The Bayesian Lasso
The Lasso estimate for linear regression parameters can be interpreted as a Bayesian posterior mode estimate when the regression parameters have independent Laplace (i.e., double-exponential) priors. Gibbs sampling from this posterior is possible using an expanded hierarchy with conjugate normal pri...
Uložené v:
| Vydané v: | Journal of the American Statistical Association Ročník 103; číslo 482; s. 681 - 686 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Alexandria, VA
Taylor & Francis
01.06.2008
American Statistical Association Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 0162-1459, 1537-274X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The Lasso estimate for linear regression parameters can be interpreted as a Bayesian posterior mode estimate when the regression parameters have independent Laplace (i.e., double-exponential) priors. Gibbs sampling from this posterior is possible using an expanded hierarchy with conjugate normal priors for the regression parameters and independent exponential priors on their variances. A connection with the inverse-Gaussian distribution provides tractable full conditional distributions. The Bayesian Lasso provides interval estimates (Bayesian credible intervals) that can guide variable selection. Moreover, the structure of the hierarchical model provides both Bayesian and likelihood methods for selecting the Lasso parameter. Slight modifications lead to Bayesian versions of other Lasso-related estimation methods, including bridge regression and a robust variant. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Feature-1 ObjectType-Article-2 content type line 23 |
| ISSN: | 0162-1459 1537-274X |
| DOI: | 10.1198/016214508000000337 |