The Bayesian Lasso

The Lasso estimate for linear regression parameters can be interpreted as a Bayesian posterior mode estimate when the regression parameters have independent Laplace (i.e., double-exponential) priors. Gibbs sampling from this posterior is possible using an expanded hierarchy with conjugate normal pri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association Jg. 103; H. 482; S. 681 - 686
Hauptverfasser: Park, Trevor, Casella, George
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Alexandria, VA Taylor & Francis 01.06.2008
American Statistical Association
Taylor & Francis Ltd
Schlagworte:
ISSN:0162-1459, 1537-274X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Lasso estimate for linear regression parameters can be interpreted as a Bayesian posterior mode estimate when the regression parameters have independent Laplace (i.e., double-exponential) priors. Gibbs sampling from this posterior is possible using an expanded hierarchy with conjugate normal priors for the regression parameters and independent exponential priors on their variances. A connection with the inverse-Gaussian distribution provides tractable full conditional distributions. The Bayesian Lasso provides interval estimates (Bayesian credible intervals) that can guide variable selection. Moreover, the structure of the hierarchical model provides both Bayesian and likelihood methods for selecting the Lasso parameter. Slight modifications lead to Bayesian versions of other Lasso-related estimation methods, including bridge regression and a robust variant.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Feature-1
ObjectType-Article-2
content type line 23
ISSN:0162-1459
1537-274X
DOI:10.1198/016214508000000337