course of illness.
Our model consistently predicted future episodes of MD in both test samples (AUC 0.68-0.73, modest prediction). Equally accurately, it predicted episodes of generalized anxiety disorder, panic disorder and disability (AUC 0.65-0.78). Our model predicted these outcomes more accurately than risk factors for a severe course of illness such as family history of MD and lifetime traumas.
Prediction accuracy might be different for specific subgroups, such as hospitalized patients or patients with a different cultural background.
Our prediction model consistently predicted a range of adverse outcomes in MD across two independent test samples derived from studies in different subpopulations, countries, using different measurement procedures. This replication study holds promise for application in clinical practice. •The course of major depression is highly varied.•Genetic and environmental risk factors influence the course of depression.•Data mining techniques can be used to predict the course of depression.•Replication in new samples is crucial to test these prediction models.•Prediction models may assist clinicians in treatment decisions. Course of illness in major depression (MD) is highly varied, which might lead to both under- and overtreatment if clinicians adhere to a 'one-size-fits-all' approach. Novel opportunities in data mining could lead to prediction models that can assist clinicians in treatment decisions tailored to the individual patient. This study assesses the performance of a previously developed data mining algorithm to predict future episodes of MD based on clinical information in new data. We applied a prediction model utilizing baseline clinical characteristics in subjects who reported lifetime MD to two independent test samples (total n = 4226). We assessed the model's performance to predict future episodes of MD, anxiety disorders, and disability during follow-up (1–9 years after baseline). In addition, we compared its prediction performance with well-known risk factors for a severe course of illness. Our model consistently predicted future episodes of MD in both test samples (AUC 0.68–0.73, modest prediction). Equally accurately, it predicted episodes of generalized anxiety disorder, panic disorder and disability (AUC 0.65–0.78). Our model predicted these outcomes more accurately than risk factors for a severe course of illness such as family history of MD and lifetime traumas. Prediction accuracy might be different for specific subgroups, such as hospitalized patients or patients with a different cultural background. Our prediction model consistently predicted a range of adverse outcomes in MD across two independent test samples derived from studies in different subpopulations, countries, using different measurement procedures. This replication study holds promise for application in clinical practice. Course of illness in major depression (MD) is highly varied, which might lead to both under- and overtreatment if clinicians adhere to a 'one-size-fits-all' approach. Novel opportunities in data mining could lead to prediction models that can assist clinicians in treatment decisions tailored to the individual patient. This study assesses the performance of a previously developed data mining algorithm to predict future episodes of MD based on clinical information in new data.BACKGROUNDCourse of illness in major depression (MD) is highly varied, which might lead to both under- and overtreatment if clinicians adhere to a 'one-size-fits-all' approach. Novel opportunities in data mining could lead to prediction models that can assist clinicians in treatment decisions tailored to the individual patient. This study assesses the performance of a previously developed data mining algorithm to predict future episodes of MD based on clinical information in new data.We applied a prediction model utilizing baseline clinical characteristics in subjects who reported lifetime MD to two independent test samples (total n = 4226). We assessed the model's performance to predict future episodes of MD, anxiety disorders, and disability during follow-up (1-9 years after baseline). In addition, we compared its prediction performance with well-known risk factors for a severe course of illness.METHODSWe applied a prediction model utilizing baseline clinical characteristics in subjects who reported lifetime MD to two independent test samples (total n = 4226). We assessed the model's performance to predict future episodes of MD, anxiety disorders, and disability during follow-up (1-9 years after baseline). In addition, we compared its prediction performance with well-known risk factors for a severe course of illness.Our model consistently predicted future episodes of MD in both test samples (AUC 0.68-0.73, modest prediction). Equally accurately, it predicted episodes of generalized anxiety disorder, panic disorder and disability (AUC 0.65-0.78). Our model predicted these outcomes more accurately than risk factors for a severe course of illness such as family history of MD and lifetime traumas.RESULTSOur model consistently predicted future episodes of MD in both test samples (AUC 0.68-0.73, modest prediction). Equally accurately, it predicted episodes of generalized anxiety disorder, panic disorder and disability (AUC 0.65-0.78). Our model predicted these outcomes more accurately than risk factors for a severe course of illness such as family history of MD and lifetime traumas.Prediction accuracy might be different for specific subgroups, such as hospitalized patients or patients with a different cultural background.LIMITATIONSPrediction accuracy might be different for specific subgroups, such as hospitalized patients or patients with a different cultural background.Our prediction model consistently predicted a range of adverse outcomes in MD across two independent test samples derived from studies in different subpopulations, countries, using different measurement procedures. This replication study holds promise for application in clinical practice.CONCLUSIONSOur prediction model consistently predicted a range of adverse outcomes in MD across two independent test samples derived from studies in different subpopulations, countries, using different measurement procedures. This replication study holds promise for application in clinical practice. Highlights•The course of major depression is highly varied. •Genetic and environmental risk factors influence the course of depression. •Data mining techniques can be used to predict the course of depression. •Replication in new samples is crucial to test these prediction models. •Prediction models may assist clinicians in treatment decisions. |
| Author | Aggen, Steven H. Kendler, Kenneth S. van Loo, Hanna M. Milaneschi, Yuri Bigdeli, Tim B. |
| Author_xml | – sequence: 1 givenname: Hanna M. surname: van Loo fullname: van Loo, Hanna M. email: h.van.loo@umcg.nl organization: Department of Psychiatry, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (PO Box 30.001), 9700 RB Groningen, the Netherlands – sequence: 2 givenname: Tim B. surname: Bigdeli fullname: Bigdeli, Tim B. organization: Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States – sequence: 3 givenname: Yuri surname: Milaneschi fullname: Milaneschi, Yuri organization: Department of Psychiatry, Amsterdam Public Health and Neuroscience Amsterdam research institutes, Amsterdam UMC and GGZ inGeest Amsterdam, Amsterdam, the Netherlands – sequence: 4 givenname: Steven H. surname: Aggen fullname: Aggen, Steven H. organization: Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States – sequence: 5 givenname: Kenneth S. surname: Kendler fullname: Kendler, Kenneth S. organization: Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32745831$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk1rFTEUhoNU7O3VH-BGsnQzY5L5SAZBkKqtUHShgrtDmpy5ZpxJrkmm0H9vLrfdFKybfPG-b3KenDNy4oNHQl5yVnPG-zdTPWlbCyZYzWTNBvWEbHgnm0p0XJ6QTdF0FWuEPCVnKU2MsX6Q7Bk5LUdtpxq-IV8-6Kzp4rzzO6rnXYgu_1roPqJ1JieqadR-hzSMVNsbjKks12zCgok6Txc9hUgtFn1KLvjn5Omo54Qv7uYt-fHp4_fzy-rq68Xn8_dXlekYz1XHrVCSW87FqEbVay60wNaqdpRtX7aq6Q3Tyg4DGjnIBrtrXeqzVvFRKt5syetj7j6GPyumDItLBudZewxrAtE2rJGtKkVuyas76Xq9oIV9dIuOt3DPoAjkUWBiSCniCMZlnUs1OWo3A2dwoA0TFNpwoA1MQnlNcfIHzvvwxzxvjx4seG4cRkjGoTeFd0STwQb3qPvdA7eZy98ZPf_GW0xTWKMv3IFDEsDg26EDDg0gytC1zc8SMPw74D-X_wWTab4q |
| CitedBy_id | crossref_primary_10_1192_bjp_2021_218 crossref_primary_10_1016_j_health_2023_100238 crossref_primary_10_1002_14651858_CD013491_pub2 crossref_primary_10_1155_2021_9948800 crossref_primary_10_1007_s00779_020_01509_w crossref_primary_10_2196_32736 crossref_primary_10_1017_S0033291722002069 crossref_primary_10_1155_2021_1640870 crossref_primary_10_1186_s41512_021_00101_x |
| Cites_doi | 10.5498/wjp.v5.i4.366 10.1016/j.jad.2018.02.005 10.1001/archpsyc.62.6.617 10.1001/archpsyc.65.6.674 10.1001/archpsyc.65.5.513 10.1111/j.1467-9868.2005.00503.x 10.1136/svn-2017-000101 10.1016/j.jad.2011.06.053 10.1016/j.jad.2006.10.023 10.1017/S0033291705005714 10.1016/j.jad.2015.03.045 10.18637/jss.v033.i01 10.1001/jama.2015.18421 10.1186/1471-2288-13-33 10.32614/CRAN.package.rcompanion 10.1158/1055-9965.EPI-14-0295 10.1017/S0033291714000993 10.1016/j.ajhg.2015.09.001 10.1017/S0033291712002395 10.1016/S2215-0366(15)00471-X 10.1016/j.cobeha.2017.07.003 10.1017/S0033291717003178 10.1186/s12916-014-0242-y 10.1002/mpr.256 10.18637/jss.v039.i05 10.1016/j.biopsych.2012.12.007 10.1001/archpsyc.1991.01810330075011 10.2307/1914185 10.1001/jama.2016.3775 10.1002/da.22233 10.1038/mp.2015.198 10.1016/j.jad.2012.11.008 10.1176/appi.ajp.2010.10030340 10.1017/S0033291716001653 10.1002/9781118625392.wbecp048 10.1002/da.22215 10.1136/bmj.e3318 10.1001/archpsyc.64.6.651 10.4088/JCP.10m06176blu 10.1186/s12888-017-1270-x |
| ContentType | Journal Article |
| Copyright | 2020 The Author(s) The Author(s) Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2020 The Author(s) – notice: The Author(s) – notice: Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.jad.2020.07.098 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1573-2517 |
| EndPage | 953 |
| ExternalDocumentID | 32745831 10_1016_j_jad_2020_07_098 S016503272032543X 1_s2_0_S016503272032543X |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIMH NIH HHS grantid: RC2 MH089995 – fundername: NIMH NIH HHS grantid: RC2 MH089951 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABNK AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAWTL AAXKI AAXUO ABBQC ABFNM ABIVO ABJNI ABLJU ABMAC ABMZM ACDAQ ACGFS ACHQT ACIEU ACIUM ACLOT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGUBO AGYEJ AHHHB AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMQ HMW IHE J1W KOM M29 M2V M39 M3V M41 MO0 N9A O-L O9- OAUVE OH0 OU- OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAE SCC SDF SDG SDP SEL SES SPCBC SSH SSZ T5K UV1 Z5R ~G- ~HD 0SF 29J 53G AACTN AAEDT AAGKA AAQXK ABWVN ABXDB ACRPL ADMUD ADNMO ADVLN AFCTW AFJKZ AFKWA AGHFR AJOXV AMFUW ASPBG AVWKF AZFZN EJD FEDTE FGOYB G-2 HEG HMK HMO HVGLF HZ~ NCXOZ R2- RIG SEW SNS SPS WUQ ZGI 6I. AAFTH AAIAV ABLVK ABYKQ LCYCR ZA5 9DU AAYWO AAYXX AGQPQ AIGII CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c501t-51d2871d112f8f86a12a2e4d84f7466a1836c0a8d99ec7973e5ba098dd81f7813 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000565874400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0165-0327 1573-2517 |
| IngestDate | Wed Oct 01 14:46:34 EDT 2025 Wed Feb 19 02:28:24 EST 2025 Tue Nov 18 22:19:38 EST 2025 Sat Nov 29 07:21:05 EST 2025 Fri Feb 23 02:46:19 EST 2024 Sun Feb 23 10:18:55 EST 2025 Tue Oct 14 19:31:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Recurrence Replication Data mining, prediction Major depression Course of illness |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c501t-51d2871d112f8f86a12a2e4d84f7466a1836c0a8d99ec7973e5ba098dd81f7813 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.jad.2020.07.098 |
| PMID | 32745831 |
| PQID | 2430374858 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2430374858 pubmed_primary_32745831 crossref_citationtrail_10_1016_j_jad_2020_07_098 crossref_primary_10_1016_j_jad_2020_07_098 elsevier_sciencedirect_doi_10_1016_j_jad_2020_07_098 elsevier_clinicalkeyesjournals_1_s2_0_S016503272032543X elsevier_clinicalkey_doi_10_1016_j_jad_2020_07_098 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-01 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Journal of affective disorders |
| PublicationTitleAlternate | J Affect Disord |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | van Loo, Aggen, Gardner, Kendler (bib0042) 2015; 180 Yeh, Secemsky, Kereiakes, Normand, Gershlick, Cohen, Spertus, Steg, Cutlip, Rinaldi, Camenzind, Wijns, Apruzzese, Song, Massaro, Mauri (bib0051) 2016; 315 Kendler, Aggen, Knudsen, Roysamb, Neale, Reichborn-Kjennerud (bib0020) 2011; 168 van Loo, Aggen, Gardner, Kendler (bib0041) 2018; 48 Royston, Altman (bib0036) 2013; 13 (bib0002) 1987 Frank (bib0010) 1991; 48 Kraemer (bib0026) 2014 Lamers, van Oppen, Comijs, Smit, Spinhoven, van Balkom, Nolen, Zitman, Beekman, Penninx (bib0027) 2011; 72 Hardeveld, Spijker, De Graaf, Hendriks, Licht, Nolen, Penninx, Beekman (bib0014) 2013; 147 van Buuren, Groothuis-Oudshoorn (bib0040) 2011; 45 Xia, He, Li, Xie, Zhu, Chen, Shen, Zhang, Wei, Chen, Shen, Zhang, Gao, Li, Ding, Shen, Wang, Cao, Liu, Zhang, Duan, Bao, Ma, Zhou, Luo, Zhang, Liu, Li, Jin, Zhang, Liang, Chen, Zhao, Li, Chen, Shi, Kendler, Flint, Wang (bib0050) 2011; 135 Hardeveld, Spijker, De Graaf, Nolen, Beekman (bib0015) 2013; 43 Jiang, Jiang, Zhi, Dong, Li, Ma, Wang, Dong, Shen, Wang (bib0018) 2017; 2 van Loo, Cai, Gruber, Li, de Jonge, Petukhova, Rose, Sampson, Schoevers, Wardenaar, Wilcox, Al-Hamzawi, Andrade, Bromet, Bunting, Fayyad, Florescu, Gureje, Hu, Huang, Levinson, Medina-Mora, Nakane, Posada-Villa, Scott, Xavier, Zarkov, Kessler (bib0043) 2014; 31 Wardenaar, van Loo, Cai, Fava, Gruber, Li, de Jonge, Nierenberg, Pethukova, Rose, Sampson, Schoevers, Wilcox, Alonso, Bromet, Bunting, Florescu, Fukao, Gureje, Hu, Huang, Karam, Levinson, Medina-Mora, Posada-Villa, Scott, Taib, Viana, Xavier, Zarkov, Kessler (bib0047) 2014; 44 Vilhjálmsson, Yang, Finucane, Gusev, Lindström, Ripke, Genovese, Loh, Bhatia, Do, Hayeck, Won, Kathiresan, Pato, Pato, Tamimi, Stahl, Zaitlen, Pasaniuc, Belbin, Kenny, Schierup, De Jager, Patsopoulos, McCarroll, Daly, Purcell, Chasman, Neale, Goddard, Visscher, Kraft, Patterson, Price, Neale, Corvin, Walters, Farh, Holmans, Lee, Bulik-Sullivan, Collier, Huang, Pers, Agartz, Agerbo, Albus, Alexander, Amin, Bacanu, Begemann, Belliveau, Bene, Bergen, Bevilacqua, Bigdeli, Black, Bruggeman, Buccola, Buckner, Byerley, Cahn, Cai, Campion, Cantor, Carr, Carrera, Catts, Chambert, Chan, Chen, Chen, Cheng, Cheung, Chong, Cloninger, Cohen, Cohen, Cormican, Craddock, Crowley, Curtis, Davidson, Davis, Degenhardt, Del Favero, DeLisi, Demontis, Dikeos, Dinan, Djurovic, Donohoe, Drapeau, Duan, Dudbridge, Durmishi, Eichhammer, Eriksson, Escott-Price, Essioux, Fanous, Farrell, Frank, Franke, Freedman, Freimer, Friedl, Friedman, Fromer, Genovese, Georgieva, Gershon, Giegling, Giusti-Rodrguez, Godard, Goldstein, Golimbet, Gopal, Gratten, Grove, de Haan, Hammer, Hamshere, Hansen, Hansen, Haroutunian, Hartmann, Henskens, Herms, Hirschhorn, Hoffmann, Hofman, Hollegaard, Hougaard, Ikeda, Joa, Julia, Kahn, Kalaydjieva, Karachanak-Yankova, Karjalainen, Kavanagh, Keller, Kelly, Kennedy, Khrunin, Kim, Klovins, Knowles, Konte, Kucinskas, Kucinskiene, Kuzelova-Ptackova, Kahler, Laurent, Keong, Lee, Legge, Lerer, Li, Li, Liang, Lieberman, Limborska, Loughland, Lubinski, Lnnqvist, Macek, Magnusson, Maher, Maier, Mallet, Marsal, Mattheisen, Mattingsdal, McCarley, McDonald, McIntosh, Meier, Meijer, Melegh, Melle, Mesholam-Gately, Metspalu, Michie, Milani, Milanova, Mokrab, Morris, Mors, Mortensen, Murphy, Murray, Myin-Germeys, Mller-Myhsok, Nelis, Nenadic, Nertney, Nestadt, Nicodemus, Nikitina-Zake, Nisenbaum, Nordin, O'Callaghan, O'Dushlaine, O'Neill, Oh, Olincy, Olsen, Van Os, Pantelis, Papadimitriou, Papiol, Parkhomenko, Pato, Paunio, Pejovic-Milovancevic, Perkins, Pietilinen, Pimm, Pocklington, Powell, Price, Pulver, Purcell, Quested, Rasmussen, Reichenberg, Reimers, Richards, Roffman, Roussos, Ruderfer, Salomaa, Sanders, Schall, Schubert, Schulze, Schwab, Scolnick, Scott, Seidman, Shi, Sigurdsson, Silagadze, Silverman, Sim, Slominsky, Smoller, So, Spencer, Stahl, Stefansson, Steinberg, Stogmann, Straub, Strengman, Strohmaier, Stroup, Subramaniam, Suvisaari, Svrakic, Szatkiewicz, Sderman, Thirumalai, Toncheva, Tooney, Tosato, Veijola, Waddington, Walsh, Wang, Wang, Webb, Weiser, Wildenauer, Williams, Williams, Witt, Wolen, Wong, Wormley, Wu, Xi, Zai, Zheng, Zimprich, Wray, Stefansson, Visscher, Adolfsson, Andreassen, Blackwood, Bramon, Buxbaum, Børglum, Cichon, Darvasi, Domenici, Ehrenreich, Esko, Gejman, Gill, Gurling, Hultman, Iwata, Jablensky, Jonsson, Kendler, Kirov, Knight, Lencz, Levinson, Li, Liu, Malhotra, McCarroll, McQuillin, Moran, Mortensen, Mowry, Nthen, Ophoff, Owen, Palotie, Pato, Petryshen, Posthuma, Rietschel, Riley, Rujescu, Sham, Sklar, St. Clair, Weinberger, Wendland, Werge, Daly, Sullivan, O'Donovan, Kraft, Hunter, Adank, Ahsan, Aittomäki, Baglietto, Berndt, Blomquist, Canzian, Chang-Claude, Chanock, Crisponi, Czene, Dahmen, Silva, Easton, Eliassen, Figueroa, Fletcher, Garcia-Closas, Gaudet, Gibson, Haiman, Hall, Hazra, Hein, Henderson, Hofman, Hopper, Irwanto, Johansson, Kaaks, Kibriya, Lichtner, Lindström, Liu, Lund, Makalic, Meindl, Meijers-Heijboer, Müller-Myhsok, Muranen, Nevanlinna, Peeters, Peto, Prentice, Rahman, Sánchez, Schmidt, Schmutzler, Southey, Tamimi, Travis, Turnbull, Uitterlinden, van der Luijt, Waisfisz, Wang, Whittemore, Yang, Zheng (bib0045) 2015; 97 Usher-Smith, Emery, Kassianos, Walter (bib0039) 2014; 23 Chekroud, Zotti, Shehzad, Gueorguieva, Johnson, Trivedi, Cannon, Krystal, Corlett (bib0005) 2016; 3 Hastie, Tibshirani, Friedman (bib0016) 2009 Moffitt, Harrington, Caspi, Kim-Cohen, Goldberg, Gregory, Poulton (bib0030) 2007; 64 Mangiafico, S., 2017. rcompanion: functions to Support Extension Education Program Evaluation. Kendler, Schmitt, Aggen, Prescott (bib0023) 2008; 65 Darcy, Louie, Roberts (bib0007) 2016; 315 Jeronimus, Kotov, Riese, Ormel (bib0017) 2016; 46 Kendler, Gatz, Gardner, Pedersen (bib0021) 2005; 35 Wickham (bib0048) 2009 Carpenter, Kenward (bib0003) 2013 Wray, Ripke, Mattheisen, Trzaskowski, Byrne, Abdellaoui, Adams, Agerbo, Air, Andlauer, Bacanu, Bækvad-Hansen, Beekman, Bigdeli, Binder, Blackwood, Bryois, Buttenschøn, Bybjerg-Grauholm, Cai, Castelao, Christensen, Clarke, Coleman, Colodro-Conde, Couvy-Duchesne, Craddock, Crawford, Crowley, Dashti, Davies, Deary, Degenhardt, Derks, Direk, Dolan, Dunn, Eley, Eriksson, Escott-Price, Kiadeh, Finucane, Forstner, Frank, Gaspar, Gill, Giusti-Rodríguez, Goes, Gordon, Grove, Hall, Hannon, Hansen, Hansen, Herms, Hickie, Hoffmann, Homuth, Horn, Hottenga, Hougaard, Hu, Hyde, Ising, Jansen, Jin, Jorgenson, Knowles, Kohane, Kraft, Kretzschmar, Krogh, Kutalik, Lane, Li, Li, Lind, Liu, Lu, MacIntyre, MacKinnon, Maier, Maier, Marchini, Mbarek, McGrath, McGuffin, Medland, Mehta, Middeldorp, Mihailov, Milaneschi, Milani, Mill, Mondimore, Montgomery, Mostafavi, Mullins, Nauck, Ng, Nivard, Nyholt, O'Reilly, Oskarsson, Owen, Painter, Pedersen, Pedersen, Peterson, Pettersson, Peyrot, Pistis, Posthuma, Purcell, Quiroz, Qvist, Rice, Riley, Rivera, Saeed Mirza, Saxena, Schoevers, Schulte, Shen, Shi, Shyn, Sigurdsson, Sinnamon, Smit, Smith, Stefansson, Steinberg, Stockmeier, Streit, Strohmaier, Tansey, Teismann, Teumer, Thompson, Thomson, Thorgeirsson, Tian, Traylor, Treutlein, Trubetskoy, Uitterlinden, Umbricht, Van der Auwera, van Hemert, Viktorin, Visscher, Wang, Webb, Weinsheimer, Wellmann, Willemsen, Witt, Wu, Xi, Yang, Zhang, Arolt, Baune, Berger, Boomsma, Cichon, Dannlowski, de Geus, DePaulo, Domenici, Domschke, Esko, Grabe, Hamilton, Hayward, Heath, Hinds, Kendler, Kloiber, Lewis, Li, Lucae, Madden, Magnusson, Martin, McIntosh, Metspalu, Mors, Mortensen, Müller-Myhsok, Nordentoft, Nöthen, O'Donovan, Paciga, Pedersen, Penninx, Perlis, Porteous, Potash, Preisig, Rietschel, Schaefer, Schulze, Smoller, Stefansson, Tiemeier, Uher, Völzke, Weissman, Werge, Winslow, Lewis, Levinson, Breen, Børglum, Sullivan (bib0049) 2018 Kessler, Chiu, Demler, Walters (bib0024) 2005; 62 Paterniti, Sterner, Caldwell, Bisserbe (bib0031) 2017; 17 van Loo, van den Heuvel, Schoevers, Anselmino, Carney, Denollet, Doyle, Freedland, Grace, Hosseini, Parakh, Pilote, Rafanelli, Roest, Sato, Steeds, Kessler, de Jonge (bib0044) 2014; 12 Eaton, Shao, Nestadt, Lee, Bienvenu, Zandi (bib0009) 2008; 65 Gillan, Whelan (bib0012) 2017; 18 Penninx, Beekman, Smit, Zitman, Nolen, Spinhoven, Cuijpers, De Jong, Van Marwijk, Assendelft, Van, Verhaak, Wensing, De Graaf, Hoogendijk, Ormel, Van Dyck (bib0032) 2008; 17 de Vries, Roest, Bos, Burgerhof, van Loo, de Jonge (bib0008) 2018 Kahneman, Tversky (bib0019) 1979; 47 Coplan, Aaronson, Panthangi, Kim (bib0006) 2015; 5 Wang, Patten, Sareen, Bolton, Schmitz, MacQueen (bib0046) 2014; 31 Perlis (bib0033) 2013; 74 Peterson, Cai, Bigdeli, Li, Reimers, Nikulova, Webb, Bacanu, Riley, Flint, Kendler (bib0034) 2016 R Core Team, 2017. R: a language and environment for statistical computing. Carstensen, Plummer, Laara (bib0004) 2017 Gopinath, Katon, Russo, Ludman (bib0013) 2007; 101 Zou, Hastie (bib0052) 2005; 67 Kessler, van Loo, Wardenaar, Bossarte, Brenner, Cai, Ebert, Hwang, Li, de Jonge, Nierenberg, Petukhova, Rosellini, Sampson, Schoevers, Wilcox, Zaslavsky (bib0025) 2016; 21 Kendler, Prescott (bib0022) 2006 Mistry, Harrison, Smith, Escott-Price, Zammit (bib0029) 2018; 234 Simon, Friedman, Hastie, Tibshirani (bib0037) 2011; 39 Siontis, Tzoulaki, Siontis, Ioannidis (bib0038) 2012; 344 American Psychiatric Association, 2000. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR, 4th Ed.American Psychiatric Publishing, Arlington, US. Friedman, Hastie, Tibshirani (bib0011) 2010; 33 10.1016/j.jad.2020.07.098_bib0001 Kendler (10.1016/j.jad.2020.07.098_bib0021) 2005; 35 Simon (10.1016/j.jad.2020.07.098_bib0037) 2011; 39 van Loo (10.1016/j.jad.2020.07.098_bib0042) 2015; 180 Chekroud (10.1016/j.jad.2020.07.098_bib0005) 2016; 3 Mistry (10.1016/j.jad.2020.07.098_bib0029) 2018; 234 Lamers (10.1016/j.jad.2020.07.098_bib0027) 2011; 72 van Buuren (10.1016/j.jad.2020.07.098_bib0040) 2011; 45 Kendler (10.1016/j.jad.2020.07.098_bib0023) 2008; 65 Paterniti (10.1016/j.jad.2020.07.098_bib0031) 2017; 17 de Vries (10.1016/j.jad.2020.07.098_bib0008) 2018 Kessler (10.1016/j.jad.2020.07.098_bib0025) 2016; 21 Wang (10.1016/j.jad.2020.07.098_bib0046) 2014; 31 Yeh (10.1016/j.jad.2020.07.098_bib0051) 2016; 315 Penninx (10.1016/j.jad.2020.07.098_bib0032) 2008; 17 Zou (10.1016/j.jad.2020.07.098_bib0052) 2005; 67 (10.1016/j.jad.2020.07.098_bib0002) 1987 Royston (10.1016/j.jad.2020.07.098_bib0036) 2013; 13 Vilhjálmsson (10.1016/j.jad.2020.07.098_bib0045) 2015; 97 Gillan (10.1016/j.jad.2020.07.098_bib0012) 2017; 18 van Loo (10.1016/j.jad.2020.07.098_bib0044) 2014; 12 Xia (10.1016/j.jad.2020.07.098_bib0050) 2011; 135 Jiang (10.1016/j.jad.2020.07.098_bib0018) 2017; 2 Wardenaar (10.1016/j.jad.2020.07.098_bib0047) 2014; 44 Siontis (10.1016/j.jad.2020.07.098_bib0038) 2012; 344 Kendler (10.1016/j.jad.2020.07.098_bib0020) 2011; 168 Carpenter (10.1016/j.jad.2020.07.098_bib0003) 2013 Kessler (10.1016/j.jad.2020.07.098_bib0024) 2005; 62 Moffitt (10.1016/j.jad.2020.07.098_bib0030) 2007; 64 Perlis (10.1016/j.jad.2020.07.098_bib0033) 2013; 74 Eaton (10.1016/j.jad.2020.07.098_bib0009) 2008; 65 10.1016/j.jad.2020.07.098_bib0028 Friedman (10.1016/j.jad.2020.07.098_bib0011) 2010; 33 Hardeveld (10.1016/j.jad.2020.07.098_bib0015) 2013; 43 Jeronimus (10.1016/j.jad.2020.07.098_bib0017) 2016; 46 Wray (10.1016/j.jad.2020.07.098_bib0049) 2018 Darcy (10.1016/j.jad.2020.07.098_bib0007) 2016; 315 Frank (10.1016/j.jad.2020.07.098_bib0010) 1991; 48 Carstensen (10.1016/j.jad.2020.07.098_bib0004) 2017 Peterson (10.1016/j.jad.2020.07.098_bib0034) 2016 van Loo (10.1016/j.jad.2020.07.098_bib0043) 2014; 31 10.1016/j.jad.2020.07.098_bib0035 Hardeveld (10.1016/j.jad.2020.07.098_bib0014) 2013; 147 Kraemer (10.1016/j.jad.2020.07.098_bib0026) 2014 Gopinath (10.1016/j.jad.2020.07.098_bib0013) 2007; 101 Coplan (10.1016/j.jad.2020.07.098_bib0006) 2015; 5 Kendler (10.1016/j.jad.2020.07.098_bib0022) 2006 Hastie (10.1016/j.jad.2020.07.098_bib0016) 2009 van Loo (10.1016/j.jad.2020.07.098_bib0041) 2018; 48 Usher-Smith (10.1016/j.jad.2020.07.098_bib0039) 2014; 23 Wickham (10.1016/j.jad.2020.07.098_bib0048) 2009 Kahneman (10.1016/j.jad.2020.07.098_bib0019) 1979; 47 |
| References_xml | – volume: 147 start-page: 225 year: 2013 end-page: 231 ident: bib0014 article-title: Recurrence of major depressive disorder across different treatment settings: results from the NESDA study publication-title: J. Affect. Disord. – volume: 43 start-page: 39 year: 2013 end-page: 48 ident: bib0015 article-title: Recurrence of major depressive disorder and its predictors in the general population: results from the Netherlands Mental Health Survey and Incidence Study (NEMESIS) publication-title: Psychol. Med. – volume: 97 start-page: 576 year: 2015 end-page: 592 ident: bib0045 article-title: Modeling linkage disequilibrium increases accuracy of polygenic risk scores publication-title: Am. J. Hum. Genet. – year: 2009 ident: bib0016 article-title: The Elements of Statistical Learning: Data mining, Inference, and Prediction – reference: Mangiafico, S., 2017. rcompanion: functions to Support Extension Education Program Evaluation. – volume: 74 start-page: 7 year: 2013 end-page: 14 ident: bib0033 article-title: A clinical risk stratification tool for predicting treatment resistance in major depressive disorder publication-title: Biol. Psychiatry – volume: 2 start-page: 230 year: 2017 end-page: 243 ident: bib0018 article-title: Artificial intelligence in healthcare: past, present and future publication-title: Stroke Vasc. Neurol. – volume: 17 start-page: 113 year: 2017 ident: bib0031 article-title: Childhood neglect predicts the course of major depression in a tertiary care sample: a follow-up study publication-title: BMC Psychiatry – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: bib0052 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B – volume: 315 start-page: 551 year: 2016 ident: bib0007 article-title: Machine learning and the profession of medicine publication-title: JAMA – volume: 17 start-page: 121 year: 2008 end-page: 140 ident: bib0032 article-title: The Netherlands Study of Depression and Anxiety (NESDA): rationale, objectives and methods publication-title: Int. J. Methods Psychiatr. Res. – volume: 12 start-page: 242 year: 2014 ident: bib0044 article-title: Sex dependent risk factors for mortality after myocardial infarction: individual patient data meta-analysis publication-title: BMC Med. – volume: 3 start-page: 243 year: 2016 end-page: 250 ident: bib0005 article-title: Cross-trial prediction of treatment outcome in depression: a machine learning approach publication-title: Lancet Psychiatry – volume: 5 start-page: 366 year: 2015 end-page: 378 ident: bib0006 article-title: Treating comorbid anxiety and depression: psychosocial and pharmacological approaches publication-title: World J. Psychiatry – volume: 33 start-page: 1 year: 2010 end-page: 22 ident: bib0011 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J. Stat. Softw. – start-page: 1 year: 2018 ident: bib0049 article-title: Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression publication-title: Nat. Genet. – reference: American Psychiatric Association, 2000. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR, 4th Ed.American Psychiatric Publishing, Arlington, US. – volume: 101 start-page: 57 year: 2007 end-page: 63 ident: bib0013 article-title: Clinical factors associated with relapse in primary care patients with chronic or recurrent depression publication-title: J. Affect. Disord. – volume: 180 start-page: 52 year: 2015 end-page: 61 ident: bib0042 article-title: Multiple risk factors predict recurrence of major depressive disorder in women publication-title: J. Affect. Disord. – start-page: 1 year: 2018 end-page: 7 ident: bib0008 article-title: Predicting antidepressant response by monitoring early improvement of individual symptoms of depression: individual patient data meta-analysis publication-title: Br. J. Psychiatry – year: 2009 ident: bib0048 article-title: ggplot2: Elegant graphics for Data Analysis – volume: 46 start-page: 2883 year: 2016 end-page: 2906 ident: bib0017 article-title: Neuroticism's prospective association with mental disorders halves after adjustment for baseline symptoms and psychiatric history, but the adjusted association hardly decays with time: a meta-analysis on 59 longitudinal/prospective studies with 443 313 pa publication-title: Psychol. Med. – reference: R Core Team, 2017. R: a language and environment for statistical computing. – volume: 47 start-page: 263 year: 1979 end-page: 291 ident: bib0019 article-title: Prospect theory: an analysis of decision under risk publication-title: Econometrica – volume: 13 start-page: 33 year: 2013 ident: bib0036 article-title: External validation of a Cox prognostic model: principles and methods publication-title: BMC Med. Res. Methodol. – volume: 45 start-page: 1 year: 2011 end-page: 67 ident: bib0040 article-title: mice: multivariate imputation by chained equations in R publication-title: J. Stat. Softw. – year: 2014 ident: bib0026 article-title: Effect size publication-title: Encycl. Clin. Psychol. – volume: 64 start-page: 651 year: 2007 end-page: 660 ident: bib0030 article-title: Depression and generalized anxiety disorder: cumulative and sequential comorbidity in a birth cohort followed prospectively to age 32 years publication-title: Arch. Gen. Psychiatry – volume: 168 start-page: 29 year: 2011 end-page: 39 ident: bib0020 article-title: The structure of genetic and environmental risk factors for syndromal and subsyndromal common DSM-IV axis I and all axis II disorders publication-title: Am. J. Psychiatry – year: 1987 ident: bib0002 article-title: Diagnostic and Statistical Manual of Mental Disorders: DSM-III-R – volume: 135 start-page: 100 year: 2011 end-page: 105 ident: bib0050 article-title: The relationship between neuroticism, major depressive disorder and comorbid disorders in Chinese women publication-title: J. Affect. Disord. – volume: 48 start-page: 1685 year: 2018 end-page: 1693 ident: bib0041 article-title: Sex similarities and differences in risk factors for recurrence of major depression publication-title: Psychol. Med. – volume: 44 start-page: 3289 year: 2014 end-page: 3302 ident: bib0047 article-title: The effects of co-morbidity in defining major depression subtypes associated with long-term course and severity publication-title: Psychol. Med. – volume: 48 start-page: 851 year: 1991 ident: bib0010 article-title: Conceptualization and rationale for consensus definitions of terms in major depressive disorder publication-title: Arch. Gen. Psychiatry – year: 2016 ident: bib0034 article-title: The genetic architecture of major depressive disorder in Han Chinese women publication-title: JAMA psychiatry. – volume: 31 start-page: 765 year: 2014 end-page: 777 ident: bib0043 article-title: Major depressive disorder subtypes to predict long-term course publication-title: Depress. Anxiety – volume: 31 start-page: 451 year: 2014 end-page: 457 ident: bib0046 article-title: Development and validation of a prediction algorithm for use by health professionals in prediction of recurrence of major depression publication-title: Depress. Anxiety – volume: 234 start-page: 148 year: 2018 end-page: 155 ident: bib0029 article-title: The use of polygenic risk scores to identify phenotypes associated with genetic risk of bipolar disorder and depression: a systematic review publication-title: J. Affect. Disord. – volume: 39 start-page: 1 year: 2011 end-page: 13 ident: bib0037 article-title: Regularization paths for Cox's proportional hazards model via coordinate descent publication-title: J. Stat. Softw. – volume: 21 start-page: 1366 year: 2016 end-page: 1371 ident: bib0025 article-title: Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports publication-title: Mol. Psychiatry – volume: 62 start-page: 617 year: 2005 end-page: 627 ident: bib0024 article-title: Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the national comorbidity survey replication publication-title: Arch. Gen. Psychiatry – volume: 65 start-page: 674 year: 2008 end-page: 682 ident: bib0023 article-title: Genetic and environmental influences on alcohol, caffeine, cannabis, and nicotine use from early adolescence to middle adulthood publication-title: Arch. Gen. Psychiatry – volume: 18 start-page: 34 year: 2017 end-page: 42 ident: bib0012 article-title: What big data can do for treatment in psychiatry publication-title: Curr. Opin. Behav. Sci. – year: 2006 ident: bib0022 article-title: Genes, Environment and Psychopathology: Understanding the Causes of Psychiatric and Substance use Disorders – volume: 23 start-page: 1450 year: 2014 end-page: 1463 ident: bib0039 article-title: Risk prediction models for melanoma: a systematic review publication-title: Cancer Epidemiol. Biomark. Prev. – volume: 315 start-page: 1735 year: 2016 ident: bib0051 article-title: Development and validation of a prediction rule for benefit and harm of dual antiplatelet therapy beyond 1 year after percutaneous coronary intervention publication-title: JAMA – volume: 65 start-page: 513 year: 2008 end-page: 520 ident: bib0009 article-title: Population-based study of first onset and chronicity in major depressive disorder publication-title: Arch. Gen. Psychiatry – volume: 72 start-page: 341 year: 2011 end-page: 348 ident: bib0027 article-title: Comorbidity patterns of anxiety and depressive disorders in a large cohort study publication-title: J. Clin. Psychiatry – volume: 344 start-page: e3318 year: 2012 ident: bib0038 article-title: Comparisons of established risk prediction models for cardiovascular disease: systematic review publication-title: BMJ – volume: 35 start-page: 1573 year: 2005 end-page: 1579 ident: bib0021 article-title: Age at onset and familial risk for major depression in a Swedish national twin sample publication-title: Psychol. Med. – year: 2013 ident: bib0003 article-title: Multiple Imputation and its Application – year: 2017 ident: bib0004 article-title: Epi: a package for statistical analysis in epidemiology [WWW Document] publication-title: R Packag. – volume: 5 start-page: 366 year: 2015 ident: 10.1016/j.jad.2020.07.098_bib0006 article-title: Treating comorbid anxiety and depression: psychosocial and pharmacological approaches publication-title: World J. Psychiatry doi: 10.5498/wjp.v5.i4.366 – volume: 234 start-page: 148 year: 2018 ident: 10.1016/j.jad.2020.07.098_bib0029 article-title: The use of polygenic risk scores to identify phenotypes associated with genetic risk of bipolar disorder and depression: a systematic review publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2018.02.005 – year: 2009 ident: 10.1016/j.jad.2020.07.098_bib0048 – volume: 62 start-page: 617 year: 2005 ident: 10.1016/j.jad.2020.07.098_bib0024 article-title: Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the national comorbidity survey replication publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.62.6.617 – volume: 65 start-page: 674 year: 2008 ident: 10.1016/j.jad.2020.07.098_bib0023 article-title: Genetic and environmental influences on alcohol, caffeine, cannabis, and nicotine use from early adolescence to middle adulthood publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.65.6.674 – volume: 65 start-page: 513 year: 2008 ident: 10.1016/j.jad.2020.07.098_bib0009 article-title: Population-based study of first onset and chronicity in major depressive disorder publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.65.5.513 – year: 2009 ident: 10.1016/j.jad.2020.07.098_bib0016 – volume: 45 start-page: 1 year: 2011 ident: 10.1016/j.jad.2020.07.098_bib0040 article-title: mice: multivariate imputation by chained equations in R publication-title: J. Stat. Softw. – start-page: 1 year: 2018 ident: 10.1016/j.jad.2020.07.098_bib0008 article-title: Predicting antidepressant response by monitoring early improvement of individual symptoms of depression: individual patient data meta-analysis publication-title: Br. J. Psychiatry – volume: 67 start-page: 301 year: 2005 ident: 10.1016/j.jad.2020.07.098_bib0052 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.1467-9868.2005.00503.x – volume: 2 start-page: 230 year: 2017 ident: 10.1016/j.jad.2020.07.098_bib0018 article-title: Artificial intelligence in healthcare: past, present and future publication-title: Stroke Vasc. Neurol. doi: 10.1136/svn-2017-000101 – volume: 135 start-page: 100 year: 2011 ident: 10.1016/j.jad.2020.07.098_bib0050 article-title: The relationship between neuroticism, major depressive disorder and comorbid disorders in Chinese women publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2011.06.053 – volume: 101 start-page: 57 year: 2007 ident: 10.1016/j.jad.2020.07.098_bib0013 article-title: Clinical factors associated with relapse in primary care patients with chronic or recurrent depression publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2006.10.023 – volume: 35 start-page: 1573 year: 2005 ident: 10.1016/j.jad.2020.07.098_bib0021 article-title: Age at onset and familial risk for major depression in a Swedish national twin sample publication-title: Psychol. Med. doi: 10.1017/S0033291705005714 – volume: 180 start-page: 52 year: 2015 ident: 10.1016/j.jad.2020.07.098_bib0042 article-title: Multiple risk factors predict recurrence of major depressive disorder in women publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2015.03.045 – start-page: 1 year: 2018 ident: 10.1016/j.jad.2020.07.098_bib0049 article-title: Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression publication-title: Nat. Genet. – volume: 33 start-page: 1 year: 2010 ident: 10.1016/j.jad.2020.07.098_bib0011 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J. Stat. Softw. doi: 10.18637/jss.v033.i01 – year: 2016 ident: 10.1016/j.jad.2020.07.098_bib0034 article-title: The genetic architecture of major depressive disorder in Han Chinese women publication-title: JAMA psychiatry. – volume: 315 start-page: 551 year: 2016 ident: 10.1016/j.jad.2020.07.098_bib0007 article-title: Machine learning and the profession of medicine publication-title: JAMA doi: 10.1001/jama.2015.18421 – volume: 13 start-page: 33 year: 2013 ident: 10.1016/j.jad.2020.07.098_bib0036 article-title: External validation of a Cox prognostic model: principles and methods publication-title: BMC Med. Res. Methodol. doi: 10.1186/1471-2288-13-33 – ident: 10.1016/j.jad.2020.07.098_bib0001 – ident: 10.1016/j.jad.2020.07.098_bib0028 doi: 10.32614/CRAN.package.rcompanion – volume: 23 start-page: 1450 year: 2014 ident: 10.1016/j.jad.2020.07.098_bib0039 article-title: Risk prediction models for melanoma: a systematic review publication-title: Cancer Epidemiol. Biomark. Prev. doi: 10.1158/1055-9965.EPI-14-0295 – volume: 44 start-page: 3289 year: 2014 ident: 10.1016/j.jad.2020.07.098_bib0047 article-title: The effects of co-morbidity in defining major depression subtypes associated with long-term course and severity publication-title: Psychol. Med. doi: 10.1017/S0033291714000993 – volume: 97 start-page: 576 year: 2015 ident: 10.1016/j.jad.2020.07.098_bib0045 article-title: Modeling linkage disequilibrium increases accuracy of polygenic risk scores publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2015.09.001 – volume: 43 start-page: 39 year: 2013 ident: 10.1016/j.jad.2020.07.098_bib0015 article-title: Recurrence of major depressive disorder and its predictors in the general population: results from the Netherlands Mental Health Survey and Incidence Study (NEMESIS) publication-title: Psychol. Med. doi: 10.1017/S0033291712002395 – volume: 3 start-page: 243 year: 2016 ident: 10.1016/j.jad.2020.07.098_bib0005 article-title: Cross-trial prediction of treatment outcome in depression: a machine learning approach publication-title: Lancet Psychiatry doi: 10.1016/S2215-0366(15)00471-X – volume: 18 start-page: 34 year: 2017 ident: 10.1016/j.jad.2020.07.098_bib0012 article-title: What big data can do for treatment in psychiatry publication-title: Curr. Opin. Behav. Sci. doi: 10.1016/j.cobeha.2017.07.003 – ident: 10.1016/j.jad.2020.07.098_bib0035 – volume: 48 start-page: 1685 year: 2018 ident: 10.1016/j.jad.2020.07.098_bib0041 article-title: Sex similarities and differences in risk factors for recurrence of major depression publication-title: Psychol. Med. doi: 10.1017/S0033291717003178 – volume: 12 start-page: 242 year: 2014 ident: 10.1016/j.jad.2020.07.098_bib0044 article-title: Sex dependent risk factors for mortality after myocardial infarction: individual patient data meta-analysis publication-title: BMC Med. doi: 10.1186/s12916-014-0242-y – volume: 17 start-page: 121 year: 2008 ident: 10.1016/j.jad.2020.07.098_bib0032 article-title: The Netherlands Study of Depression and Anxiety (NESDA): rationale, objectives and methods publication-title: Int. J. Methods Psychiatr. Res. doi: 10.1002/mpr.256 – volume: 39 start-page: 1 year: 2011 ident: 10.1016/j.jad.2020.07.098_bib0037 article-title: Regularization paths for Cox's proportional hazards model via coordinate descent publication-title: J. Stat. Softw. doi: 10.18637/jss.v039.i05 – volume: 74 start-page: 7 year: 2013 ident: 10.1016/j.jad.2020.07.098_bib0033 article-title: A clinical risk stratification tool for predicting treatment resistance in major depressive disorder publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2012.12.007 – year: 2006 ident: 10.1016/j.jad.2020.07.098_bib0022 – volume: 48 start-page: 851 year: 1991 ident: 10.1016/j.jad.2020.07.098_bib0010 article-title: Conceptualization and rationale for consensus definitions of terms in major depressive disorder publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.1991.01810330075011 – volume: 47 start-page: 263 year: 1979 ident: 10.1016/j.jad.2020.07.098_bib0019 article-title: Prospect theory: an analysis of decision under risk publication-title: Econometrica doi: 10.2307/1914185 – year: 1987 ident: 10.1016/j.jad.2020.07.098_bib0002 – volume: 315 start-page: 1735 year: 2016 ident: 10.1016/j.jad.2020.07.098_bib0051 article-title: Development and validation of a prediction rule for benefit and harm of dual antiplatelet therapy beyond 1 year after percutaneous coronary intervention publication-title: JAMA doi: 10.1001/jama.2016.3775 – volume: 31 start-page: 765 year: 2014 ident: 10.1016/j.jad.2020.07.098_bib0043 article-title: Major depressive disorder subtypes to predict long-term course publication-title: Depress. Anxiety doi: 10.1002/da.22233 – volume: 21 start-page: 1366 year: 2016 ident: 10.1016/j.jad.2020.07.098_bib0025 article-title: Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports publication-title: Mol. Psychiatry doi: 10.1038/mp.2015.198 – volume: 147 start-page: 225 year: 2013 ident: 10.1016/j.jad.2020.07.098_bib0014 article-title: Recurrence of major depressive disorder across different treatment settings: results from the NESDA study publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2012.11.008 – volume: 168 start-page: 29 year: 2011 ident: 10.1016/j.jad.2020.07.098_bib0020 article-title: The structure of genetic and environmental risk factors for syndromal and subsyndromal common DSM-IV axis I and all axis II disorders publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.2010.10030340 – volume: 46 start-page: 2883 year: 2016 ident: 10.1016/j.jad.2020.07.098_bib0017 article-title: Neuroticism's prospective association with mental disorders halves after adjustment for baseline symptoms and psychiatric history, but the adjusted association hardly decays with time: a meta-analysis on 59 longitudinal/prospective studies with 443 313 pa publication-title: Psychol. Med. doi: 10.1017/S0033291716001653 – year: 2014 ident: 10.1016/j.jad.2020.07.098_bib0026 article-title: Effect size publication-title: Encycl. Clin. Psychol. doi: 10.1002/9781118625392.wbecp048 – volume: 31 start-page: 451 year: 2014 ident: 10.1016/j.jad.2020.07.098_bib0046 article-title: Development and validation of a prediction algorithm for use by health professionals in prediction of recurrence of major depression publication-title: Depress. Anxiety doi: 10.1002/da.22215 – volume: 344 start-page: e3318 year: 2012 ident: 10.1016/j.jad.2020.07.098_bib0038 article-title: Comparisons of established risk prediction models for cardiovascular disease: systematic review publication-title: BMJ doi: 10.1136/bmj.e3318 – volume: 64 start-page: 651 year: 2007 ident: 10.1016/j.jad.2020.07.098_bib0030 article-title: Depression and generalized anxiety disorder: cumulative and sequential comorbidity in a birth cohort followed prospectively to age 32 years publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.64.6.651 – volume: 72 start-page: 341 year: 2011 ident: 10.1016/j.jad.2020.07.098_bib0027 article-title: Comorbidity patterns of anxiety and depressive disorders in a large cohort study publication-title: J. Clin. Psychiatry doi: 10.4088/JCP.10m06176blu – year: 2013 ident: 10.1016/j.jad.2020.07.098_bib0003 – volume: 17 start-page: 113 year: 2017 ident: 10.1016/j.jad.2020.07.098_bib0031 article-title: Childhood neglect predicts the course of major depression in a tertiary care sample: a follow-up study publication-title: BMC Psychiatry doi: 10.1186/s12888-017-1270-x – year: 2017 ident: 10.1016/j.jad.2020.07.098_bib0004 article-title: Epi: a package for statistical analysis in epidemiology [WWW Document] publication-title: R Packag. |
| SSID | ssj0006970 |
| Score | 2.4027565 |
| Snippet | •The course of major depression is highly varied.•Genetic and environmental risk factors influence the course of depression.•Data mining techniques can be used... Highlights•The course of major depression is highly varied. •Genetic and environmental risk factors influence the course of depression. •Data mining techniques... Course of illness in major depression (MD) is highly varied, which might lead to both under- and overtreatment if clinicians adhere to a 'one-size-fits-all'... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 945 |
| SubjectTerms | Algorithms Anxiety Disorders - diagnosis Anxiety Disorders - epidemiology Course of illness Data Mining Data mining, prediction Depression Depressive Disorder, Major - diagnosis Humans Major depression Psychiatric/Mental Health Recurrence Replication |
| Title | Data mining algorithm predicts a range of adverse outcomes in major depression |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S016503272032543X https://www.clinicalkey.es/playcontent/1-s2.0-S016503272032543X https://dx.doi.org/10.1016/j.jad.2020.07.098 https://www.ncbi.nlm.nih.gov/pubmed/32745831 https://www.proquest.com/docview/2430374858 |
| Volume | 276 |
| WOSCitedRecordID | wos000565874400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1573-2517 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006970 issn: 0165-0327 databaseCode: AIEXJ dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbYLkJ7QSBe5bEyEieqoLxtHxdYtCCoOCxSOVlO7HRTbZMqSdH-fMaPJOXRBQ5cojSJ48bzeTxjj79B6EVY0IjCwO9lgqVeHOWplxEGypCqRGRBDla-kfRHMp_TxYJ9div4rUknQKqKXl2xzX8VNVwDYeuts_8g7uGlcAHOQehwBLHD8a8E_1Z0YrY2eR9m4nJZg_d_sdZcALLUgRti1uj9BG79H4w_ON128EdMZNZsLVZ1M8bHVnuMV2HCQHTUkXT0nYNtbhMBmxnYM1FVYpxvfV0upbLbsQEiY77nT6WOuAU329z6um3KAYbLpVWLNvma20nhJinAIw2GSQrlFCuJPE2Ptqt5Q7KrO5nllfxFp9vphdWrldDMrqFvyFZt6uodcW7WRp4ReNkJdQPLj0Ta_a0DdBiShNEJOjx5f7r4MAzcKSPDwrcJAfypxiN0q3_HPitmn5dirJXzO-i2kxQ-sfC4i26o6h6aa2hgCw08QAP30MACG2jgusAOGriHBi4rbKCBR2jcR1_enZ6_OfNcPg0vT_yg85JAav9Ygold0IKmIghFqGJJ44LEKfykUZr7gkrGVA4dNlJJJuC7paRBQWgQPUCTqq7UI4RzKYMoEYolMo7DPBUqI7FSKmUiYX6mpsjv24fnjmxe5zy55H1U4YpD63LdutwnHGqZopdDkY1lWrnu4bBvdN5vIYZBjwNmritEfldIta73tjzgbch9HfEIjktkQhQ0WcRiiuKhpLNMrcX5pwqf93jgoLX1Uhx0p3rb8jCODPFTAs88tEAZPrrH2OO9d56go7GTPUWTrtmqZ-hm_q0r2-YYHZAFPXbg_g4yx7vy |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+mining+algorithm+predicts+a+range+of+adverse+outcomes+in+major+depression&rft.jtitle=Journal+of+affective+disorders&rft.au=van+Loo%2C+Hanna+M&rft.au=Bigdeli%2C+Tim+B&rft.au=Milaneschi%2C+Yuri&rft.au=Aggen%2C+Steven+H&rft.date=2020-11-01&rft.eissn=1573-2517&rft.volume=276&rft.spage=945&rft_id=info:doi/10.1016%2Fj.jad.2020.07.098&rft_id=info%3Apmid%2F32745831&rft.externalDocID=32745831 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01650327%2FS0165032720X00139%2Fcov150h.gif |