Reconsidering the function of the xyloglucan endotransglucosylase/hydrolase family

Plants possess an outer cell layer called the cell wall. This matrix comprises various molecules, such as polysaccharides and proteins, and serves a wide array of physiologically important functions. This structure is not static but rather flexible in response to the environment. One of the factors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plant research Jg. 135; H. 2; S. 145 - 156
Hauptverfasser: Ishida, Konan, Yokoyama, Ryusuke
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Singapore Springer Singapore 01.03.2022
Springer Nature B.V
Schlagworte:
ISSN:0918-9440, 1618-0860, 1618-0860
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Plants possess an outer cell layer called the cell wall. This matrix comprises various molecules, such as polysaccharides and proteins, and serves a wide array of physiologically important functions. This structure is not static but rather flexible in response to the environment. One of the factors responsible for this plasticity is the xyloglucan endotransglucosylase/hydrolase (XTH) family, which cleaves and reconnects xyloglucan molecules. Since xyloglucan molecules have been hypothesised to tether cellulose microfibrils forming the main load-bearing network in the primary cell wall, XTHs have been thought to play a central role in cell wall loosening for plant cell expansion. However, multiple lines of recent evidence have questioned this classic model. Nevertheless, reverse genetic analyses have proven the biological importance of XTHs; therefore, a major challenge at present is to reconsider the role of XTHs in planta . Recent advances in analytical techniques have allowed for gathering rich information on the structure of the primary cell wall. Thus, the integration of accumulated knowledge in current XTH studies may offer a turning point for unveiling the precise functions of XTHs. In the present review, we redefine the biological function of the XTH family based on the recent architectural model of the cell wall. We highlight three key findings regarding this enzyme family: (1) XTHs are not strictly required for cell wall loosening during plant cell expansion but play vital roles in response to specific biotic or abiotic stresses; (2) in addition to their transglycosylase activity, the hydrolase activity of XTHs is involved in physiological benefits; and (3) XTHs can recognise a wide range of polysaccharides other than xyloglucans.
AbstractList Plants possess an outer cell layer called the cell wall. This matrix comprises various molecules, such as polysaccharides and proteins, and serves a wide array of physiologically important functions. This structure is not static but rather flexible in response to the environment. One of the factors responsible for this plasticity is the xyloglucan endotransglucosylase/hydrolase (XTH) family, which cleaves and reconnects xyloglucan molecules. Since xyloglucan molecules have been hypothesised to tether cellulose microfibrils forming the main load-bearing network in the primary cell wall, XTHs have been thought to play a central role in cell wall loosening for plant cell expansion. However, multiple lines of recent evidence have questioned this classic model. Nevertheless, reverse genetic analyses have proven the biological importance of XTHs; therefore, a major challenge at present is to reconsider the role of XTHs in planta. Recent advances in analytical techniques have allowed for gathering rich information on the structure of the primary cell wall. Thus, the integration of accumulated knowledge in current XTH studies may offer a turning point for unveiling the precise functions of XTHs. In the present review, we redefine the biological function of the XTH family based on the recent architectural model of the cell wall. We highlight three key findings regarding this enzyme family: (1) XTHs are not strictly required for cell wall loosening during plant cell expansion but play vital roles in response to specific biotic or abiotic stresses; (2) in addition to their transglycosylase activity, the hydrolase activity of XTHs is involved in physiological benefits; and (3) XTHs can recognise a wide range of polysaccharides other than xyloglucans.
Plants possess an outer cell layer called the cell wall. This matrix comprises various molecules, such as polysaccharides and proteins, and serves a wide array of physiologically important functions. This structure is not static but rather flexible in response to the environment. One of the factors responsible for this plasticity is the xyloglucan endotransglucosylase/hydrolase (XTH) family, which cleaves and reconnects xyloglucan molecules. Since xyloglucan molecules have been hypothesised to tether cellulose microfibrils forming the main load-bearing network in the primary cell wall, XTHs have been thought to play a central role in cell wall loosening for plant cell expansion. However, multiple lines of recent evidence have questioned this classic model. Nevertheless, reverse genetic analyses have proven the biological importance of XTHs; therefore, a major challenge at present is to reconsider the role of XTHs inplanta. Recent advances in analytical techniques have allowed for gathering rich information on the structure of the primary cell wall. Thus, the integration of accumulated knowledge in current XTH studies may offer a turning point for unveiling the precise functions of XTHs. In the present review, we redefine the biological function of the XTH family based on the recent architectural model of the cell wall. We highlight three key findings regarding this enzyme family: (1) XTHs are not strictly required for cell wall loosening during plant cell expansion but play vital roles in response to specific biotic or abiotic stresses; (2) in addition to their transglycosylase activity, the hydrolase activity of XTHs is involved in physiological benefits; and (3) XTHs can recognise a wide range of polysaccharides other than xyloglucans.
Plants possess an outer cell layer called the cell wall. This matrix comprises various molecules, such as polysaccharides and proteins, and serves a wide array of physiologically important functions. This structure is not static but rather flexible in response to the environment. One of the factors responsible for this plasticity is the xyloglucan endotransglucosylase/hydrolase (XTH) family, which cleaves and reconnects xyloglucan molecules. Since xyloglucan molecules have been hypothesised to tether cellulose microfibrils forming the main load-bearing network in the primary cell wall, XTHs have been thought to play a central role in cell wall loosening for plant cell expansion. However, multiple lines of recent evidence have questioned this classic model. Nevertheless, reverse genetic analyses have proven the biological importance of XTHs; therefore, a major challenge at present is to reconsider the role of XTHs in planta. Recent advances in analytical techniques have allowed for gathering rich information on the structure of the primary cell wall. Thus, the integration of accumulated knowledge in current XTH studies may offer a turning point for unveiling the precise functions of XTHs. In the present review, we redefine the biological function of the XTH family based on the recent architectural model of the cell wall. We highlight three key findings regarding this enzyme family: (1) XTHs are not strictly required for cell wall loosening during plant cell expansion but play vital roles in response to specific biotic or abiotic stresses; (2) in addition to their transglycosylase activity, the hydrolase activity of XTHs is involved in physiological benefits; and (3) XTHs can recognise a wide range of polysaccharides other than xyloglucans.Plants possess an outer cell layer called the cell wall. This matrix comprises various molecules, such as polysaccharides and proteins, and serves a wide array of physiologically important functions. This structure is not static but rather flexible in response to the environment. One of the factors responsible for this plasticity is the xyloglucan endotransglucosylase/hydrolase (XTH) family, which cleaves and reconnects xyloglucan molecules. Since xyloglucan molecules have been hypothesised to tether cellulose microfibrils forming the main load-bearing network in the primary cell wall, XTHs have been thought to play a central role in cell wall loosening for plant cell expansion. However, multiple lines of recent evidence have questioned this classic model. Nevertheless, reverse genetic analyses have proven the biological importance of XTHs; therefore, a major challenge at present is to reconsider the role of XTHs in planta. Recent advances in analytical techniques have allowed for gathering rich information on the structure of the primary cell wall. Thus, the integration of accumulated knowledge in current XTH studies may offer a turning point for unveiling the precise functions of XTHs. In the present review, we redefine the biological function of the XTH family based on the recent architectural model of the cell wall. We highlight three key findings regarding this enzyme family: (1) XTHs are not strictly required for cell wall loosening during plant cell expansion but play vital roles in response to specific biotic or abiotic stresses; (2) in addition to their transglycosylase activity, the hydrolase activity of XTHs is involved in physiological benefits; and (3) XTHs can recognise a wide range of polysaccharides other than xyloglucans.
Plants possess an outer cell layer called the cell wall. This matrix comprises various molecules, such as polysaccharides and proteins, and serves a wide array of physiologically important functions. This structure is not static but rather flexible in response to the environment. One of the factors responsible for this plasticity is the xyloglucan endotransglucosylase/hydrolase (XTH) family, which cleaves and reconnects xyloglucan molecules. Since xyloglucan molecules have been hypothesised to tether cellulose microfibrils forming the main load-bearing network in the primary cell wall, XTHs have been thought to play a central role in cell wall loosening for plant cell expansion. However, multiple lines of recent evidence have questioned this classic model. Nevertheless, reverse genetic analyses have proven the biological importance of XTHs; therefore, a major challenge at present is to reconsider the role of XTHs in planta . Recent advances in analytical techniques have allowed for gathering rich information on the structure of the primary cell wall. Thus, the integration of accumulated knowledge in current XTH studies may offer a turning point for unveiling the precise functions of XTHs. In the present review, we redefine the biological function of the XTH family based on the recent architectural model of the cell wall. We highlight three key findings regarding this enzyme family: (1) XTHs are not strictly required for cell wall loosening during plant cell expansion but play vital roles in response to specific biotic or abiotic stresses; (2) in addition to their transglycosylase activity, the hydrolase activity of XTHs is involved in physiological benefits; and (3) XTHs can recognise a wide range of polysaccharides other than xyloglucans.
Author Ishida, Konan
Yokoyama, Ryusuke
Author_xml – sequence: 1
  givenname: Konan
  orcidid: 0000-0003-4475-4886
  surname: Ishida
  fullname: Ishida, Konan
  organization: Department of Biochemistry, University of Cambridge
– sequence: 2
  givenname: Ryusuke
  orcidid: 0000-0003-0326-0433
  surname: Yokoyama
  fullname: Yokoyama, Ryusuke
  email: ryusuke.yokoyama.d6@tohoku.ac.jp
  organization: Graduate School of Life Sciences, Tohoku University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35000024$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9LxDAQxYMourv6BTxIwYuX6iRNsslRxH-wIIieQzZJtdJN1qRF--1NXUXwIE4OmYHfeyTzpmjbB-8QOsRwigHmZwkD4awEgkvAFcfl2xaaYI5FCYLDNpqAzL2kFPbQNKUXADxnUuyivYpBLkIn6P7emeBTY11s_FPRPbui7r3pmuCLUH_O70MbntreaF84b0MXtU_jHNLQ6uTOngcbw9gVtV417bCPdmrdJnfwdc_Q49Xlw8VNubi7vr04X5SGAe5KvARLGZOScMMrXlNJQFR6vmRO5yMZMGYZkYaKuaM4Q4bUNo-WLi04qGboZOO7juG1d6lTqyYZ17bau9AnRTjHUOVi_0CxYFhIyTN6_At9CX30-SOZylYUBJOZOvqi-uXKWbWOzUrHQX0vNgNiA5gYUoquVqbp9LjWvL-mVRjUmKHaZKhyhuozQ_WWpeSX9Nv9T1G1EaX1GKSLP8_-Q_UB-qGuUg
CitedBy_id crossref_primary_10_1016_j_biochi_2023_02_009
crossref_primary_10_1016_j_plaphy_2022_11_002
crossref_primary_10_3390_agronomy15092194
crossref_primary_10_3390_genes16060628
crossref_primary_10_1093_plphys_kiac184
crossref_primary_10_3390_life15071088
crossref_primary_10_3390_plants14182900
crossref_primary_10_1016_j_postharvbio_2024_113063
crossref_primary_10_3389_fpls_2025_1607751
crossref_primary_10_3389_fpls_2024_1331269
crossref_primary_10_1007_s00122_025_04951_7
crossref_primary_10_1038_s41598_024_76575_8
crossref_primary_10_1088_2515_7620_adc87d
crossref_primary_10_3390_genes13112004
crossref_primary_10_1007_s00122_025_04929_5
crossref_primary_10_1007_s13353_025_00956_6
crossref_primary_10_1186_s12864_023_09762_y
crossref_primary_10_3390_ijms24087417
crossref_primary_10_1016_j_carbpol_2024_121838
crossref_primary_10_1016_j_plaphy_2023_108239
crossref_primary_10_1111_pce_15280
crossref_primary_10_3390_horticulturae11040432
crossref_primary_10_1186_s12870_025_06445_6
crossref_primary_10_1016_j_jia_2025_03_019
crossref_primary_10_1111_ppl_14052
crossref_primary_10_1111_pce_15530
crossref_primary_10_1016_j_scienta_2023_112391
crossref_primary_10_3390_ijms252212048
crossref_primary_10_1007_s10265_025_01652_6
crossref_primary_10_3389_fpls_2024_1340867
crossref_primary_10_1080_07352689_2023_2256093
crossref_primary_10_1371_journal_pone_0289581
crossref_primary_10_1146_annurev_arplant_061824_115733
crossref_primary_10_1002_pld3_482
crossref_primary_10_3389_fpls_2024_1343787
crossref_primary_10_3389_fpls_2022_1041867
crossref_primary_10_3390_agronomy15051147
crossref_primary_10_1093_plcell_koad325
crossref_primary_10_1093_plcell_koac238
crossref_primary_10_3389_fpls_2023_1118313
crossref_primary_10_3390_genes14091728
crossref_primary_10_1016_j_flora_2024_152665
crossref_primary_10_3390_ijms26125780
crossref_primary_10_1146_annurev_cellbio_111822_115334
crossref_primary_10_3389_fpls_2022_996765
crossref_primary_10_1186_s12870_025_06770_w
crossref_primary_10_1007_s10265_022_01433_5
crossref_primary_10_1016_j_plaphy_2022_10_015
crossref_primary_10_3390_plants12020367
crossref_primary_10_1016_j_pmpp_2023_102179
crossref_primary_10_1111_pbi_14343
crossref_primary_10_3390_biology12030444
crossref_primary_10_3390_plants11091119
crossref_primary_10_1038_s41467_024_55545_8
crossref_primary_10_1111_ppl_70375
crossref_primary_10_1093_plphys_kiac390
crossref_primary_10_1007_s11032_025_01585_x
crossref_primary_10_1016_j_hpj_2025_04_003
crossref_primary_10_1016_j_plaphy_2024_109272
crossref_primary_10_1016_j_tplants_2022_07_008
crossref_primary_10_3390_plants14010087
crossref_primary_10_1038_s41598_023_40210_9
crossref_primary_10_1016_j_plantsci_2025_112612
crossref_primary_10_1007_s11101_024_10023_3
crossref_primary_10_3389_fpls_2024_1431164
crossref_primary_10_3390_plants13060902
crossref_primary_10_1016_j_ijbiomac_2025_146633
crossref_primary_10_1111_pce_70194
crossref_primary_10_3390_ijms26062586
crossref_primary_10_1093_plphys_kiaf308
Cites_doi 10.1007/s10570-015-0778-9
10.1104/pp.111.192880
10.1111/tpj.14004
10.1093/jxb/erp229
10.1371/journal.pone.0235344
10.1038/srep46099
10.1104/pp.103.035261
10.3390/plants8050130
10.1016/j.pbi.2018.07.016
10.1371/journal.pone.0000718
10.3390/plants9050629
10.1016/j.cub.2017.05.025
10.1021/acs.biomac.6b00441
10.1007/s10570-016-0995-x
10.1038/srep39155
10.1111/j.1365-313X.2008.03580.x
10.1111/j.1365-313X.2010.04351.x
10.1007/s00425-007-0591-2
10.1111/tpj.13778
10.1126/science.aaz5103
10.1038/s41586-019-1693-2
10.3389/fpls.2016.00248
10.1105/tpc.020065
10.1021/bi101795q
10.1146/annurev-arplant-043015-112222
10.1104/pp.51.1.188
10.1007/s10265-006-0262-6
10.1016/j.jplph.2009.06.002
10.1038/s41477-017-0030-8
10.1105/tpc.112.106039
10.1074/jbc.M606379200
10.1104/pp.19.01529
10.1093/pcp/pcv001
10.1126/science.abc3710
10.3389/fpls.2018.01773
10.1111/j.1365-3040.2006.01618.x
10.1104/pp.110.156844
10.1111/j.1365-313X.2005.02395.x
10.1016/j.plaphy.2004.03.003
10.1104/pp.108.3.1099
10.1105/tpc.009837
10.1105/tpc.108.059873
10.1104/pp.71.1.132
10.3389/fpls.2018.01210
10.1038/ncomms13902
10.1093/jxb/erq263
10.1002/mrc.3836
10.1093/jxb/erz311
10.1093/jxb/ern013
10.1104/pp.110.161240
10.1007/s11103-006-0021-z
10.1111/tpj.14905
10.3390/v12020146
10.1104/pp.110.162057
10.1111/tpj.13421
10.1002/pld3.166
10.1093/pcp/pcp003
10.1111/tpj.12654
10.1074/jbc.273.18.11134
10.1093/pcp/pcf171
10.1093/jxb/ert229
10.1111/pce.13953
10.3389/fpls.2013.00439
10.1074/jbc.M113.462887
10.1104/pp.113.221788
10.1093/pcp/pci013
10.1007/s11105-020-01233-y
10.1016/j.phytochem.2014.09.020
10.1093/pcp/pcr171
10.1016/j.ssnmr.2016.08.001
10.1104/pp.114.243790
10.1016/j.cell.2017.09.030
10.1073/pnas.1801105115
10.1016/0076-6879(86)18062-1
10.1016/j.molp.2021.06.016
10.1093/pcp/pcab093
10.1093/jxb/ert107
10.1093/mp/sss032
10.1371/journal.pgen.1008465
10.1126/science.abf2824
10.1002/pld3.46
10.1016/j.pbi.2014.11.001
10.1105/tpc.107.051391
10.1111/tpj.15262
10.1093/aob/mcm248
10.1016/j.jsb.2009.06.017
10.1105/tpc.112.103390
10.1111/j.1469-8137.2004.01238.x
10.1111/nph.12812
10.1093/jxb/erv416
10.1007/s11103-014-0256-z
10.1126/science.1227491
10.1093/aob/mcr128
10.1093/pcp/pce154
10.1126/science.284.5422.1976
10.1038/nprot.2015.053
10.1093/pcp/pch007
10.1093/glycob/cwn078
10.1104/pp.112.207308
ContentType Journal Article
Copyright The Author(s) under exclusive licence to The Botanical Society of Japan 2021
2021. The Author(s) under exclusive licence to The Botanical Society of Japan.
The Author(s) under exclusive licence to The Botanical Society of Japan 2021.
Copyright_xml – notice: The Author(s) under exclusive licence to The Botanical Society of Japan 2021
– notice: 2021. The Author(s) under exclusive licence to The Botanical Society of Japan.
– notice: The Author(s) under exclusive licence to The Botanical Society of Japan 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7SN
7ST
7X2
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0K
M0S
M1P
M2O
M7P
MBDVC
P64
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
SOI
7X8
7S9
L.6
DOI 10.1007/s10265-021-01361-w
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Environment Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
Agricultural Science Database
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1618-0860
EndPage 156
ExternalDocumentID 35000024
10_1007_s10265_021_01361_w
Genre Journal Article
Review
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
199
1N0
203
28-
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67N
67Z
6NX
78A
7X2
7X7
88A
88E
8AO
8CJ
8FE
8FH
8FI
8FJ
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
APEBS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JMI
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M0K
M0L
M1P
M2O
M4Y
M7P
MA-
MOJWN
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
PCBAR
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RHV
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
YLTOR
Z45
Z7U
Z7V
Z7W
Z7Y
Z8P
Z8Q
Z8S
ZMTXR
ZOVNA
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7SN
7ST
7XB
8FD
8FK
C1K
FR3
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
PUEGO
7S9
L.6
ID FETCH-LOGICAL-c501t-1b0d4559926c636f492083a7b5eaeae95055d529c487e416c6c2fd9c4d4bd0e03
IEDL.DBID M7P
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000740414800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0918-9440
1618-0860
IngestDate Sun Sep 28 08:11:04 EDT 2025
Thu Oct 02 11:25:48 EDT 2025
Wed Nov 05 01:53:48 EST 2025
Wed Feb 19 02:27:02 EST 2025
Sat Nov 29 06:00:09 EST 2025
Tue Nov 18 22:24:53 EST 2025
Fri Feb 21 02:47:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Hydrolase (XTH)
Xyloglucan
CAZy
Plant cell wall
GH16
Cell wall architecture
Xyloglucan endotransglucosylase
Language English
License 2021. The Author(s) under exclusive licence to The Botanical Society of Japan.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-1b0d4559926c636f492083a7b5eaeae95055d529c487e416c6c2fd9c4d4bd0e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0326-0433
0000-0003-4475-4886
PMID 35000024
PQID 2635340859
PQPubID 55458
PageCount 12
ParticipantIDs proquest_miscellaneous_2661033335
proquest_miscellaneous_2618518996
proquest_journals_2635340859
pubmed_primary_35000024
crossref_citationtrail_10_1007_s10265_021_01361_w
crossref_primary_10_1007_s10265_021_01361_w
springer_journals_10_1007_s10265_021_01361_w
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Japan
– name: Tokyo
PublicationTitle Journal of plant research
PublicationTitleAbbrev J Plant Res
PublicationTitleAlternate J Plant Res
PublicationYear 2022
Publisher Springer Singapore
Springer Nature B.V
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
References Cavalier, Lerouxel, Neumetzler (CR11) 2008; 20
Han, Ban, Li (CR28) 2016; 6
Xu, Ding, Chen (CR86) 2018; 9
Seven, Derman, Harvey (CR71) 2021; 106
Maris, Kaewthai, Eklöf, Miller, Brumer, Fry, Verbelen, Vissenberg (CR48) 2011; 62
Perrin, DeRocher, Bar-Peled, Zeng, Norambuena, Orellana, Raikhel, Keegstra (CR65) 1999; 284
Becnel, Natarajan, Kipp, Braam (CR3) 2006; 61
Matsui, Yokoyama, Seki, Ito, Shinozaki, Takahashi, Komeda, Nishitani (CR49) 2005; 42
Vissenberg, Oyama, Osato, Yokoyama, Verbelen, Nishitani (CR80) 2005; 46
Kaewthai, Gendre, Eklöf, Ibatullin, Ezcurra, Bhalerao, Brumer (CR34) 2013; 161
Maris, Suslov, Fry, Verbelen, Vissenberg (CR47) 2009; 60
Osato, Yokoyama, Nishitani (CR58) 2006; 119
Kushwah, Banasiak, Nishikubo (CR41) 2020; 182
Miedes, Suslov, Vandenbussche, Kenobi, Ivakov, Van Der Straeten, Lorences, Mellerowicz, Verbelen, Vissenberg (CR51) 2013; 64
Zhu, Jiang, Ying, Yuan, Janet, Gui, Shao (CR345) 2014; 165
Shinohara, Sunagawa, Tamura, Yokoyama, Ueda, Igarashi, Nishitani (CR75) 2017; 7
Zhang, Yu, Wang, Durachko, Zhang, Cosgrove (CR94) 2021; 372
Fry (CR22) 2011
Galstyan, Nemhauser (CR23) 2019; 3
Cosgrove (CR13) 2018; 46
Keegstra, Talmadge, Bauer, Albersheim (CR37) 1973; 51
Pitaksaringkarn, Matsuoka, Asahina (CR66) 2014; 80
Rose, Braam, Fry, Nishitani (CR68) 2002; 43
Bogaert, Marmonier, Pichon, Boissinot, Ziegler-Graff, Chesnais, Villeroy, Drucker, Brault (CR6) 2020; 12
Hrmova, MacGregor, Biely, Stewart, Fincher (CR30) 1998; 273
Myśliwiec, Chylińska, Szymańska-Chargot, Chibowski, Zdunek (CR52) 2016; 23
Yan, Huang, He (CR88) 2019; 70
Yokoyama, Rose, Nishitani (CR90) 2004; 134
Carey, Holt, Picard, Wilde, Tucker, Bird, Schuch, Seymour (CR9) 1995; 108
McGregor, Yin, Tung, Van Petegem, Brumer (CR50) 2017; 89
Peña, Kong, York, O’Neill (CR63) 2012; 24
Zhu, Dama, Pauly (CR98) 2018; 2
Akiyama, Jin, Yoshida, Hoshino, Opassiri, Ketudat Cairns (CR1) 2009; 166
Sasidharan, Chinnappa, Staal, Elzenga, Yokoyama, Nishitani, Voesenek, Pieriket (CR69) 2010; 154
Dick-Pérez, Zhang, Hayes, Salazar, Zabotina, Hong (CR15) 2011; 50
Winter, Vinegar, Nahal, Ammar, Wilson, Provart (CR84) 2007; 2
Haas, Wightman, Meyerowitz, Peaucelle (CR26) 2020; 367
Madson, Dunand, Li, Verma, Vanzin, Calplan, Shoue, Carpita, Reiter (CR46) 2003; 15
(CR57) 2019; 574
York, Darvill, McNeil, Stevenson, Albersheim (CR92) 1986; 118
Keegstra (CR36) 2010; 154
Lima, Loh, Buckeridge (CR44) 2004; 42
Höfte, Voxeur (CR29) 2017; 27
Schultink, Cheng, Park, Cosgrove, Pauly (CR70) 2013; 163
Zabotina, van de Ven, Freshour (CR93) 2008; 56
Kelley, Mezulis, Yates, Wass, Sternberg (CR38) 2015; 10
Baumann, Eklof, Michel, Kallas, Teeri, Czjzek, Brumer (CR2) 2007; 19
Simmons, Mortimer, Bernardinelli, Pöppler, Brown, deAzevedo, Dupree, Dupree (CR76) 2016; 7
Han, Wang, Sun (CR27) 2013; 64
Cao, Lv, Li (CR8) 2019; 8
Yokoyama, Uwagaki, Sasaki, Harada, Hiwatashi, Hasebe, Nishitani (CR91) 2010; 64
Divol, Vilaine, Thibivilliers, Kusiak, Sauge, Dinant (CR18) 2007; 30
Johansson, Brumer, Baumann, Kallas, Henriksson, Denman, Teeri, Jones (CR33) 2004; 16
Pauly, Keegstra (CR60) 2016; 67
Cavalier, Keegstra (CR10) 2006; 281
Bowman, Kohchi, Yamato (CR7) 2017; 171
Peng, Zhang, Chen (CR64) 2021; 14
Takahashi, Johnson, Hao (CR77) 2021; 44
Niraula, Lawrence, Klink (CR53) 2020; 15
Eklöf, Brumer (CR19) 2010; 153
Xu, Fang, Chen, Cai (CR87) 2020; 104
Wang, Phyo, Hong (CR82) 2016; 78
Nishitani, Demura (CR54) 2015; 56
Park, Cosgrove (CR59) 2012; 158
Peña, Darvill, Eberhard, York, O’Neill (CR62) 2008; 18
Shi, Ye, Zhong, Liu, Jin, Chan (CR72) 2014; 203
Behar, Graham, Brumer (CR4) 2018; 95
Zhu, Shi, Lei (CR97) 2012; 24
Ivakov, Persson (CR31) 2013; 4
Lee, Polisensky, Braam (CR43) 2005; 165
Zheng, Wang, Chen, Wagner, Cosgrove (CR95) 2018; 93
Kaku, Tabuchi, Wakabayashi, Hoson (CR35) 2004; 45
Van Sandt, Suslov, Verbelen, Vissenberg (CR79) 2007; 100
Wang, Hong (CR81) 2016; 67
Kurasawa, Matsui, Yokoyama, Kuriyama, Yoshizumi, Matsui, Suwabe, Watanabe, Nishitani (CR40) 2009; 50
Berry, Tran, Dimos, Budziszek, Scavuzzo-Duggan, Roberts (CR5) 2016; 7
Dick-Perez, Wang, Salazar, Zabotina, Hong (CR16) 2012; 50
Notaguchi, Kurotani, Sato (CR55) 2020; 369
Oehme, Doblin, Wagner, Bacic, Downton, Gidley (CR56) 2015; 22
Pauly, Vicente (CR61) 2018; 9
Shinohara, Nishitani (CR74) 2021
Cosgrove (CR12) 2014; 22
Xu, Cai (CR85) 2019; 15
Eklöf, Shojania, Okon, McIntosh, Brumer (CR20) 2013; 288
Grantham, Wurman-Rodrich, Terrett (CR25) 2017; 3
Thimm, Burritt, Ducker, Melton (CR78) 2009; 168
Culbertson, Ehrlich, Choe, Honzatko, Zabotina (CR14) 2018; 115
Jensen, Schultink, Keegstra, Wilkerson, Pauly (CR32) 2012; 5
Yokoyama, Nishitani (CR89) 2001; 42
Ding, Liu, Zeng, Himmel, Baker, Bayer (CR17) 2012; 338
Pressey (CR67) 1983; 71
Le, Pagter, Hincha (CR42) 2015; 87
Genovesi, Fornalé, Fry, Ruel, Ferrer, Encina, Sonbol, Bosch, Puigdomènech, Rigau, Caparrós-Ruiz (CR24) 2008; 59
Liu, Lu, Zhang, Liu, Lu (CR45) 2007; 226
Endo, Tatematsu, Hanada (CR21) 2012; 53
Shi, Zhu, Miller, Gregson, Zheng, Fry (CR73) 2015; 112
Zheng, Ren, Zhai, Li, Chen (CR96) 2021; 39
Kuki, Yokoyama, Kuroha, Nishitani (CR39) 2020; 9
Wang, Yang, Kubicki, Hong (CR83) 2016; 17
T Wang (1361_CR81) 2016; 67
M Pauly (1361_CR61) 2018; 9
DP Oehme (1361_CR56) 2015; 22
A Ivakov (1361_CR31) 2013; 4
N McGregor (1361_CR50) 2017; 89
JM Eklöf (1361_CR20) 2013; 288
NJ Grantham (1361_CR25) 2017; 3
T Wang (1361_CR82) 2016; 78
N Shinohara (1361_CR75) 2017; 7
H Höfte (1361_CR29) 2017; 27
H Xu (1361_CR86) 2018; 9
E Miedes (1361_CR51) 2013; 64
Y Zheng (1361_CR95) 2018; 93
SY Ding (1361_CR17) 2012; 338
H Kuki (1361_CR39) 2020; 9
M Pauly (1361_CR60) 2016; 67
R Yokoyama (1361_CR90) 2004; 134
YB Liu (1361_CR45) 2007; 226
EA Berry (1361_CR5) 2016; 7
D Winter (1361_CR84) 2007; 2
J Cao (1361_CR8) 2019; 8
KT Haas (1361_CR26) 2020; 367
JC Thimm (1361_CR78) 2009; 168
JK Jensen (1361_CR32) 2012; 5
M Dick-Pérez (1361_CR15) 2011; 50
P Xu (1361_CR87) 2020; 104
Y Han (1361_CR27) 2013; 64
JM Eklöf (1361_CR19) 2010; 153
MJ Peña (1361_CR62) 2008; 18
DM Cavalier (1361_CR11) 2008; 20
DU Lima (1361_CR44) 2004; 42
R Yokoyama (1361_CR89) 2001; 42
SC Fry (1361_CR22) 2011
S Zheng (1361_CR96) 2021; 39
J Yan (1361_CR88) 2019; 70
A Maris (1361_CR47) 2009; 60
M Madson (1361_CR46) 2003; 15
XF Zhu (1361_CR345) 2014; 165
TJ Simmons (1361_CR76) 2016; 7
R Yokoyama (1361_CR91) 2010; 64
P Xu (1361_CR85) 2019; 15
JS Peng (1361_CR64) 2021; 14
DJ Cosgrove (1361_CR12) 2014; 22
D Takahashi (1361_CR77) 2021; 44
L Zhu (1361_CR98) 2018; 2
T Wang (1361_CR83) 2016; 17
N Shinohara (1361_CR74) 2021
M Seven (1361_CR71) 2021; 106
MJ Baumann (1361_CR2) 2007; 19
K Keegstra (1361_CR36) 2010; 154
DJ Cosgrove (1361_CR13) 2018; 46
M Dick-Perez (1361_CR16) 2012; 50
M Hrmova (1361_CR30) 1998; 273
OA Zabotina (1361_CR93) 2008; 56
J Becnel (1361_CR3) 2006; 61
D Lee (1361_CR43) 2005; 165
A Endo (1361_CR21) 2012; 53
S Kushwah (1361_CR41) 2020; 182
N Kaewthai (1361_CR34) 2013; 161
PM Niraula (1361_CR53) 2020; 15
W Pitaksaringkarn (1361_CR66) 2014; 80
A Schultink (1361_CR70) 2013; 163
K Vissenberg (1361_CR80) 2005; 46
AT Culbertson (1361_CR14) 2018; 115
T Kaku (1361_CR35) 2004; 45
H Shi (1361_CR72) 2014; 203
K Kurasawa (1361_CR40) 2009; 50
H Behar (1361_CR4) 2018; 95
F Divol (1361_CR18) 2007; 30
RM Perrin (1361_CR65) 1999; 284
JL Bowman (1361_CR7) 2017; 171
XF Zhu (1361_CR97) 2012; 24
YZ Shi (1361_CR73) 2015; 112
WS York (1361_CR92) 1986; 118
T Akiyama (1361_CR1) 2009; 166
YB Park (1361_CR59) 2012; 158
A Matsui (1361_CR49) 2005; 42
D Myśliwiec (1361_CR52) 2016; 23
K Keegstra (1361_CR37) 1973; 51
R Pressey (1361_CR67) 1983; 71
F Bogaert (1361_CR6) 2020; 12
A Maris (1361_CR48) 2011; 62
DM Cavalier (1361_CR10) 2006; 281
One Thousand Plant Transcriptomes Initiative (1361_CR57) 2019; 574
P Johansson (1361_CR33) 2004; 16
Y Zhang (1361_CR94) 2021; 372
Y Osato (1361_CR58) 2006; 119
AT Carey (1361_CR9) 1995; 108
K Nishitani (1361_CR54) 2015; 56
R Sasidharan (1361_CR69) 2010; 154
Y Han (1361_CR28) 2016; 6
A Galstyan (1361_CR23) 2019; 3
MJ Peña (1361_CR63) 2012; 24
V Genovesi (1361_CR24) 2008; 59
LA Kelley (1361_CR38) 2015; 10
M Notaguchi (1361_CR55) 2020; 369
MQ Le (1361_CR42) 2015; 87
VS Van Sandt (1361_CR79) 2007; 100
JK Rose (1361_CR68) 2002; 43
References_xml – volume: 22
  start-page: 3501
  year: 2015
  end-page: 3520
  ident: CR56
  article-title: Gaining insight into cell wall cellulose macrofibril organisation by simulating microfibril adsorption
  publication-title: Cellulose
  doi: 10.1007/s10570-015-0778-9
– volume: 158
  start-page: 1933
  year: 2012
  end-page: 1943
  ident: CR59
  article-title: A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.192880
– volume: 95
  start-page: 1114
  year: 2018
  end-page: 1128
  ident: CR4
  article-title: Comprehensive cross-genome survey and phylogeny of glycoside hydrolase family 16 members reveals the evolutionary origin of eg16 and xth proteins in plant lineages
  publication-title: Plant J
  doi: 10.1111/tpj.14004
– volume: 60
  start-page: 3959
  year: 2009
  end-page: 3397
  ident: CR47
  article-title: Enzymic characterization of two recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of and their effect on root growth and cell wall extension
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erp229
– volume: 15
  year: 2020
  ident: CR53
  article-title: The heterologous expression of a soybean ( ) xyloglucan endotransglycosylase/hydrolase (XTH) in cotton ( ) suppresses parasitism by the root knot nematode
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0235344
– volume: 7
  start-page: 1
  year: 2017
  end-page: 10
  ident: CR75
  article-title: The plant cell-wall enzyme XTH3 catalyses covalent cross-linking between cellulose and cello-oligosaccharide
  publication-title: Sci Rep
  doi: 10.1038/srep46099
– volume: 134
  start-page: 1088
  year: 2004
  end-page: 1099
  ident: CR90
  article-title: A surprising diversity and abundance of xyloglucan endotransglucosylase/hydrolases in rice. Classification and expression analysis
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.035261
– volume: 8
  start-page: 130
  year: 2019
  ident: CR8
  article-title: Interspaced repeat sequences confer the regulatory functions of XTH10, important for root growth in
  publication-title: Plants
  doi: 10.3390/plants8050130
– volume: 46
  start-page: 77
  year: 2018
  end-page: 86
  ident: CR13
  article-title: Nanoscale structure, mechanics and growth of epidermal cell walls
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2018.07.016
– volume: 2
  year: 2007
  ident: CR84
  article-title: An ‘electronic fluorescent pictograph’ browser for exploring and analyzing large-scale biological data sets
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0000718
– volume: 9
  start-page: 629
  year: 2020
  ident: CR39
  article-title: Xyloglucan is not essential for the formation and integrity of the cellulose network in the primary cell wall regenerated from protoplasts
  publication-title: Plants
  doi: 10.3390/plants9050629
– volume: 27
  start-page: R865
  year: 2017
  end-page: 870
  ident: CR29
  article-title: Plant cell walls
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2017.05.025
– volume: 17
  start-page: 2210
  year: 2016
  end-page: 2222
  ident: CR83
  article-title: Cellulose structural polymorphism in plant primary cell walls investigated by high-field 2d solid-state NMR spectroscopy and density functional theory calculations
  publication-title: Biomacromol
  doi: 10.1021/acs.biomac.6b00441
– volume: 23
  start-page: 2819
  year: 2016
  end-page: 2829
  ident: CR52
  article-title: Revision of adsorption models of xyloglucan on microcrystalline cellulose
  publication-title: Cellulose
  doi: 10.1007/s10570-016-0995-x
– volume: 6
  start-page: 39155
  year: 2016
  ident: CR28
  article-title: XTH8, a novel xyloglucan endotransglucosylase/hydrolase in persimmon, alters cell wall structure and promotes leaf senescence and fruit postharvest softening
  publication-title: Sci Rep
  doi: 10.1038/srep39155
– volume: 56
  start-page: 101
  year: 2008
  end-page: 115
  ident: CR93
  article-title: gene encodes a putative α-1,6-xylosyltransferase that is involved in xyloglucan biosynthesis
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2008.03580.x
– volume: 64
  start-page: 645
  year: 2010
  end-page: 656
  ident: CR91
  article-title: Biological implications of the occurrence of 32 members of the XTH (xyloglucan endotransglucosylase/hydrolase) family of proteins in the bryophyte
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2010.04351.x
– volume: 226
  start-page: 1547
  year: 2007
  end-page: 1560
  ident: CR45
  article-title: A xyloglucan endotransglucosylase/hydrolase involves in growth of primary root and alters the deposition of cellulose in
  publication-title: Planta
  doi: 10.1007/s00425-007-0591-2
– volume: 93
  start-page: 211
  year: 2018
  end-page: 226
  ident: CR95
  article-title: Xyloglucan in the primary cell wall: assessment by FESEM, selective enzyme digestions and nanogold affinity tags
  publication-title: Plant J
  doi: 10.1111/tpj.13778
– volume: 367
  start-page: 1003
  year: 2020
  end-page: 1007
  ident: CR26
  article-title: Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells
  publication-title: Science
  doi: 10.1126/science.aaz5103
– volume: 574
  start-page: 679
  year: 2019
  end-page: 685
  ident: CR57
  article-title: One thousand plant transcriptomes and the phylogenomics of green plants
  publication-title: Nature
  doi: 10.1038/s41586-019-1693-2
– volume: 7
  start-page: 248
  year: 2016
  ident: CR5
  article-title: Immuno and affinity cytochemical analysis of cell wall composition in the moss
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.00248
– volume: 16
  start-page: 874
  year: 2004
  end-page: 886
  ident: CR33
  article-title: Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding
  publication-title: Plant Cell
  doi: 10.1105/tpc.020065
– volume: 50
  start-page: 989
  year: 2011
  end-page: 1000
  ident: CR15
  article-title: Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR
  publication-title: Biochemistry
  doi: 10.1021/bi101795q
– volume: 67
  start-page: 235
  year: 2016
  end-page: 259
  ident: CR60
  article-title: Biosynthesis of the plant cell wall matrix polysaccharide xyloglucan
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev-arplant-043015-112222
– volume: 51
  start-page: 188
  year: 1973
  end-page: 197
  ident: CR37
  article-title: The structure of plant cell walls: III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components
  publication-title: Plant Physiol
  doi: 10.1104/pp.51.1.188
– volume: 119
  start-page: 153
  year: 2006
  end-page: 162
  ident: CR58
  article-title: A principal role for AtXTH18 in root growth: a functional analysis using RNAi plants
  publication-title: J Plant Res
  doi: 10.1007/s10265-006-0262-6
– volume: 166
  start-page: 1814
  year: 2009
  end-page: 1825
  ident: CR1
  article-title: Expression of an endo-(1,3;1,4)-beta-glucanase in response to wounding, methyl jasmonate, abscisic acid and ethephon in rice seedlings
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2009.06.002
– volume: 3
  start-page: 859
  year: 2017
  end-page: 865
  ident: CR25
  article-title: An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls
  publication-title: Nat Plants
  doi: 10.1038/s41477-017-0030-8
– volume: 24
  start-page: 4731
  year: 2012
  end-page: 4747
  ident: CR97
  article-title: , encoding an XEH/XET-active enzyme, controls Al sensitivity by modulating XET action, cell wall xyloglucan content and Al binding capacity in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.106039
– volume: 281
  start-page: 3419
  year: 2006
  end-page: 34207
  ident: CR10
  article-title: Two xyloglucan xylosyltransferases catalyze the addition of multiple xylosyl residues to cellohexaose
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M606379200
– volume: 182
  start-page: 1946
  year: 2020
  end-page: 1965
  ident: CR41
  article-title: Arabidopsis and contribute to wood cell expansion and secondary wall formation
  publication-title: Plant Physiol
  doi: 10.1104/pp.19.01529
– volume: 56
  start-page: 177
  year: 2015
  end-page: 179
  ident: CR54
  article-title: Editorial: an emerging view of plant cell walls as an apoplastic intelligent system
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcv001
– volume: 369
  start-page: 698
  year: 2020
  end-page: 702
  ident: CR55
  article-title: Cell-cell adhesion in plant grafting is facilitated by β-1,4-glucanases
  publication-title: Science
  doi: 10.1126/science.abc3710
– volume: 9
  start-page: 1773
  year: 2018
  ident: CR86
  article-title: Genome-wide analysis of sorghum GT47 family reveals functional divergences of MUR3-like genes
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.01773
– volume: 30
  start-page: 187
  year: 2007
  end-page: 201
  ident: CR18
  article-title: Involvement of the xyloglucan endotransglycosylase/hydrolases encoded by celery and in the phloem response to aphids
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2006.01618.x
– volume: 153
  start-page: 456
  year: 2010
  end-page: 466
  ident: CR19
  article-title: The XTH gene family: an update on enzyme structure, function, and phylogeny in xyloglucan remodeling
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.156844
– volume: 42
  start-page: 525
  year: 2005
  end-page: 534
  ident: CR49
  article-title: XTH27 plays an essential role in cell wall modification during the development of tracheary elements
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2005.02395.x
– volume: 42
  start-page: 389
  year: 2004
  end-page: 394
  ident: CR44
  article-title: Xyloglucan–cellulose interaction depends on the sidechains and molecular weight of xyloglucan
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2004.03.003
– volume: 108
  start-page: 1099
  year: 1995
  end-page: 1107
  ident: CR9
  article-title: Tomato exo-(1→4)-. β-D-galactanase: isolation, changes during ripening in normal and mutant tomato fruit, and characterization of a related cDNA clone
  publication-title: Plant Physiol
  doi: 10.1104/pp.108.3.1099
– volume: 15
  start-page: 1662
  year: 2003
  end-page: 1670
  ident: CR46
  article-title: The gene of encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins
  publication-title: Plant Cell
  doi: 10.1105/tpc.009837
– volume: 20
  start-page: 1519
  year: 2008
  end-page: 1537
  ident: CR11
  article-title: Disrupting two xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.059873
– volume: 71
  start-page: 132
  year: 1983
  end-page: 135
  ident: CR67
  article-title: Beta-galactosidases in ripening tomatoes
  publication-title: Plant Physiol
  doi: 10.1104/pp.71.1.132
– volume: 9
  start-page: 1210
  year: 2018
  ident: CR61
  article-title: New insights into wall polysaccharide -acetylation
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.01210
– volume: 7
  start-page: 13902
  year: 2016
  ident: CR76
  article-title: Folding of Xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR
  publication-title: Nature Commun
  doi: 10.1038/ncomms13902
– volume: 62
  start-page: 261
  year: 2011
  end-page: 271
  ident: CR48
  article-title: Differences in enzymic properties of five recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erq263
– volume: 50
  start-page: 539
  year: 2012
  end-page: 550
  ident: CR16
  article-title: Multidimensional solid-state NMR studies of the structure and dynamics of pectic polysaccharides in uniformly C-labeled primary cell walls
  publication-title: Magn Reson Chem
  doi: 10.1002/mrc.3836
– volume: 70
  start-page: 5495
  year: 2019
  end-page: 5506
  ident: CR88
  article-title: Xyloglucan endotransglucosylase-hydrolase30 negatively affects salt tolerance in Arabidopsis
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erz311
– volume: 59
  start-page: 875
  year: 2008
  end-page: 889
  ident: CR24
  article-title: XTH1, a new xyloglucan endotransglucosylase/hydrolase in maize, affects cell wall structure and composition in
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ern013
– volume: 154
  start-page: 483
  year: 2010
  end-page: 486
  ident: CR36
  article-title: Plant cell walls
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.161240
– volume: 61
  start-page: 451
  year: 2006
  end-page: 467
  ident: CR3
  article-title: Developmental expression patterns of xth genes reported by transgenes and genevestigator
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-006-0021-z
– volume: 104
  start-page: 59
  year: 2020
  end-page: 75
  ident: CR87
  article-title: The brassinosteroid-responsive xyloglucan endotransglucosylase/hydrolase 19 ( ) and genes are involved in lateral root development under salt stress in Arabidopsis
  publication-title: Plant J
  doi: 10.1111/tpj.14905
– volume: 12
  start-page: 146
  year: 2020
  ident: CR6
  article-title: Impact of mutations in metabolic pathways on polerovirus accumulation, aphid performance, and feeding behavior
  publication-title: Viruses
  doi: 10.3390/v12020146
– volume: 154
  start-page: 978
  year: 2010
  end-page: 990
  ident: CR69
  article-title: Light quality-mediated petiole elongation in Arabidopsis during shade avoidance involves cell wall modification by xyloglucan endotransglucosylase/hydrolases
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.162057
– volume: 89
  start-page: 651
  year: 2017
  end-page: 670
  ident: CR50
  article-title: Crystallographic insight into the evolutionary origins of xyloglucan endotransglycosylases and endohydrolases
  publication-title: Plant J
  doi: 10.1111/tpj.13421
– volume: 3
  year: 2019
  ident: CR23
  article-title: Auxin promotion of seedling growth via ARF5 is dependent on the brassinosteroid-regulated transcription factors BES1 and BEH4
  publication-title: Plant Direct
  doi: 10.1002/pld3.166
– volume: 50
  start-page: 413
  year: 2009
  end-page: 422
  ident: CR40
  article-title: The XTH28 gene, a xyloglucan endotransglucosylase/hydrolase, is involved in automatic self-pollination in
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcp003
– volume: 80
  start-page: 604
  year: 2014
  end-page: 614
  ident: CR66
  article-title: XTH20 and XTH19 regulated by ANAC071 under auxin flow are involved in cell proliferation in incised Arabidopsis inflorescence stems
  publication-title: Plant J
  doi: 10.1111/tpj.12654
– volume: 273
  start-page: 11134
  year: 1998
  end-page: 11143
  ident: CR30
  article-title: Substrate binding and catalytic mechanism of a barley β-D-glucosidase/(1, 4)-β-D-glucan exohydrolase
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.18.11134
– volume: 43
  start-page: 1421
  year: 2002
  end-page: 1435
  ident: CR68
  article-title: The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcf171
– volume: 64
  start-page: 4225
  year: 2013
  end-page: 4238
  ident: CR27
  article-title: XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ert229
– volume: 44
  start-page: 915
  year: 2021
  end-page: 930
  ident: CR77
  article-title: Cell wall modification by the xyloglucan endotransglucosylase/hydrolase XTH19 influences freezing tolerance after cold and sub-zero acclimation
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.13953
– volume: 4
  start-page: 439
  year: 2013
  ident: CR31
  article-title: Plant cell shape: modulators and measurements
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2013.00439
– volume: 288
  start-page: 15786
  year: 2013
  end-page: 15799
  ident: CR20
  article-title: Structure-function analysis of a broad specificity endo-β-glucanase reveals an evolutionary link between bacterial licheninases and plant XTH gene products
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M113.462887
– volume: 163
  start-page: 86
  year: 2013
  end-page: 94
  ident: CR70
  article-title: The identification of two arabinosyltransferases from tomato reveals functional equivalency of xyloglucan side chain substituents
  publication-title: Plant Physiol
  doi: 10.1104/pp.113.221788
– volume: 46
  start-page: 192
  year: 2005
  end-page: 200
  ident: CR80
  article-title: Differential expression of XTH17, XTH18, XTH19 and XTH20 genes in Arabidopsis roots. Physiological roles in specification in cell wall construction
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pci013
– volume: 39
  start-page: 50
  year: 2021
  end-page: 59
  ident: CR96
  article-title: Identification of genes involved in root growth inhibition under lead stress by transcriptome profiling in Arabidopsis
  publication-title: Plant Mol Biol Rep
  doi: 10.1007/s11105-020-01233-y
– volume: 112
  start-page: 160
  year: 2015
  end-page: 169
  ident: CR73
  article-title: Distinct catalytic capacities of two aluminium-repressed xyloglucan endotransglucosylase/hydrolases, XTH15 and XTH31, heterologously produced in
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2014.09.020
– volume: 53
  start-page: 16
  year: 2012
  end-page: 27
  ident: CR21
  article-title: Tissue-specific transcriptome analysis reveals cell wall metabolism, flavonol biosynthesis and defense responses are activated in the endosperm of germinating seeds
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcr171
– volume: 78
  start-page: 56
  year: 2016
  end-page: 63
  ident: CR82
  article-title: Multidimensional solid-state NMR spectroscopy of plant cell walls
  publication-title: Solid State Nucl Magn Reson
  doi: 10.1016/j.ssnmr.2016.08.001
– volume: 165
  start-page: 1566
  year: 2014
  end-page: 1574
  ident: CR345
  article-title: Xyloglucan Endotransglucosylase-Hydrolase17 Interacts with Xyloglucan Endotransglucosylase-Hydrolase31 to Confer Xyloglucan Endotransglucosylase Action and Affect Aluminum Sensitivity in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.114.243790
– volume: 171
  start-page: 287
  year: 2017
  end-page: 304
  ident: CR7
  article-title: Insights into land plant evolution garnered from the genome
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.030
– volume: 115
  start-page: 6064
  year: 2018
  end-page: 6069
  ident: CR14
  article-title: Structure of xyloglucan xylosyltransferase 1 reveals simple steric rules that define biological patterns of xyloglucan polymers
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1801105115
– volume: 118
  start-page: 3
  year: 1986
  end-page: 40
  ident: CR92
  article-title: Isolation and characterization of plant cell walls and cell wall components
  publication-title: Methods Enzymol
  doi: 10.1016/0076-6879(86)18062-1
– volume: 14
  start-page: 1
  year: 2021
  end-page: 12
  ident: CR64
  article-title: Galactosylation of rhamnogalacturonan-II for cell wall pectin biosynthesis is critical for root apoplastic iron reallocation in Arabidopsis
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2021.06.016
– year: 2021
  ident: CR74
  article-title: Cryogenian origin and subsequent diversification of the plant cell-wall enzyme XTH family
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcab093
– volume: 64
  start-page: 2481
  year: 2013
  end-page: 2497
  ident: CR51
  article-title: Xyloglucan endotransglucosylase/hydrolase (XTH) overexpression affects growth and cell wall mechanics in etiolated hypocotyls
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ert107
– volume: 5
  start-page: 984
  year: 2012
  end-page: 992
  ident: CR32
  article-title: RNA-Seq analysis of developing nasturtium seeds ( ): identification and characterization of an additional, galactosyltransferase involved in xyloglucan biosynthesis
  publication-title: Mol Plant
  doi: 10.1093/mp/sss032
– volume: 15
  year: 2019
  ident: CR85
  article-title: Nitrate-responsive OBP4-XTH9 regulatory module controls lateral root development in
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1008465
– volume: 372
  start-page: 706
  year: 2021
  end-page: 711
  ident: CR94
  article-title: Molecular insights into the complex mechanics of plant epidermal cell walls
  publication-title: Science
  doi: 10.1126/science.abf2824
– volume: 2
  year: 2018
  ident: CR98
  article-title: Identification of an arabinopyranosyltransferase from involved in the synthesis of the hemicellulose xyloglucan
  publication-title: Plant Direct
  doi: 10.1002/pld3.46
– volume: 22
  start-page: 122
  year: 2014
  end-page: 131
  ident: CR12
  article-title: Re-constructing our models of cellulose and primary cell wall assembly
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2014.11.001
– volume: 19
  start-page: 1947
  year: 2007
  end-page: 1963
  ident: CR2
  article-title: Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases: biological implications for cell wall metabolism
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.051391
– volume: 106
  start-page: 1660
  year: 2021
  end-page: 1673
  ident: CR71
  article-title: Enzymatic characterization of ancestral/group-IV clade xyloglucan endotransglycosylase/hydrolase enzymes reveals broad substrate specificities
  publication-title: Plant J
  doi: 10.1111/tpj.15262
– volume: 100
  start-page: 1467
  year: 2007
  end-page: 1473
  ident: CR79
  article-title: Xyloglucan endotransglucosylase activity loosens a plant cell wall
  publication-title: Ann Bot
  doi: 10.1093/aob/mcm248
– volume: 168
  start-page: 337
  year: 2009
  end-page: 344
  ident: CR78
  article-title: Pectins influence microfibril aggregation in celery cell walls: an atomic force microscopy study
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2009.06.017
– volume: 24
  start-page: 4511
  year: 2012
  end-page: 4524
  ident: CR63
  article-title: A galacturonic acid–containing xyloglucan is involved in Arabidopsis root hair tip growth
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.103390
– volume: 165
  start-page: 429
  year: 2005
  end-page: 444
  ident: CR43
  article-title: Genome-wide identification of touch- and darkness-regulated Arabidopsis genes: a focus on calmodulin-like and genes
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2004.01238.x
– volume: 203
  start-page: 554
  year: 2014
  end-page: 567
  ident: CR72
  article-title: AtHAP5A modulates freezing stress resistance in Arabidopsis through binding to CCAAT motif of XTH21
  publication-title: New Phytol
  doi: 10.1111/nph.12812
– volume: 67
  start-page: 503
  year: 2016
  end-page: 514
  ident: CR81
  article-title: Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erv416
– volume: 87
  start-page: 1
  year: 2015
  end-page: 15
  ident: CR42
  article-title: Global changes in gene expression, assayed by microarray hybridization and quantitative RT-PCR, during acclimation of three accessions to sub-zero temperatures after cold acclimation
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-014-0256-z
– volume: 338
  start-page: 1055
  year: 2012
  end-page: 1160
  ident: CR17
  article-title: How does plant cell wall nanoscale architecture correlate with enzymatic digestibility?
  publication-title: Science
  doi: 10.1126/science.1227491
– year: 2011
  ident: CR22
  article-title: Plant cell walls. From chemistry to biology
  publication-title: Ann Bot
  doi: 10.1093/aob/mcr128
– volume: 42
  start-page: 1025
  year: 2001
  end-page: 1033
  ident: CR89
  article-title: A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict -regulatory regions involved in cell-wall construction in specific organs of Arabidopsis
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pce154
– volume: 284
  start-page: 1976
  year: 1999
  end-page: 1979
  ident: CR65
  article-title: Xyloglucan fucosyltransferase, an enzyme involved in plant cell wall biosynthesis
  publication-title: Science
  doi: 10.1126/science.284.5422.1976
– volume: 10
  start-page: 845
  year: 2015
  end-page: 858
  ident: CR38
  article-title: The Phyre2 web portal for protein modeling, prediction and analysis
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2015.053
– volume: 45
  start-page: 77
  year: 2004
  end-page: 82
  ident: CR35
  article-title: Xyloglucan oligosaccharides cause cell wall loosening by enhancing xyloglucan endotransglucosylase/hydrolase activity in azuki bean epicotyls
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pch007
– volume: 18
  start-page: 891
  year: 2008
  end-page: 904
  ident: CR62
  article-title: Moss and liverwort xyloglucans contain galacturonic acid and are structurally distinct from the xyloglucans synthesized by hornworts and vascular plants
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwn078
– volume: 161
  start-page: 440
  year: 2013
  end-page: 454
  ident: CR34
  article-title: Group III-A genes of Arabidopsis encode predominant xyloglucan endohydrolases that are dispensable for normal growth
  publication-title: Plant Physiol
  doi: 10.1104/pp.112.207308
– volume: 53
  start-page: 16
  year: 2012
  ident: 1361_CR21
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcr171
– volume: 14
  start-page: 1
  year: 2021
  ident: 1361_CR64
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2021.06.016
– volume: 153
  start-page: 456
  year: 2010
  ident: 1361_CR19
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.156844
– volume: 9
  start-page: 629
  year: 2020
  ident: 1361_CR39
  publication-title: Plants
  doi: 10.3390/plants9050629
– volume: 80
  start-page: 604
  year: 2014
  ident: 1361_CR66
  publication-title: Plant J
  doi: 10.1111/tpj.12654
– volume: 338
  start-page: 1055
  year: 2012
  ident: 1361_CR17
  publication-title: Science
  doi: 10.1126/science.1227491
– volume: 134
  start-page: 1088
  year: 2004
  ident: 1361_CR90
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.035261
– volume: 166
  start-page: 1814
  year: 2009
  ident: 1361_CR1
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2009.06.002
– volume: 168
  start-page: 337
  year: 2009
  ident: 1361_CR78
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2009.06.017
– volume: 3
  start-page: 859
  year: 2017
  ident: 1361_CR25
  publication-title: Nat Plants
  doi: 10.1038/s41477-017-0030-8
– volume: 95
  start-page: 1114
  year: 2018
  ident: 1361_CR4
  publication-title: Plant J
  doi: 10.1111/tpj.14004
– volume: 67
  start-page: 235
  year: 2016
  ident: 1361_CR60
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev-arplant-043015-112222
– volume: 50
  start-page: 989
  year: 2011
  ident: 1361_CR15
  publication-title: Biochemistry
  doi: 10.1021/bi101795q
– volume: 171
  start-page: 287
  year: 2017
  ident: 1361_CR7
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.030
– volume: 15
  year: 2019
  ident: 1361_CR85
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1008465
– volume: 112
  start-page: 160
  year: 2015
  ident: 1361_CR73
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2014.09.020
– volume: 165
  start-page: 1566
  year: 2014
  ident: 1361_CR345
  publication-title: Plant Physiol
  doi: 10.1104/pp.114.243790
– volume: 93
  start-page: 211
  year: 2018
  ident: 1361_CR95
  publication-title: Plant J
  doi: 10.1111/tpj.13778
– volume: 46
  start-page: 192
  year: 2005
  ident: 1361_CR80
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pci013
– volume: 89
  start-page: 651
  year: 2017
  ident: 1361_CR50
  publication-title: Plant J
  doi: 10.1111/tpj.13421
– volume: 7
  start-page: 248
  year: 2016
  ident: 1361_CR5
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.00248
– volume: 2
  year: 2018
  ident: 1361_CR98
  publication-title: Plant Direct
  doi: 10.1002/pld3.46
– volume: 43
  start-page: 1421
  year: 2002
  ident: 1361_CR68
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcf171
– volume: 22
  start-page: 122
  year: 2014
  ident: 1361_CR12
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2014.11.001
– volume: 12
  start-page: 146
  year: 2020
  ident: 1361_CR6
  publication-title: Viruses
  doi: 10.3390/v12020146
– volume: 5
  start-page: 984
  year: 2012
  ident: 1361_CR32
  publication-title: Mol Plant
  doi: 10.1093/mp/sss032
– volume: 71
  start-page: 132
  year: 1983
  ident: 1361_CR67
  publication-title: Plant Physiol
  doi: 10.1104/pp.71.1.132
– volume: 226
  start-page: 1547
  year: 2007
  ident: 1361_CR45
  publication-title: Planta
  doi: 10.1007/s00425-007-0591-2
– volume: 56
  start-page: 101
  year: 2008
  ident: 1361_CR93
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2008.03580.x
– volume: 44
  start-page: 915
  year: 2021
  ident: 1361_CR77
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.13953
– volume: 10
  start-page: 845
  year: 2015
  ident: 1361_CR38
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2015.053
– volume: 8
  start-page: 130
  year: 2019
  ident: 1361_CR8
  publication-title: Plants
  doi: 10.3390/plants8050130
– volume: 27
  start-page: R865
  year: 2017
  ident: 1361_CR29
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2017.05.025
– volume: 115
  start-page: 6064
  year: 2018
  ident: 1361_CR14
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1801105115
– volume: 100
  start-page: 1467
  year: 2007
  ident: 1361_CR79
  publication-title: Ann Bot
  doi: 10.1093/aob/mcm248
– volume: 56
  start-page: 177
  year: 2015
  ident: 1361_CR54
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcv001
– volume: 163
  start-page: 86
  year: 2013
  ident: 1361_CR70
  publication-title: Plant Physiol
  doi: 10.1104/pp.113.221788
– volume: 78
  start-page: 56
  year: 2016
  ident: 1361_CR82
  publication-title: Solid State Nucl Magn Reson
  doi: 10.1016/j.ssnmr.2016.08.001
– volume: 64
  start-page: 4225
  year: 2013
  ident: 1361_CR27
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ert229
– volume: 59
  start-page: 875
  year: 2008
  ident: 1361_CR24
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ern013
– volume: 119
  start-page: 153
  year: 2006
  ident: 1361_CR58
  publication-title: J Plant Res
  doi: 10.1007/s10265-006-0262-6
– volume: 15
  year: 2020
  ident: 1361_CR53
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0235344
– volume: 61
  start-page: 451
  year: 2006
  ident: 1361_CR3
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-006-0021-z
– volume: 369
  start-page: 698
  year: 2020
  ident: 1361_CR55
  publication-title: Science
  doi: 10.1126/science.abc3710
– volume: 50
  start-page: 539
  year: 2012
  ident: 1361_CR16
  publication-title: Magn Reson Chem
  doi: 10.1002/mrc.3836
– volume: 161
  start-page: 440
  year: 2013
  ident: 1361_CR34
  publication-title: Plant Physiol
  doi: 10.1104/pp.112.207308
– volume: 284
  start-page: 1976
  year: 1999
  ident: 1361_CR65
  publication-title: Science
  doi: 10.1126/science.284.5422.1976
– volume: 51
  start-page: 188
  year: 1973
  ident: 1361_CR37
  publication-title: Plant Physiol
  doi: 10.1104/pp.51.1.188
– volume: 2
  year: 2007
  ident: 1361_CR84
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0000718
– volume: 18
  start-page: 891
  year: 2008
  ident: 1361_CR62
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwn078
– volume: 182
  start-page: 1946
  year: 2020
  ident: 1361_CR41
  publication-title: Plant Physiol
  doi: 10.1104/pp.19.01529
– volume: 9
  start-page: 1773
  year: 2018
  ident: 1361_CR86
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.01773
– volume: 30
  start-page: 187
  year: 2007
  ident: 1361_CR18
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2006.01618.x
– volume: 118
  start-page: 3
  year: 1986
  ident: 1361_CR92
  publication-title: Methods Enzymol
  doi: 10.1016/0076-6879(86)18062-1
– volume: 64
  start-page: 645
  year: 2010
  ident: 1361_CR91
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2010.04351.x
– volume: 62
  start-page: 261
  year: 2011
  ident: 1361_CR48
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erq263
– volume: 203
  start-page: 554
  year: 2014
  ident: 1361_CR72
  publication-title: New Phytol
  doi: 10.1111/nph.12812
– volume: 9
  start-page: 1210
  year: 2018
  ident: 1361_CR61
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.01210
– volume: 23
  start-page: 2819
  year: 2016
  ident: 1361_CR52
  publication-title: Cellulose
  doi: 10.1007/s10570-016-0995-x
– year: 2011
  ident: 1361_CR22
  publication-title: Ann Bot
  doi: 10.1093/aob/mcr128
– volume: 22
  start-page: 3501
  year: 2015
  ident: 1361_CR56
  publication-title: Cellulose
  doi: 10.1007/s10570-015-0778-9
– volume: 87
  start-page: 1
  year: 2015
  ident: 1361_CR42
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-014-0256-z
– volume: 15
  start-page: 1662
  year: 2003
  ident: 1361_CR46
  publication-title: Plant Cell
  doi: 10.1105/tpc.009837
– volume: 281
  start-page: 3419
  year: 2006
  ident: 1361_CR10
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M606379200
– volume: 70
  start-page: 5495
  year: 2019
  ident: 1361_CR88
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erz311
– volume: 372
  start-page: 706
  year: 2021
  ident: 1361_CR94
  publication-title: Science
  doi: 10.1126/science.abf2824
– volume: 20
  start-page: 1519
  year: 2008
  ident: 1361_CR11
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.059873
– volume: 3
  year: 2019
  ident: 1361_CR23
  publication-title: Plant Direct
  doi: 10.1002/pld3.166
– volume: 154
  start-page: 978
  year: 2010
  ident: 1361_CR69
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.162057
– volume: 158
  start-page: 1933
  year: 2012
  ident: 1361_CR59
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.192880
– volume: 367
  start-page: 1003
  year: 2020
  ident: 1361_CR26
  publication-title: Science
  doi: 10.1126/science.aaz5103
– volume: 60
  start-page: 3959
  year: 2009
  ident: 1361_CR47
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erp229
– volume: 6
  start-page: 39155
  year: 2016
  ident: 1361_CR28
  publication-title: Sci Rep
  doi: 10.1038/srep39155
– volume: 64
  start-page: 2481
  year: 2013
  ident: 1361_CR51
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ert107
– volume: 288
  start-page: 15786
  year: 2013
  ident: 1361_CR20
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M113.462887
– volume: 4
  start-page: 439
  year: 2013
  ident: 1361_CR31
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2013.00439
– volume: 273
  start-page: 11134
  year: 1998
  ident: 1361_CR30
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.18.11134
– volume: 50
  start-page: 413
  year: 2009
  ident: 1361_CR40
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcp003
– volume: 45
  start-page: 77
  year: 2004
  ident: 1361_CR35
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pch007
– volume: 24
  start-page: 4511
  year: 2012
  ident: 1361_CR63
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.103390
– volume: 46
  start-page: 77
  year: 2018
  ident: 1361_CR13
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2018.07.016
– volume: 574
  start-page: 679
  year: 2019
  ident: 1361_CR57
  publication-title: Nature
  doi: 10.1038/s41586-019-1693-2
– year: 2021
  ident: 1361_CR74
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcab093
– volume: 7
  start-page: 13902
  year: 2016
  ident: 1361_CR76
  publication-title: Nature Commun
  doi: 10.1038/ncomms13902
– volume: 17
  start-page: 2210
  year: 2016
  ident: 1361_CR83
  publication-title: Biomacromol
  doi: 10.1021/acs.biomac.6b00441
– volume: 108
  start-page: 1099
  year: 1995
  ident: 1361_CR9
  publication-title: Plant Physiol
  doi: 10.1104/pp.108.3.1099
– volume: 165
  start-page: 429
  year: 2005
  ident: 1361_CR43
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2004.01238.x
– volume: 42
  start-page: 525
  year: 2005
  ident: 1361_CR49
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2005.02395.x
– volume: 42
  start-page: 1025
  year: 2001
  ident: 1361_CR89
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pce154
– volume: 42
  start-page: 389
  year: 2004
  ident: 1361_CR44
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2004.03.003
– volume: 7
  start-page: 1
  year: 2017
  ident: 1361_CR75
  publication-title: Sci Rep
  doi: 10.1038/srep46099
– volume: 39
  start-page: 50
  year: 2021
  ident: 1361_CR96
  publication-title: Plant Mol Biol Rep
  doi: 10.1007/s11105-020-01233-y
– volume: 67
  start-page: 503
  year: 2016
  ident: 1361_CR81
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erv416
– volume: 16
  start-page: 874
  year: 2004
  ident: 1361_CR33
  publication-title: Plant Cell
  doi: 10.1105/tpc.020065
– volume: 104
  start-page: 59
  year: 2020
  ident: 1361_CR87
  publication-title: Plant J
  doi: 10.1111/tpj.14905
– volume: 24
  start-page: 4731
  year: 2012
  ident: 1361_CR97
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.106039
– volume: 19
  start-page: 1947
  year: 2007
  ident: 1361_CR2
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.051391
– volume: 106
  start-page: 1660
  year: 2021
  ident: 1361_CR71
  publication-title: Plant J
  doi: 10.1111/tpj.15262
– volume: 154
  start-page: 483
  year: 2010
  ident: 1361_CR36
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.161240
SSID ssj0017598
Score 2.5457509
SecondaryResourceType review_article
Snippet Plants possess an outer cell layer called the cell wall. This matrix comprises various molecules, such as polysaccharides and proteins, and serves a wide array...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 145
SubjectTerms Biochemistry
Biomedical and Life Sciences
Cell Wall - metabolism
Cell walls
Cellulose
cellulose microfibrils
Current Topics in Plant Research
Enzymes
Flowers & plants
Genes
Genetic analysis
Genomics
Genotype & phenotype
Glycosyltransferases - chemistry
Glycosyltransferases - genetics
Glycosyltransferases - metabolism
Hydrolase
hydrolases
Hydrolases - metabolism
Life Sciences
Loosening
Mathematical analysis
Microfibrils
Physiology
Plant Biochemistry
Plant Ecology
Plant Physiology
Plant Sciences
plasticity
Polysaccharides
Polysaccharides - metabolism
reverse genetics
Roles
Saccharides
Xyloglucan
xyloglucan:xyloglucosyl transferase
xyloglucans
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB503QdfvI96UcE3LfZI0-2jiuKDLOLFvpU0SVGQVvZw3X_vTHqs4gHavjRkGobJpPNNk5kBOFCpL1SW-Y4KVeAwmaaOYJI7gVKSehRPTZ7Zq6jb7fR68XUVFDaoT7vXW5LmS_0h2M3nFE1M7m_APWc8C3No7jpUsOHm9qHZO4hCUwEXDSEuZcbcKlTm-zE-m6MvGPPL_qgxOxeL_2N4CRYqmGmflHqxDDM6X4H2aYFQcLIKN-R0loU6cUAbMaBN9o3myC4y035DR56Os4vc1jl6rmTSyuPtE8Tb-vhxovoFPdnlL5I1uL84vzu7dKriCo4MXW_oeKmrGKUb87nkAc9Y7CMaE1EaaoF3jMgoVKEfS_RoNKI2yaWfKWwqlipXu8E6tPIi15tge5GOhGRcIDRC_CdShrCBhTFCB85Uxi3wahknsso8TgUwnpNpzmQSVYKiSoyokrEFh807L2XejV-pd-qpS6o1OEgozU5gErhZsN904-qhLRGR62JENIhXPPQ5-W80CDEDvEILNkq1aFgKqJ4EwhwLjmodmDLwM79bfyPfhnmfoi7M0bcdaA37I70Lbfk6fBr094z2vwP3kf8Y
  priority: 102
  providerName: Springer Nature
Title Reconsidering the function of the xyloglucan endotransglucosylase/hydrolase family
URI https://link.springer.com/article/10.1007/s10265-021-01361-w
https://www.ncbi.nlm.nih.gov/pubmed/35000024
https://www.proquest.com/docview/2635340859
https://www.proquest.com/docview/2618518996
https://www.proquest.com/docview/2661033335
Volume 135
WOSCitedRecordID wos000740414800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1618-0860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017598
  issn: 0918-9440
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-Nj4e9MAYbyyhVkPYGFonjOORpogg0aVtXFZj6Fjm2I5CmBNoy1v9-d47bCqH1ZYlkxbKjnHK273e-8x3AJ1NyZaqKM5OahAldlkwJLVlijKYWI0sXZ_Zb1u-fjkb5wG-4Tbxb5XxNdAu1aTTtkZ9Q0JTEheP6fP_AKGsUWVd9Co012KAoCdy57g0WVoQsdblwUSTipBYi8odm_NE5LulsMinTiYzZ03PB9AJtvrCUOgF0-eZ_Sd-GLQ89w7N2rLyFV7begc1eg_BwtgtDUkTb5J34-RBxYUgyj_gWNpWr_0HlnlzcVR3aGrVZEnOty_sMMbg9uZ2ZcUNPYbtt8g5uLi-uz78wn3CB6TSKpywuIyMoBBmXWiayEjlHhKayMrUK7xzRUmpSnmvUciwiOS01rwxWjShNZKPkPazXTW0_QBhnNlNaSIVwCTGhKgVCCZHmCCekMJUMIJ7_7UL7aOSUFONXsYyjTBwqkEOF41DxFMDR4p37NhbHyt6dOTcKPy8nxZIVARwumnFGkZlE1bZ5pD6IYWLUQ-WqPgg7E7zSAPbaAbIgKaEcEwh9Ajiej5glAf-m9-NqevfhNaeTF879rQPr0_GjPYBN_Xt6Nxl3YS0bZa487cJG76I_GGLte_SVSv6j6-YFlsOrn38Bf68O7Q
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED91pdJ44WsDAmUEaXvarDaO45AHhPjYtKmlm6ZN2luW2I5AQknpByX_FH8jd07SaprWtz2QvMSyE53j893vbN8dwK5OeaKzjDMdaJ8JlaYsEUoyX2tFNVqmNs7sMByN3l9dRWct-Nv4wtCxykYmWkGtC0Vr5D0KmuLbcFwfx78YZY2i3dUmhUbFFgNTLtBkm344-Yrju8f50eHFl2NWZxVgKuh7M-alfS0ozhaXSvoyExFHGJKEaWASvCOEBIEOeKQQyhuEK0oqnmksapHqvun7-N0NeCDIEqKjgvx0uWsRBjb3LqpgFCLYoHbSqV31uCRfaDLefemxxU1FeAvd3tqZtQrv6PH_9quewKMaWrufqrnwFFomfwadzwXC33ILzsnQrpKTYnddxL0u6XTiS7fIbPlPiYqAssDlrsnRWic1Xh3pL9HGML3vpZ4U9ORWy0LbcHkv_XkO7bzIzUtwvdCEiRIyQTiImDdJBUIlEUQIl6TQmXTAa0Y3VnW0dUr68TNexYkmjoiRI2LLEfHCgf3lO-Mq1sja1t1m9ONa7kzj1dA78G5ZjRKDtoGS3BRzaoMYzUM7W65rg7Daxytw4EXFkEuSfMqhgdDOgYOGQ1cE3E3vq_X0voXN44tvw3h4Mhq8hoecvEzsUb8utGeTuXkDHfV79mM62bFzzoXr--bcfzc3ZJs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dT5xAEJ_oaUxftGqtqLWY1Ce7OViWRR6M8eui0Vwupia-IewuaRMDenf2yr_mX-cMH3cxxnvzofDChoUM8GPmN7s7MwA_dMJjnaacaV97TKgkYbFQknlaKzqjZVLmmb0Kut3929uwNwPPTSwMLatsdGKpqHWuaIy8TUlTvDIdVzutl0X0TjuHD4-MKkjRTGtTTqOCyKUpRui-DQ4uTvFb73LeOft1cs7qCgNM-Y47ZG7iaEE5t7hU0pOpCDlSkjhIfBPjHiI98LXPQ4W03iB1UVLxVGNTi0Q7xvHwvrMwFyDJEC2YOz7r9q7HcxiBX1biRYOMKkUIpw7ZqQP3uKTIaHLlPemy0Wuz-IbrvpmnLc1fZ-l_fnGfYbEm3fZR9Zcsw4zJVmD-OEdiXKzCNbngVdlSfHQbGbFN1p4Qa-dp2f5XoImg-nCZbTL048nAV4v9C_Q-TPt3ofs5HdnVgNEXuPmQ51mDVpZnZh1sNzBBrISMkSgiG44TgSRK-CESKSl0Ki1wmy8dqToPO5UDuY8mGaQJHRGiIyrREY0s2Btf81BlIZnae6tBQlRrpEE0gYEFO-PTqEtogijOTP5EfZC9ueiBy2l9kHB7uPkWfK3AORbJo-oaSPos-NmgdSLA-_JuTJf3OywgYKOri-7lJnziFH5SrgHcgtaw_2S-wbz6O_wz6G_XP6ANdx8N3RfFim64
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconsidering+the+function+of+the+xyloglucan+endotransglucosylase%2Fhydrolase+family&rft.jtitle=Journal+of+plant+research&rft.au=Ishida%2C+Konan&rft.au=Yokoyama%2C+Ryusuke&rft.date=2022-03-01&rft.issn=0918-9440&rft.eissn=1618-0860&rft.volume=135&rft.issue=2&rft.spage=145&rft.epage=156&rft_id=info:doi/10.1007%2Fs10265-021-01361-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10265_021_01361_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-9440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-9440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-9440&client=summon