Reconsidering the function of the xyloglucan endotransglucosylase/hydrolase family
Plants possess an outer cell layer called the cell wall. This matrix comprises various molecules, such as polysaccharides and proteins, and serves a wide array of physiologically important functions. This structure is not static but rather flexible in response to the environment. One of the factors...
Gespeichert in:
| Veröffentlicht in: | Journal of plant research Jg. 135; H. 2; S. 145 - 156 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Singapore
Springer Singapore
01.03.2022
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0918-9440, 1618-0860, 1618-0860 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Plants possess an outer cell layer called the cell wall. This matrix comprises various molecules, such as polysaccharides and proteins, and serves a wide array of physiologically important functions. This structure is not static but rather flexible in response to the environment. One of the factors responsible for this plasticity is the xyloglucan endotransglucosylase/hydrolase (XTH) family, which cleaves and reconnects xyloglucan molecules. Since xyloglucan molecules have been hypothesised to tether cellulose microfibrils forming the main load-bearing network in the primary cell wall, XTHs have been thought to play a central role in cell wall loosening for plant cell expansion. However, multiple lines of recent evidence have questioned this classic model. Nevertheless, reverse genetic analyses have proven the biological importance of XTHs; therefore, a major challenge at present is to reconsider the role of XTHs
in
planta
. Recent advances in analytical techniques have allowed for gathering rich information on the structure of the primary cell wall. Thus, the integration of accumulated knowledge in current XTH studies may offer a turning point for unveiling the precise functions of XTHs. In the present review, we redefine the biological function of the XTH family based on the recent architectural model of the cell wall. We highlight three key findings regarding this enzyme family: (1) XTHs are not strictly required for cell wall loosening during plant cell expansion but play vital roles in response to specific biotic or abiotic stresses; (2) in addition to their transglycosylase activity, the hydrolase activity of XTHs is involved in physiological benefits; and (3) XTHs can recognise a wide range of polysaccharides other than xyloglucans. |
|---|---|
| AbstractList | Plants possess an outer cell layer called the cell wall. This matrix comprises various molecules, such as polysaccharides and proteins, and serves a wide array of physiologically important functions. This structure is not static but rather flexible in response to the environment. One of the factors responsible for this plasticity is the xyloglucan endotransglucosylase/hydrolase (XTH) family, which cleaves and reconnects xyloglucan molecules. Since xyloglucan molecules have been hypothesised to tether cellulose microfibrils forming the main load-bearing network in the primary cell wall, XTHs have been thought to play a central role in cell wall loosening for plant cell expansion. However, multiple lines of recent evidence have questioned this classic model. Nevertheless, reverse genetic analyses have proven the biological importance of XTHs; therefore, a major challenge at present is to reconsider the role of XTHs in planta. Recent advances in analytical techniques have allowed for gathering rich information on the structure of the primary cell wall. Thus, the integration of accumulated knowledge in current XTH studies may offer a turning point for unveiling the precise functions of XTHs. In the present review, we redefine the biological function of the XTH family based on the recent architectural model of the cell wall. We highlight three key findings regarding this enzyme family: (1) XTHs are not strictly required for cell wall loosening during plant cell expansion but play vital roles in response to specific biotic or abiotic stresses; (2) in addition to their transglycosylase activity, the hydrolase activity of XTHs is involved in physiological benefits; and (3) XTHs can recognise a wide range of polysaccharides other than xyloglucans. Plants possess an outer cell layer called the cell wall. This matrix comprises various molecules, such as polysaccharides and proteins, and serves a wide array of physiologically important functions. This structure is not static but rather flexible in response to the environment. One of the factors responsible for this plasticity is the xyloglucan endotransglucosylase/hydrolase (XTH) family, which cleaves and reconnects xyloglucan molecules. Since xyloglucan molecules have been hypothesised to tether cellulose microfibrils forming the main load-bearing network in the primary cell wall, XTHs have been thought to play a central role in cell wall loosening for plant cell expansion. However, multiple lines of recent evidence have questioned this classic model. Nevertheless, reverse genetic analyses have proven the biological importance of XTHs; therefore, a major challenge at present is to reconsider the role of XTHs inplanta. Recent advances in analytical techniques have allowed for gathering rich information on the structure of the primary cell wall. Thus, the integration of accumulated knowledge in current XTH studies may offer a turning point for unveiling the precise functions of XTHs. In the present review, we redefine the biological function of the XTH family based on the recent architectural model of the cell wall. We highlight three key findings regarding this enzyme family: (1) XTHs are not strictly required for cell wall loosening during plant cell expansion but play vital roles in response to specific biotic or abiotic stresses; (2) in addition to their transglycosylase activity, the hydrolase activity of XTHs is involved in physiological benefits; and (3) XTHs can recognise a wide range of polysaccharides other than xyloglucans. Plants possess an outer cell layer called the cell wall. This matrix comprises various molecules, such as polysaccharides and proteins, and serves a wide array of physiologically important functions. This structure is not static but rather flexible in response to the environment. One of the factors responsible for this plasticity is the xyloglucan endotransglucosylase/hydrolase (XTH) family, which cleaves and reconnects xyloglucan molecules. Since xyloglucan molecules have been hypothesised to tether cellulose microfibrils forming the main load-bearing network in the primary cell wall, XTHs have been thought to play a central role in cell wall loosening for plant cell expansion. However, multiple lines of recent evidence have questioned this classic model. Nevertheless, reverse genetic analyses have proven the biological importance of XTHs; therefore, a major challenge at present is to reconsider the role of XTHs in planta. Recent advances in analytical techniques have allowed for gathering rich information on the structure of the primary cell wall. Thus, the integration of accumulated knowledge in current XTH studies may offer a turning point for unveiling the precise functions of XTHs. In the present review, we redefine the biological function of the XTH family based on the recent architectural model of the cell wall. We highlight three key findings regarding this enzyme family: (1) XTHs are not strictly required for cell wall loosening during plant cell expansion but play vital roles in response to specific biotic or abiotic stresses; (2) in addition to their transglycosylase activity, the hydrolase activity of XTHs is involved in physiological benefits; and (3) XTHs can recognise a wide range of polysaccharides other than xyloglucans.Plants possess an outer cell layer called the cell wall. This matrix comprises various molecules, such as polysaccharides and proteins, and serves a wide array of physiologically important functions. This structure is not static but rather flexible in response to the environment. One of the factors responsible for this plasticity is the xyloglucan endotransglucosylase/hydrolase (XTH) family, which cleaves and reconnects xyloglucan molecules. Since xyloglucan molecules have been hypothesised to tether cellulose microfibrils forming the main load-bearing network in the primary cell wall, XTHs have been thought to play a central role in cell wall loosening for plant cell expansion. However, multiple lines of recent evidence have questioned this classic model. Nevertheless, reverse genetic analyses have proven the biological importance of XTHs; therefore, a major challenge at present is to reconsider the role of XTHs in planta. Recent advances in analytical techniques have allowed for gathering rich information on the structure of the primary cell wall. Thus, the integration of accumulated knowledge in current XTH studies may offer a turning point for unveiling the precise functions of XTHs. In the present review, we redefine the biological function of the XTH family based on the recent architectural model of the cell wall. We highlight three key findings regarding this enzyme family: (1) XTHs are not strictly required for cell wall loosening during plant cell expansion but play vital roles in response to specific biotic or abiotic stresses; (2) in addition to their transglycosylase activity, the hydrolase activity of XTHs is involved in physiological benefits; and (3) XTHs can recognise a wide range of polysaccharides other than xyloglucans. Plants possess an outer cell layer called the cell wall. This matrix comprises various molecules, such as polysaccharides and proteins, and serves a wide array of physiologically important functions. This structure is not static but rather flexible in response to the environment. One of the factors responsible for this plasticity is the xyloglucan endotransglucosylase/hydrolase (XTH) family, which cleaves and reconnects xyloglucan molecules. Since xyloglucan molecules have been hypothesised to tether cellulose microfibrils forming the main load-bearing network in the primary cell wall, XTHs have been thought to play a central role in cell wall loosening for plant cell expansion. However, multiple lines of recent evidence have questioned this classic model. Nevertheless, reverse genetic analyses have proven the biological importance of XTHs; therefore, a major challenge at present is to reconsider the role of XTHs in planta . Recent advances in analytical techniques have allowed for gathering rich information on the structure of the primary cell wall. Thus, the integration of accumulated knowledge in current XTH studies may offer a turning point for unveiling the precise functions of XTHs. In the present review, we redefine the biological function of the XTH family based on the recent architectural model of the cell wall. We highlight three key findings regarding this enzyme family: (1) XTHs are not strictly required for cell wall loosening during plant cell expansion but play vital roles in response to specific biotic or abiotic stresses; (2) in addition to their transglycosylase activity, the hydrolase activity of XTHs is involved in physiological benefits; and (3) XTHs can recognise a wide range of polysaccharides other than xyloglucans. |
| Author | Ishida, Konan Yokoyama, Ryusuke |
| Author_xml | – sequence: 1 givenname: Konan orcidid: 0000-0003-4475-4886 surname: Ishida fullname: Ishida, Konan organization: Department of Biochemistry, University of Cambridge – sequence: 2 givenname: Ryusuke orcidid: 0000-0003-0326-0433 surname: Yokoyama fullname: Yokoyama, Ryusuke email: ryusuke.yokoyama.d6@tohoku.ac.jp organization: Graduate School of Life Sciences, Tohoku University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35000024$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU9LxDAQxYMourv6BTxIwYuX6iRNsslRxH-wIIieQzZJtdJN1qRF--1NXUXwIE4OmYHfeyTzpmjbB-8QOsRwigHmZwkD4awEgkvAFcfl2xaaYI5FCYLDNpqAzL2kFPbQNKUXADxnUuyivYpBLkIn6P7emeBTY11s_FPRPbui7r3pmuCLUH_O70MbntreaF84b0MXtU_jHNLQ6uTOngcbw9gVtV417bCPdmrdJnfwdc_Q49Xlw8VNubi7vr04X5SGAe5KvARLGZOScMMrXlNJQFR6vmRO5yMZMGYZkYaKuaM4Q4bUNo-WLi04qGboZOO7juG1d6lTqyYZ17bau9AnRTjHUOVi_0CxYFhIyTN6_At9CX30-SOZylYUBJOZOvqi-uXKWbWOzUrHQX0vNgNiA5gYUoquVqbp9LjWvL-mVRjUmKHaZKhyhuozQ_WWpeSX9Nv9T1G1EaX1GKSLP8_-Q_UB-qGuUg |
| CitedBy_id | crossref_primary_10_1016_j_biochi_2023_02_009 crossref_primary_10_1016_j_plaphy_2022_11_002 crossref_primary_10_3390_agronomy15092194 crossref_primary_10_3390_genes16060628 crossref_primary_10_1093_plphys_kiac184 crossref_primary_10_3390_life15071088 crossref_primary_10_3390_plants14182900 crossref_primary_10_1016_j_postharvbio_2024_113063 crossref_primary_10_3389_fpls_2025_1607751 crossref_primary_10_3389_fpls_2024_1331269 crossref_primary_10_1007_s00122_025_04951_7 crossref_primary_10_1038_s41598_024_76575_8 crossref_primary_10_1088_2515_7620_adc87d crossref_primary_10_3390_genes13112004 crossref_primary_10_1007_s00122_025_04929_5 crossref_primary_10_1007_s13353_025_00956_6 crossref_primary_10_1186_s12864_023_09762_y crossref_primary_10_3390_ijms24087417 crossref_primary_10_1016_j_carbpol_2024_121838 crossref_primary_10_1016_j_plaphy_2023_108239 crossref_primary_10_1111_pce_15280 crossref_primary_10_3390_horticulturae11040432 crossref_primary_10_1186_s12870_025_06445_6 crossref_primary_10_1016_j_jia_2025_03_019 crossref_primary_10_1111_ppl_14052 crossref_primary_10_1111_pce_15530 crossref_primary_10_1016_j_scienta_2023_112391 crossref_primary_10_3390_ijms252212048 crossref_primary_10_1007_s10265_025_01652_6 crossref_primary_10_3389_fpls_2024_1340867 crossref_primary_10_1080_07352689_2023_2256093 crossref_primary_10_1371_journal_pone_0289581 crossref_primary_10_1146_annurev_arplant_061824_115733 crossref_primary_10_1002_pld3_482 crossref_primary_10_3389_fpls_2024_1343787 crossref_primary_10_3389_fpls_2022_1041867 crossref_primary_10_3390_agronomy15051147 crossref_primary_10_1093_plcell_koad325 crossref_primary_10_1093_plcell_koac238 crossref_primary_10_3389_fpls_2023_1118313 crossref_primary_10_3390_genes14091728 crossref_primary_10_1016_j_flora_2024_152665 crossref_primary_10_3390_ijms26125780 crossref_primary_10_1146_annurev_cellbio_111822_115334 crossref_primary_10_3389_fpls_2022_996765 crossref_primary_10_1186_s12870_025_06770_w crossref_primary_10_1007_s10265_022_01433_5 crossref_primary_10_1016_j_plaphy_2022_10_015 crossref_primary_10_3390_plants12020367 crossref_primary_10_1016_j_pmpp_2023_102179 crossref_primary_10_1111_pbi_14343 crossref_primary_10_3390_biology12030444 crossref_primary_10_3390_plants11091119 crossref_primary_10_1038_s41467_024_55545_8 crossref_primary_10_1111_ppl_70375 crossref_primary_10_1093_plphys_kiac390 crossref_primary_10_1007_s11032_025_01585_x crossref_primary_10_1016_j_hpj_2025_04_003 crossref_primary_10_1016_j_plaphy_2024_109272 crossref_primary_10_1016_j_tplants_2022_07_008 crossref_primary_10_3390_plants14010087 crossref_primary_10_1038_s41598_023_40210_9 crossref_primary_10_1016_j_plantsci_2025_112612 crossref_primary_10_1007_s11101_024_10023_3 crossref_primary_10_3389_fpls_2024_1431164 crossref_primary_10_3390_plants13060902 crossref_primary_10_1016_j_ijbiomac_2025_146633 crossref_primary_10_1111_pce_70194 crossref_primary_10_3390_ijms26062586 crossref_primary_10_1093_plphys_kiaf308 |
| Cites_doi | 10.1007/s10570-015-0778-9 10.1104/pp.111.192880 10.1111/tpj.14004 10.1093/jxb/erp229 10.1371/journal.pone.0235344 10.1038/srep46099 10.1104/pp.103.035261 10.3390/plants8050130 10.1016/j.pbi.2018.07.016 10.1371/journal.pone.0000718 10.3390/plants9050629 10.1016/j.cub.2017.05.025 10.1021/acs.biomac.6b00441 10.1007/s10570-016-0995-x 10.1038/srep39155 10.1111/j.1365-313X.2008.03580.x 10.1111/j.1365-313X.2010.04351.x 10.1007/s00425-007-0591-2 10.1111/tpj.13778 10.1126/science.aaz5103 10.1038/s41586-019-1693-2 10.3389/fpls.2016.00248 10.1105/tpc.020065 10.1021/bi101795q 10.1146/annurev-arplant-043015-112222 10.1104/pp.51.1.188 10.1007/s10265-006-0262-6 10.1016/j.jplph.2009.06.002 10.1038/s41477-017-0030-8 10.1105/tpc.112.106039 10.1074/jbc.M606379200 10.1104/pp.19.01529 10.1093/pcp/pcv001 10.1126/science.abc3710 10.3389/fpls.2018.01773 10.1111/j.1365-3040.2006.01618.x 10.1104/pp.110.156844 10.1111/j.1365-313X.2005.02395.x 10.1016/j.plaphy.2004.03.003 10.1104/pp.108.3.1099 10.1105/tpc.009837 10.1105/tpc.108.059873 10.1104/pp.71.1.132 10.3389/fpls.2018.01210 10.1038/ncomms13902 10.1093/jxb/erq263 10.1002/mrc.3836 10.1093/jxb/erz311 10.1093/jxb/ern013 10.1104/pp.110.161240 10.1007/s11103-006-0021-z 10.1111/tpj.14905 10.3390/v12020146 10.1104/pp.110.162057 10.1111/tpj.13421 10.1002/pld3.166 10.1093/pcp/pcp003 10.1111/tpj.12654 10.1074/jbc.273.18.11134 10.1093/pcp/pcf171 10.1093/jxb/ert229 10.1111/pce.13953 10.3389/fpls.2013.00439 10.1074/jbc.M113.462887 10.1104/pp.113.221788 10.1093/pcp/pci013 10.1007/s11105-020-01233-y 10.1016/j.phytochem.2014.09.020 10.1093/pcp/pcr171 10.1016/j.ssnmr.2016.08.001 10.1104/pp.114.243790 10.1016/j.cell.2017.09.030 10.1073/pnas.1801105115 10.1016/0076-6879(86)18062-1 10.1016/j.molp.2021.06.016 10.1093/pcp/pcab093 10.1093/jxb/ert107 10.1093/mp/sss032 10.1371/journal.pgen.1008465 10.1126/science.abf2824 10.1002/pld3.46 10.1016/j.pbi.2014.11.001 10.1105/tpc.107.051391 10.1111/tpj.15262 10.1093/aob/mcm248 10.1016/j.jsb.2009.06.017 10.1105/tpc.112.103390 10.1111/j.1469-8137.2004.01238.x 10.1111/nph.12812 10.1093/jxb/erv416 10.1007/s11103-014-0256-z 10.1126/science.1227491 10.1093/aob/mcr128 10.1093/pcp/pce154 10.1126/science.284.5422.1976 10.1038/nprot.2015.053 10.1093/pcp/pch007 10.1093/glycob/cwn078 10.1104/pp.112.207308 |
| ContentType | Journal Article |
| Copyright | The Author(s) under exclusive licence to The Botanical Society of Japan 2021 2021. The Author(s) under exclusive licence to The Botanical Society of Japan. The Author(s) under exclusive licence to The Botanical Society of Japan 2021. |
| Copyright_xml | – notice: The Author(s) under exclusive licence to The Botanical Society of Japan 2021 – notice: 2021. The Author(s) under exclusive licence to The Botanical Society of Japan. – notice: The Author(s) under exclusive licence to The Botanical Society of Japan 2021. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7SN 7ST 7X2 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0K M0S M1P M2O M7P MBDVC P64 PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 SOI 7X8 7S9 L.6 |
| DOI | 10.1007/s10265-021-01361-w |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Environment Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Research Library Prep ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE Agricultural Science Database MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 1618-0860 |
| EndPage | 156 |
| ExternalDocumentID | 35000024 10_1007_s10265_021_01361_w |
| Genre | Journal Article Review |
| GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 199 1N0 203 28- 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67N 67Z 6NX 78A 7X2 7X7 88A 88E 8AO 8CJ 8FE 8FH 8FI 8FJ 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG APEBS ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JMI JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M0K M0L M1P M2O M4Y M7P MA- MOJWN N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 PCBAR PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R89 R9I RHV RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 YLTOR Z45 Z7U Z7V Z7W Z7Y Z8P Z8Q Z8S ZMTXR ZOVNA ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QP 7QR 7SN 7ST 7XB 8FD 8FK C1K FR3 K9. MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 PUEGO 7S9 L.6 |
| ID | FETCH-LOGICAL-c501t-1b0d4559926c636f492083a7b5eaeae95055d529c487e416c6c2fd9c4d4bd0e03 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 74 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000740414800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0918-9440 1618-0860 |
| IngestDate | Sun Sep 28 08:11:04 EDT 2025 Thu Oct 02 11:25:48 EDT 2025 Wed Nov 05 01:53:48 EST 2025 Wed Feb 19 02:27:02 EST 2025 Sat Nov 29 06:00:09 EST 2025 Tue Nov 18 22:24:53 EST 2025 Fri Feb 21 02:47:28 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Hydrolase (XTH) Xyloglucan CAZy Plant cell wall GH16 Cell wall architecture Xyloglucan endotransglucosylase |
| Language | English |
| License | 2021. The Author(s) under exclusive licence to The Botanical Society of Japan. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c501t-1b0d4559926c636f492083a7b5eaeae95055d529c487e416c6c2fd9c4d4bd0e03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-0326-0433 0000-0003-4475-4886 |
| PMID | 35000024 |
| PQID | 2635340859 |
| PQPubID | 55458 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2661033335 proquest_miscellaneous_2618518996 proquest_journals_2635340859 pubmed_primary_35000024 crossref_citationtrail_10_1007_s10265_021_01361_w crossref_primary_10_1007_s10265_021_01361_w springer_journals_10_1007_s10265_021_01361_w |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Japan – name: Tokyo |
| PublicationTitle | Journal of plant research |
| PublicationTitleAbbrev | J Plant Res |
| PublicationTitleAlternate | J Plant Res |
| PublicationYear | 2022 |
| Publisher | Springer Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V |
| References | Cavalier, Lerouxel, Neumetzler (CR11) 2008; 20 Han, Ban, Li (CR28) 2016; 6 Xu, Ding, Chen (CR86) 2018; 9 Seven, Derman, Harvey (CR71) 2021; 106 Maris, Kaewthai, Eklöf, Miller, Brumer, Fry, Verbelen, Vissenberg (CR48) 2011; 62 Perrin, DeRocher, Bar-Peled, Zeng, Norambuena, Orellana, Raikhel, Keegstra (CR65) 1999; 284 Becnel, Natarajan, Kipp, Braam (CR3) 2006; 61 Matsui, Yokoyama, Seki, Ito, Shinozaki, Takahashi, Komeda, Nishitani (CR49) 2005; 42 Vissenberg, Oyama, Osato, Yokoyama, Verbelen, Nishitani (CR80) 2005; 46 Kaewthai, Gendre, Eklöf, Ibatullin, Ezcurra, Bhalerao, Brumer (CR34) 2013; 161 Maris, Suslov, Fry, Verbelen, Vissenberg (CR47) 2009; 60 Osato, Yokoyama, Nishitani (CR58) 2006; 119 Kushwah, Banasiak, Nishikubo (CR41) 2020; 182 Miedes, Suslov, Vandenbussche, Kenobi, Ivakov, Van Der Straeten, Lorences, Mellerowicz, Verbelen, Vissenberg (CR51) 2013; 64 Zhu, Jiang, Ying, Yuan, Janet, Gui, Shao (CR345) 2014; 165 Shinohara, Sunagawa, Tamura, Yokoyama, Ueda, Igarashi, Nishitani (CR75) 2017; 7 Zhang, Yu, Wang, Durachko, Zhang, Cosgrove (CR94) 2021; 372 Fry (CR22) 2011 Galstyan, Nemhauser (CR23) 2019; 3 Cosgrove (CR13) 2018; 46 Keegstra, Talmadge, Bauer, Albersheim (CR37) 1973; 51 Pitaksaringkarn, Matsuoka, Asahina (CR66) 2014; 80 Rose, Braam, Fry, Nishitani (CR68) 2002; 43 Bogaert, Marmonier, Pichon, Boissinot, Ziegler-Graff, Chesnais, Villeroy, Drucker, Brault (CR6) 2020; 12 Hrmova, MacGregor, Biely, Stewart, Fincher (CR30) 1998; 273 Myśliwiec, Chylińska, Szymańska-Chargot, Chibowski, Zdunek (CR52) 2016; 23 Yan, Huang, He (CR88) 2019; 70 Yokoyama, Rose, Nishitani (CR90) 2004; 134 Carey, Holt, Picard, Wilde, Tucker, Bird, Schuch, Seymour (CR9) 1995; 108 McGregor, Yin, Tung, Van Petegem, Brumer (CR50) 2017; 89 Peña, Kong, York, O’Neill (CR63) 2012; 24 Zhu, Dama, Pauly (CR98) 2018; 2 Akiyama, Jin, Yoshida, Hoshino, Opassiri, Ketudat Cairns (CR1) 2009; 166 Sasidharan, Chinnappa, Staal, Elzenga, Yokoyama, Nishitani, Voesenek, Pieriket (CR69) 2010; 154 Dick-Pérez, Zhang, Hayes, Salazar, Zabotina, Hong (CR15) 2011; 50 Winter, Vinegar, Nahal, Ammar, Wilson, Provart (CR84) 2007; 2 Haas, Wightman, Meyerowitz, Peaucelle (CR26) 2020; 367 Madson, Dunand, Li, Verma, Vanzin, Calplan, Shoue, Carpita, Reiter (CR46) 2003; 15 (CR57) 2019; 574 York, Darvill, McNeil, Stevenson, Albersheim (CR92) 1986; 118 Keegstra (CR36) 2010; 154 Lima, Loh, Buckeridge (CR44) 2004; 42 Höfte, Voxeur (CR29) 2017; 27 Schultink, Cheng, Park, Cosgrove, Pauly (CR70) 2013; 163 Zabotina, van de Ven, Freshour (CR93) 2008; 56 Kelley, Mezulis, Yates, Wass, Sternberg (CR38) 2015; 10 Baumann, Eklof, Michel, Kallas, Teeri, Czjzek, Brumer (CR2) 2007; 19 Simmons, Mortimer, Bernardinelli, Pöppler, Brown, deAzevedo, Dupree, Dupree (CR76) 2016; 7 Han, Wang, Sun (CR27) 2013; 64 Cao, Lv, Li (CR8) 2019; 8 Yokoyama, Uwagaki, Sasaki, Harada, Hiwatashi, Hasebe, Nishitani (CR91) 2010; 64 Divol, Vilaine, Thibivilliers, Kusiak, Sauge, Dinant (CR18) 2007; 30 Johansson, Brumer, Baumann, Kallas, Henriksson, Denman, Teeri, Jones (CR33) 2004; 16 Pauly, Keegstra (CR60) 2016; 67 Cavalier, Keegstra (CR10) 2006; 281 Bowman, Kohchi, Yamato (CR7) 2017; 171 Peng, Zhang, Chen (CR64) 2021; 14 Takahashi, Johnson, Hao (CR77) 2021; 44 Niraula, Lawrence, Klink (CR53) 2020; 15 Eklöf, Brumer (CR19) 2010; 153 Xu, Fang, Chen, Cai (CR87) 2020; 104 Wang, Phyo, Hong (CR82) 2016; 78 Nishitani, Demura (CR54) 2015; 56 Park, Cosgrove (CR59) 2012; 158 Peña, Darvill, Eberhard, York, O’Neill (CR62) 2008; 18 Shi, Ye, Zhong, Liu, Jin, Chan (CR72) 2014; 203 Behar, Graham, Brumer (CR4) 2018; 95 Zhu, Shi, Lei (CR97) 2012; 24 Ivakov, Persson (CR31) 2013; 4 Lee, Polisensky, Braam (CR43) 2005; 165 Zheng, Wang, Chen, Wagner, Cosgrove (CR95) 2018; 93 Kaku, Tabuchi, Wakabayashi, Hoson (CR35) 2004; 45 Van Sandt, Suslov, Verbelen, Vissenberg (CR79) 2007; 100 Wang, Hong (CR81) 2016; 67 Kurasawa, Matsui, Yokoyama, Kuriyama, Yoshizumi, Matsui, Suwabe, Watanabe, Nishitani (CR40) 2009; 50 Berry, Tran, Dimos, Budziszek, Scavuzzo-Duggan, Roberts (CR5) 2016; 7 Dick-Perez, Wang, Salazar, Zabotina, Hong (CR16) 2012; 50 Notaguchi, Kurotani, Sato (CR55) 2020; 369 Oehme, Doblin, Wagner, Bacic, Downton, Gidley (CR56) 2015; 22 Pauly, Vicente (CR61) 2018; 9 Shinohara, Nishitani (CR74) 2021 Cosgrove (CR12) 2014; 22 Xu, Cai (CR85) 2019; 15 Eklöf, Shojania, Okon, McIntosh, Brumer (CR20) 2013; 288 Grantham, Wurman-Rodrich, Terrett (CR25) 2017; 3 Thimm, Burritt, Ducker, Melton (CR78) 2009; 168 Culbertson, Ehrlich, Choe, Honzatko, Zabotina (CR14) 2018; 115 Jensen, Schultink, Keegstra, Wilkerson, Pauly (CR32) 2012; 5 Yokoyama, Nishitani (CR89) 2001; 42 Ding, Liu, Zeng, Himmel, Baker, Bayer (CR17) 2012; 338 Pressey (CR67) 1983; 71 Le, Pagter, Hincha (CR42) 2015; 87 Genovesi, Fornalé, Fry, Ruel, Ferrer, Encina, Sonbol, Bosch, Puigdomènech, Rigau, Caparrós-Ruiz (CR24) 2008; 59 Liu, Lu, Zhang, Liu, Lu (CR45) 2007; 226 Endo, Tatematsu, Hanada (CR21) 2012; 53 Shi, Zhu, Miller, Gregson, Zheng, Fry (CR73) 2015; 112 Zheng, Ren, Zhai, Li, Chen (CR96) 2021; 39 Kuki, Yokoyama, Kuroha, Nishitani (CR39) 2020; 9 Wang, Yang, Kubicki, Hong (CR83) 2016; 17 T Wang (1361_CR81) 2016; 67 M Pauly (1361_CR61) 2018; 9 DP Oehme (1361_CR56) 2015; 22 A Ivakov (1361_CR31) 2013; 4 N McGregor (1361_CR50) 2017; 89 JM Eklöf (1361_CR20) 2013; 288 NJ Grantham (1361_CR25) 2017; 3 T Wang (1361_CR82) 2016; 78 N Shinohara (1361_CR75) 2017; 7 H Höfte (1361_CR29) 2017; 27 H Xu (1361_CR86) 2018; 9 E Miedes (1361_CR51) 2013; 64 Y Zheng (1361_CR95) 2018; 93 SY Ding (1361_CR17) 2012; 338 H Kuki (1361_CR39) 2020; 9 M Pauly (1361_CR60) 2016; 67 R Yokoyama (1361_CR90) 2004; 134 YB Liu (1361_CR45) 2007; 226 EA Berry (1361_CR5) 2016; 7 D Winter (1361_CR84) 2007; 2 J Cao (1361_CR8) 2019; 8 KT Haas (1361_CR26) 2020; 367 JC Thimm (1361_CR78) 2009; 168 JK Jensen (1361_CR32) 2012; 5 M Dick-Pérez (1361_CR15) 2011; 50 P Xu (1361_CR87) 2020; 104 Y Han (1361_CR27) 2013; 64 JM Eklöf (1361_CR19) 2010; 153 MJ Peña (1361_CR62) 2008; 18 DM Cavalier (1361_CR11) 2008; 20 DU Lima (1361_CR44) 2004; 42 R Yokoyama (1361_CR89) 2001; 42 SC Fry (1361_CR22) 2011 S Zheng (1361_CR96) 2021; 39 J Yan (1361_CR88) 2019; 70 A Maris (1361_CR47) 2009; 60 M Madson (1361_CR46) 2003; 15 XF Zhu (1361_CR345) 2014; 165 TJ Simmons (1361_CR76) 2016; 7 R Yokoyama (1361_CR91) 2010; 64 P Xu (1361_CR85) 2019; 15 JS Peng (1361_CR64) 2021; 14 DJ Cosgrove (1361_CR12) 2014; 22 D Takahashi (1361_CR77) 2021; 44 L Zhu (1361_CR98) 2018; 2 T Wang (1361_CR83) 2016; 17 N Shinohara (1361_CR74) 2021 M Seven (1361_CR71) 2021; 106 MJ Baumann (1361_CR2) 2007; 19 K Keegstra (1361_CR36) 2010; 154 DJ Cosgrove (1361_CR13) 2018; 46 M Dick-Perez (1361_CR16) 2012; 50 M Hrmova (1361_CR30) 1998; 273 OA Zabotina (1361_CR93) 2008; 56 J Becnel (1361_CR3) 2006; 61 D Lee (1361_CR43) 2005; 165 A Endo (1361_CR21) 2012; 53 S Kushwah (1361_CR41) 2020; 182 N Kaewthai (1361_CR34) 2013; 161 PM Niraula (1361_CR53) 2020; 15 W Pitaksaringkarn (1361_CR66) 2014; 80 A Schultink (1361_CR70) 2013; 163 K Vissenberg (1361_CR80) 2005; 46 AT Culbertson (1361_CR14) 2018; 115 T Kaku (1361_CR35) 2004; 45 H Shi (1361_CR72) 2014; 203 K Kurasawa (1361_CR40) 2009; 50 H Behar (1361_CR4) 2018; 95 F Divol (1361_CR18) 2007; 30 RM Perrin (1361_CR65) 1999; 284 JL Bowman (1361_CR7) 2017; 171 XF Zhu (1361_CR97) 2012; 24 YZ Shi (1361_CR73) 2015; 112 WS York (1361_CR92) 1986; 118 T Akiyama (1361_CR1) 2009; 166 YB Park (1361_CR59) 2012; 158 A Matsui (1361_CR49) 2005; 42 D Myśliwiec (1361_CR52) 2016; 23 K Keegstra (1361_CR37) 1973; 51 R Pressey (1361_CR67) 1983; 71 F Bogaert (1361_CR6) 2020; 12 A Maris (1361_CR48) 2011; 62 DM Cavalier (1361_CR10) 2006; 281 One Thousand Plant Transcriptomes Initiative (1361_CR57) 2019; 574 P Johansson (1361_CR33) 2004; 16 Y Zhang (1361_CR94) 2021; 372 Y Osato (1361_CR58) 2006; 119 AT Carey (1361_CR9) 1995; 108 K Nishitani (1361_CR54) 2015; 56 R Sasidharan (1361_CR69) 2010; 154 Y Han (1361_CR28) 2016; 6 A Galstyan (1361_CR23) 2019; 3 MJ Peña (1361_CR63) 2012; 24 V Genovesi (1361_CR24) 2008; 59 LA Kelley (1361_CR38) 2015; 10 M Notaguchi (1361_CR55) 2020; 369 MQ Le (1361_CR42) 2015; 87 VS Van Sandt (1361_CR79) 2007; 100 JK Rose (1361_CR68) 2002; 43 |
| References_xml | – volume: 22 start-page: 3501 year: 2015 end-page: 3520 ident: CR56 article-title: Gaining insight into cell wall cellulose macrofibril organisation by simulating microfibril adsorption publication-title: Cellulose doi: 10.1007/s10570-015-0778-9 – volume: 158 start-page: 1933 year: 2012 end-page: 1943 ident: CR59 article-title: A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases publication-title: Plant Physiol doi: 10.1104/pp.111.192880 – volume: 95 start-page: 1114 year: 2018 end-page: 1128 ident: CR4 article-title: Comprehensive cross-genome survey and phylogeny of glycoside hydrolase family 16 members reveals the evolutionary origin of eg16 and xth proteins in plant lineages publication-title: Plant J doi: 10.1111/tpj.14004 – volume: 60 start-page: 3959 year: 2009 end-page: 3397 ident: CR47 article-title: Enzymic characterization of two recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of and their effect on root growth and cell wall extension publication-title: J Exp Bot doi: 10.1093/jxb/erp229 – volume: 15 year: 2020 ident: CR53 article-title: The heterologous expression of a soybean ( ) xyloglucan endotransglycosylase/hydrolase (XTH) in cotton ( ) suppresses parasitism by the root knot nematode publication-title: PLOS ONE doi: 10.1371/journal.pone.0235344 – volume: 7 start-page: 1 year: 2017 end-page: 10 ident: CR75 article-title: The plant cell-wall enzyme XTH3 catalyses covalent cross-linking between cellulose and cello-oligosaccharide publication-title: Sci Rep doi: 10.1038/srep46099 – volume: 134 start-page: 1088 year: 2004 end-page: 1099 ident: CR90 article-title: A surprising diversity and abundance of xyloglucan endotransglucosylase/hydrolases in rice. Classification and expression analysis publication-title: Plant Physiol doi: 10.1104/pp.103.035261 – volume: 8 start-page: 130 year: 2019 ident: CR8 article-title: Interspaced repeat sequences confer the regulatory functions of XTH10, important for root growth in publication-title: Plants doi: 10.3390/plants8050130 – volume: 46 start-page: 77 year: 2018 end-page: 86 ident: CR13 article-title: Nanoscale structure, mechanics and growth of epidermal cell walls publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2018.07.016 – volume: 2 year: 2007 ident: CR84 article-title: An ‘electronic fluorescent pictograph’ browser for exploring and analyzing large-scale biological data sets publication-title: PLOS ONE doi: 10.1371/journal.pone.0000718 – volume: 9 start-page: 629 year: 2020 ident: CR39 article-title: Xyloglucan is not essential for the formation and integrity of the cellulose network in the primary cell wall regenerated from protoplasts publication-title: Plants doi: 10.3390/plants9050629 – volume: 27 start-page: R865 year: 2017 end-page: 870 ident: CR29 article-title: Plant cell walls publication-title: Curr Biol doi: 10.1016/j.cub.2017.05.025 – volume: 17 start-page: 2210 year: 2016 end-page: 2222 ident: CR83 article-title: Cellulose structural polymorphism in plant primary cell walls investigated by high-field 2d solid-state NMR spectroscopy and density functional theory calculations publication-title: Biomacromol doi: 10.1021/acs.biomac.6b00441 – volume: 23 start-page: 2819 year: 2016 end-page: 2829 ident: CR52 article-title: Revision of adsorption models of xyloglucan on microcrystalline cellulose publication-title: Cellulose doi: 10.1007/s10570-016-0995-x – volume: 6 start-page: 39155 year: 2016 ident: CR28 article-title: XTH8, a novel xyloglucan endotransglucosylase/hydrolase in persimmon, alters cell wall structure and promotes leaf senescence and fruit postharvest softening publication-title: Sci Rep doi: 10.1038/srep39155 – volume: 56 start-page: 101 year: 2008 end-page: 115 ident: CR93 article-title: gene encodes a putative α-1,6-xylosyltransferase that is involved in xyloglucan biosynthesis publication-title: Plant J doi: 10.1111/j.1365-313X.2008.03580.x – volume: 64 start-page: 645 year: 2010 end-page: 656 ident: CR91 article-title: Biological implications of the occurrence of 32 members of the XTH (xyloglucan endotransglucosylase/hydrolase) family of proteins in the bryophyte publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04351.x – volume: 226 start-page: 1547 year: 2007 end-page: 1560 ident: CR45 article-title: A xyloglucan endotransglucosylase/hydrolase involves in growth of primary root and alters the deposition of cellulose in publication-title: Planta doi: 10.1007/s00425-007-0591-2 – volume: 93 start-page: 211 year: 2018 end-page: 226 ident: CR95 article-title: Xyloglucan in the primary cell wall: assessment by FESEM, selective enzyme digestions and nanogold affinity tags publication-title: Plant J doi: 10.1111/tpj.13778 – volume: 367 start-page: 1003 year: 2020 end-page: 1007 ident: CR26 article-title: Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells publication-title: Science doi: 10.1126/science.aaz5103 – volume: 574 start-page: 679 year: 2019 end-page: 685 ident: CR57 article-title: One thousand plant transcriptomes and the phylogenomics of green plants publication-title: Nature doi: 10.1038/s41586-019-1693-2 – volume: 7 start-page: 248 year: 2016 ident: CR5 article-title: Immuno and affinity cytochemical analysis of cell wall composition in the moss publication-title: Front Plant Sci doi: 10.3389/fpls.2016.00248 – volume: 16 start-page: 874 year: 2004 end-page: 886 ident: CR33 article-title: Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding publication-title: Plant Cell doi: 10.1105/tpc.020065 – volume: 50 start-page: 989 year: 2011 end-page: 1000 ident: CR15 article-title: Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR publication-title: Biochemistry doi: 10.1021/bi101795q – volume: 67 start-page: 235 year: 2016 end-page: 259 ident: CR60 article-title: Biosynthesis of the plant cell wall matrix polysaccharide xyloglucan publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-043015-112222 – volume: 51 start-page: 188 year: 1973 end-page: 197 ident: CR37 article-title: The structure of plant cell walls: III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components publication-title: Plant Physiol doi: 10.1104/pp.51.1.188 – volume: 119 start-page: 153 year: 2006 end-page: 162 ident: CR58 article-title: A principal role for AtXTH18 in root growth: a functional analysis using RNAi plants publication-title: J Plant Res doi: 10.1007/s10265-006-0262-6 – volume: 166 start-page: 1814 year: 2009 end-page: 1825 ident: CR1 article-title: Expression of an endo-(1,3;1,4)-beta-glucanase in response to wounding, methyl jasmonate, abscisic acid and ethephon in rice seedlings publication-title: J Plant Physiol doi: 10.1016/j.jplph.2009.06.002 – volume: 3 start-page: 859 year: 2017 end-page: 865 ident: CR25 article-title: An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls publication-title: Nat Plants doi: 10.1038/s41477-017-0030-8 – volume: 24 start-page: 4731 year: 2012 end-page: 4747 ident: CR97 article-title: , encoding an XEH/XET-active enzyme, controls Al sensitivity by modulating XET action, cell wall xyloglucan content and Al binding capacity in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.112.106039 – volume: 281 start-page: 3419 year: 2006 end-page: 34207 ident: CR10 article-title: Two xyloglucan xylosyltransferases catalyze the addition of multiple xylosyl residues to cellohexaose publication-title: J Biol Chem doi: 10.1074/jbc.M606379200 – volume: 182 start-page: 1946 year: 2020 end-page: 1965 ident: CR41 article-title: Arabidopsis and contribute to wood cell expansion and secondary wall formation publication-title: Plant Physiol doi: 10.1104/pp.19.01529 – volume: 56 start-page: 177 year: 2015 end-page: 179 ident: CR54 article-title: Editorial: an emerging view of plant cell walls as an apoplastic intelligent system publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcv001 – volume: 369 start-page: 698 year: 2020 end-page: 702 ident: CR55 article-title: Cell-cell adhesion in plant grafting is facilitated by β-1,4-glucanases publication-title: Science doi: 10.1126/science.abc3710 – volume: 9 start-page: 1773 year: 2018 ident: CR86 article-title: Genome-wide analysis of sorghum GT47 family reveals functional divergences of MUR3-like genes publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01773 – volume: 30 start-page: 187 year: 2007 end-page: 201 ident: CR18 article-title: Involvement of the xyloglucan endotransglycosylase/hydrolases encoded by celery and in the phloem response to aphids publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2006.01618.x – volume: 153 start-page: 456 year: 2010 end-page: 466 ident: CR19 article-title: The XTH gene family: an update on enzyme structure, function, and phylogeny in xyloglucan remodeling publication-title: Plant Physiol doi: 10.1104/pp.110.156844 – volume: 42 start-page: 525 year: 2005 end-page: 534 ident: CR49 article-title: XTH27 plays an essential role in cell wall modification during the development of tracheary elements publication-title: Plant J doi: 10.1111/j.1365-313X.2005.02395.x – volume: 42 start-page: 389 year: 2004 end-page: 394 ident: CR44 article-title: Xyloglucan–cellulose interaction depends on the sidechains and molecular weight of xyloglucan publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2004.03.003 – volume: 108 start-page: 1099 year: 1995 end-page: 1107 ident: CR9 article-title: Tomato exo-(1→4)-. β-D-galactanase: isolation, changes during ripening in normal and mutant tomato fruit, and characterization of a related cDNA clone publication-title: Plant Physiol doi: 10.1104/pp.108.3.1099 – volume: 15 start-page: 1662 year: 2003 end-page: 1670 ident: CR46 article-title: The gene of encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins publication-title: Plant Cell doi: 10.1105/tpc.009837 – volume: 20 start-page: 1519 year: 2008 end-page: 1537 ident: CR11 article-title: Disrupting two xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component publication-title: Plant Cell doi: 10.1105/tpc.108.059873 – volume: 71 start-page: 132 year: 1983 end-page: 135 ident: CR67 article-title: Beta-galactosidases in ripening tomatoes publication-title: Plant Physiol doi: 10.1104/pp.71.1.132 – volume: 9 start-page: 1210 year: 2018 ident: CR61 article-title: New insights into wall polysaccharide -acetylation publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01210 – volume: 7 start-page: 13902 year: 2016 ident: CR76 article-title: Folding of Xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR publication-title: Nature Commun doi: 10.1038/ncomms13902 – volume: 62 start-page: 261 year: 2011 end-page: 271 ident: CR48 article-title: Differences in enzymic properties of five recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of publication-title: J Exp Bot doi: 10.1093/jxb/erq263 – volume: 50 start-page: 539 year: 2012 end-page: 550 ident: CR16 article-title: Multidimensional solid-state NMR studies of the structure and dynamics of pectic polysaccharides in uniformly C-labeled primary cell walls publication-title: Magn Reson Chem doi: 10.1002/mrc.3836 – volume: 70 start-page: 5495 year: 2019 end-page: 5506 ident: CR88 article-title: Xyloglucan endotransglucosylase-hydrolase30 negatively affects salt tolerance in Arabidopsis publication-title: J Exp Bot doi: 10.1093/jxb/erz311 – volume: 59 start-page: 875 year: 2008 end-page: 889 ident: CR24 article-title: XTH1, a new xyloglucan endotransglucosylase/hydrolase in maize, affects cell wall structure and composition in publication-title: J Exp Bot doi: 10.1093/jxb/ern013 – volume: 154 start-page: 483 year: 2010 end-page: 486 ident: CR36 article-title: Plant cell walls publication-title: Plant Physiol doi: 10.1104/pp.110.161240 – volume: 61 start-page: 451 year: 2006 end-page: 467 ident: CR3 article-title: Developmental expression patterns of xth genes reported by transgenes and genevestigator publication-title: Plant Mol Biol doi: 10.1007/s11103-006-0021-z – volume: 104 start-page: 59 year: 2020 end-page: 75 ident: CR87 article-title: The brassinosteroid-responsive xyloglucan endotransglucosylase/hydrolase 19 ( ) and genes are involved in lateral root development under salt stress in Arabidopsis publication-title: Plant J doi: 10.1111/tpj.14905 – volume: 12 start-page: 146 year: 2020 ident: CR6 article-title: Impact of mutations in metabolic pathways on polerovirus accumulation, aphid performance, and feeding behavior publication-title: Viruses doi: 10.3390/v12020146 – volume: 154 start-page: 978 year: 2010 end-page: 990 ident: CR69 article-title: Light quality-mediated petiole elongation in Arabidopsis during shade avoidance involves cell wall modification by xyloglucan endotransglucosylase/hydrolases publication-title: Plant Physiol doi: 10.1104/pp.110.162057 – volume: 89 start-page: 651 year: 2017 end-page: 670 ident: CR50 article-title: Crystallographic insight into the evolutionary origins of xyloglucan endotransglycosylases and endohydrolases publication-title: Plant J doi: 10.1111/tpj.13421 – volume: 3 year: 2019 ident: CR23 article-title: Auxin promotion of seedling growth via ARF5 is dependent on the brassinosteroid-regulated transcription factors BES1 and BEH4 publication-title: Plant Direct doi: 10.1002/pld3.166 – volume: 50 start-page: 413 year: 2009 end-page: 422 ident: CR40 article-title: The XTH28 gene, a xyloglucan endotransglucosylase/hydrolase, is involved in automatic self-pollination in publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcp003 – volume: 80 start-page: 604 year: 2014 end-page: 614 ident: CR66 article-title: XTH20 and XTH19 regulated by ANAC071 under auxin flow are involved in cell proliferation in incised Arabidopsis inflorescence stems publication-title: Plant J doi: 10.1111/tpj.12654 – volume: 273 start-page: 11134 year: 1998 end-page: 11143 ident: CR30 article-title: Substrate binding and catalytic mechanism of a barley β-D-glucosidase/(1, 4)-β-D-glucan exohydrolase publication-title: J Biol Chem doi: 10.1074/jbc.273.18.11134 – volume: 43 start-page: 1421 year: 2002 end-page: 1435 ident: CR68 article-title: The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcf171 – volume: 64 start-page: 4225 year: 2013 end-page: 4238 ident: CR27 article-title: XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants publication-title: J Exp Bot doi: 10.1093/jxb/ert229 – volume: 44 start-page: 915 year: 2021 end-page: 930 ident: CR77 article-title: Cell wall modification by the xyloglucan endotransglucosylase/hydrolase XTH19 influences freezing tolerance after cold and sub-zero acclimation publication-title: Plant Cell Environ doi: 10.1111/pce.13953 – volume: 4 start-page: 439 year: 2013 ident: CR31 article-title: Plant cell shape: modulators and measurements publication-title: Front Plant Sci doi: 10.3389/fpls.2013.00439 – volume: 288 start-page: 15786 year: 2013 end-page: 15799 ident: CR20 article-title: Structure-function analysis of a broad specificity endo-β-glucanase reveals an evolutionary link between bacterial licheninases and plant XTH gene products publication-title: J Biol Chem doi: 10.1074/jbc.M113.462887 – volume: 163 start-page: 86 year: 2013 end-page: 94 ident: CR70 article-title: The identification of two arabinosyltransferases from tomato reveals functional equivalency of xyloglucan side chain substituents publication-title: Plant Physiol doi: 10.1104/pp.113.221788 – volume: 46 start-page: 192 year: 2005 end-page: 200 ident: CR80 article-title: Differential expression of XTH17, XTH18, XTH19 and XTH20 genes in Arabidopsis roots. Physiological roles in specification in cell wall construction publication-title: Plant Cell Physiol doi: 10.1093/pcp/pci013 – volume: 39 start-page: 50 year: 2021 end-page: 59 ident: CR96 article-title: Identification of genes involved in root growth inhibition under lead stress by transcriptome profiling in Arabidopsis publication-title: Plant Mol Biol Rep doi: 10.1007/s11105-020-01233-y – volume: 112 start-page: 160 year: 2015 end-page: 169 ident: CR73 article-title: Distinct catalytic capacities of two aluminium-repressed xyloglucan endotransglucosylase/hydrolases, XTH15 and XTH31, heterologously produced in publication-title: Phytochemistry doi: 10.1016/j.phytochem.2014.09.020 – volume: 53 start-page: 16 year: 2012 end-page: 27 ident: CR21 article-title: Tissue-specific transcriptome analysis reveals cell wall metabolism, flavonol biosynthesis and defense responses are activated in the endosperm of germinating seeds publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcr171 – volume: 78 start-page: 56 year: 2016 end-page: 63 ident: CR82 article-title: Multidimensional solid-state NMR spectroscopy of plant cell walls publication-title: Solid State Nucl Magn Reson doi: 10.1016/j.ssnmr.2016.08.001 – volume: 165 start-page: 1566 year: 2014 end-page: 1574 ident: CR345 article-title: Xyloglucan Endotransglucosylase-Hydrolase17 Interacts with Xyloglucan Endotransglucosylase-Hydrolase31 to Confer Xyloglucan Endotransglucosylase Action and Affect Aluminum Sensitivity in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.114.243790 – volume: 171 start-page: 287 year: 2017 end-page: 304 ident: CR7 article-title: Insights into land plant evolution garnered from the genome publication-title: Cell doi: 10.1016/j.cell.2017.09.030 – volume: 115 start-page: 6064 year: 2018 end-page: 6069 ident: CR14 article-title: Structure of xyloglucan xylosyltransferase 1 reveals simple steric rules that define biological patterns of xyloglucan polymers publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1801105115 – volume: 118 start-page: 3 year: 1986 end-page: 40 ident: CR92 article-title: Isolation and characterization of plant cell walls and cell wall components publication-title: Methods Enzymol doi: 10.1016/0076-6879(86)18062-1 – volume: 14 start-page: 1 year: 2021 end-page: 12 ident: CR64 article-title: Galactosylation of rhamnogalacturonan-II for cell wall pectin biosynthesis is critical for root apoplastic iron reallocation in Arabidopsis publication-title: Mol Plant doi: 10.1016/j.molp.2021.06.016 – year: 2021 ident: CR74 article-title: Cryogenian origin and subsequent diversification of the plant cell-wall enzyme XTH family publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcab093 – volume: 64 start-page: 2481 year: 2013 end-page: 2497 ident: CR51 article-title: Xyloglucan endotransglucosylase/hydrolase (XTH) overexpression affects growth and cell wall mechanics in etiolated hypocotyls publication-title: J Exp Bot doi: 10.1093/jxb/ert107 – volume: 5 start-page: 984 year: 2012 end-page: 992 ident: CR32 article-title: RNA-Seq analysis of developing nasturtium seeds ( ): identification and characterization of an additional, galactosyltransferase involved in xyloglucan biosynthesis publication-title: Mol Plant doi: 10.1093/mp/sss032 – volume: 15 year: 2019 ident: CR85 article-title: Nitrate-responsive OBP4-XTH9 regulatory module controls lateral root development in publication-title: PLoS Genet doi: 10.1371/journal.pgen.1008465 – volume: 372 start-page: 706 year: 2021 end-page: 711 ident: CR94 article-title: Molecular insights into the complex mechanics of plant epidermal cell walls publication-title: Science doi: 10.1126/science.abf2824 – volume: 2 year: 2018 ident: CR98 article-title: Identification of an arabinopyranosyltransferase from involved in the synthesis of the hemicellulose xyloglucan publication-title: Plant Direct doi: 10.1002/pld3.46 – volume: 22 start-page: 122 year: 2014 end-page: 131 ident: CR12 article-title: Re-constructing our models of cellulose and primary cell wall assembly publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2014.11.001 – volume: 19 start-page: 1947 year: 2007 end-page: 1963 ident: CR2 article-title: Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases: biological implications for cell wall metabolism publication-title: Plant Cell doi: 10.1105/tpc.107.051391 – volume: 106 start-page: 1660 year: 2021 end-page: 1673 ident: CR71 article-title: Enzymatic characterization of ancestral/group-IV clade xyloglucan endotransglycosylase/hydrolase enzymes reveals broad substrate specificities publication-title: Plant J doi: 10.1111/tpj.15262 – volume: 100 start-page: 1467 year: 2007 end-page: 1473 ident: CR79 article-title: Xyloglucan endotransglucosylase activity loosens a plant cell wall publication-title: Ann Bot doi: 10.1093/aob/mcm248 – volume: 168 start-page: 337 year: 2009 end-page: 344 ident: CR78 article-title: Pectins influence microfibril aggregation in celery cell walls: an atomic force microscopy study publication-title: J Struct Biol doi: 10.1016/j.jsb.2009.06.017 – volume: 24 start-page: 4511 year: 2012 end-page: 4524 ident: CR63 article-title: A galacturonic acid–containing xyloglucan is involved in Arabidopsis root hair tip growth publication-title: Plant Cell doi: 10.1105/tpc.112.103390 – volume: 165 start-page: 429 year: 2005 end-page: 444 ident: CR43 article-title: Genome-wide identification of touch- and darkness-regulated Arabidopsis genes: a focus on calmodulin-like and genes publication-title: New Phytol doi: 10.1111/j.1469-8137.2004.01238.x – volume: 203 start-page: 554 year: 2014 end-page: 567 ident: CR72 article-title: AtHAP5A modulates freezing stress resistance in Arabidopsis through binding to CCAAT motif of XTH21 publication-title: New Phytol doi: 10.1111/nph.12812 – volume: 67 start-page: 503 year: 2016 end-page: 514 ident: CR81 article-title: Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls publication-title: J Exp Bot doi: 10.1093/jxb/erv416 – volume: 87 start-page: 1 year: 2015 end-page: 15 ident: CR42 article-title: Global changes in gene expression, assayed by microarray hybridization and quantitative RT-PCR, during acclimation of three accessions to sub-zero temperatures after cold acclimation publication-title: Plant Mol Biol doi: 10.1007/s11103-014-0256-z – volume: 338 start-page: 1055 year: 2012 end-page: 1160 ident: CR17 article-title: How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? publication-title: Science doi: 10.1126/science.1227491 – year: 2011 ident: CR22 article-title: Plant cell walls. From chemistry to biology publication-title: Ann Bot doi: 10.1093/aob/mcr128 – volume: 42 start-page: 1025 year: 2001 end-page: 1033 ident: CR89 article-title: A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict -regulatory regions involved in cell-wall construction in specific organs of Arabidopsis publication-title: Plant Cell Physiol doi: 10.1093/pcp/pce154 – volume: 284 start-page: 1976 year: 1999 end-page: 1979 ident: CR65 article-title: Xyloglucan fucosyltransferase, an enzyme involved in plant cell wall biosynthesis publication-title: Science doi: 10.1126/science.284.5422.1976 – volume: 10 start-page: 845 year: 2015 end-page: 858 ident: CR38 article-title: The Phyre2 web portal for protein modeling, prediction and analysis publication-title: Nat Protoc doi: 10.1038/nprot.2015.053 – volume: 45 start-page: 77 year: 2004 end-page: 82 ident: CR35 article-title: Xyloglucan oligosaccharides cause cell wall loosening by enhancing xyloglucan endotransglucosylase/hydrolase activity in azuki bean epicotyls publication-title: Plant Cell Physiol doi: 10.1093/pcp/pch007 – volume: 18 start-page: 891 year: 2008 end-page: 904 ident: CR62 article-title: Moss and liverwort xyloglucans contain galacturonic acid and are structurally distinct from the xyloglucans synthesized by hornworts and vascular plants publication-title: Glycobiology doi: 10.1093/glycob/cwn078 – volume: 161 start-page: 440 year: 2013 end-page: 454 ident: CR34 article-title: Group III-A genes of Arabidopsis encode predominant xyloglucan endohydrolases that are dispensable for normal growth publication-title: Plant Physiol doi: 10.1104/pp.112.207308 – volume: 53 start-page: 16 year: 2012 ident: 1361_CR21 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcr171 – volume: 14 start-page: 1 year: 2021 ident: 1361_CR64 publication-title: Mol Plant doi: 10.1016/j.molp.2021.06.016 – volume: 153 start-page: 456 year: 2010 ident: 1361_CR19 publication-title: Plant Physiol doi: 10.1104/pp.110.156844 – volume: 9 start-page: 629 year: 2020 ident: 1361_CR39 publication-title: Plants doi: 10.3390/plants9050629 – volume: 80 start-page: 604 year: 2014 ident: 1361_CR66 publication-title: Plant J doi: 10.1111/tpj.12654 – volume: 338 start-page: 1055 year: 2012 ident: 1361_CR17 publication-title: Science doi: 10.1126/science.1227491 – volume: 134 start-page: 1088 year: 2004 ident: 1361_CR90 publication-title: Plant Physiol doi: 10.1104/pp.103.035261 – volume: 166 start-page: 1814 year: 2009 ident: 1361_CR1 publication-title: J Plant Physiol doi: 10.1016/j.jplph.2009.06.002 – volume: 168 start-page: 337 year: 2009 ident: 1361_CR78 publication-title: J Struct Biol doi: 10.1016/j.jsb.2009.06.017 – volume: 3 start-page: 859 year: 2017 ident: 1361_CR25 publication-title: Nat Plants doi: 10.1038/s41477-017-0030-8 – volume: 95 start-page: 1114 year: 2018 ident: 1361_CR4 publication-title: Plant J doi: 10.1111/tpj.14004 – volume: 67 start-page: 235 year: 2016 ident: 1361_CR60 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-043015-112222 – volume: 50 start-page: 989 year: 2011 ident: 1361_CR15 publication-title: Biochemistry doi: 10.1021/bi101795q – volume: 171 start-page: 287 year: 2017 ident: 1361_CR7 publication-title: Cell doi: 10.1016/j.cell.2017.09.030 – volume: 15 year: 2019 ident: 1361_CR85 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1008465 – volume: 112 start-page: 160 year: 2015 ident: 1361_CR73 publication-title: Phytochemistry doi: 10.1016/j.phytochem.2014.09.020 – volume: 165 start-page: 1566 year: 2014 ident: 1361_CR345 publication-title: Plant Physiol doi: 10.1104/pp.114.243790 – volume: 93 start-page: 211 year: 2018 ident: 1361_CR95 publication-title: Plant J doi: 10.1111/tpj.13778 – volume: 46 start-page: 192 year: 2005 ident: 1361_CR80 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pci013 – volume: 89 start-page: 651 year: 2017 ident: 1361_CR50 publication-title: Plant J doi: 10.1111/tpj.13421 – volume: 7 start-page: 248 year: 2016 ident: 1361_CR5 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.00248 – volume: 2 year: 2018 ident: 1361_CR98 publication-title: Plant Direct doi: 10.1002/pld3.46 – volume: 43 start-page: 1421 year: 2002 ident: 1361_CR68 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcf171 – volume: 22 start-page: 122 year: 2014 ident: 1361_CR12 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2014.11.001 – volume: 12 start-page: 146 year: 2020 ident: 1361_CR6 publication-title: Viruses doi: 10.3390/v12020146 – volume: 5 start-page: 984 year: 2012 ident: 1361_CR32 publication-title: Mol Plant doi: 10.1093/mp/sss032 – volume: 71 start-page: 132 year: 1983 ident: 1361_CR67 publication-title: Plant Physiol doi: 10.1104/pp.71.1.132 – volume: 226 start-page: 1547 year: 2007 ident: 1361_CR45 publication-title: Planta doi: 10.1007/s00425-007-0591-2 – volume: 56 start-page: 101 year: 2008 ident: 1361_CR93 publication-title: Plant J doi: 10.1111/j.1365-313X.2008.03580.x – volume: 44 start-page: 915 year: 2021 ident: 1361_CR77 publication-title: Plant Cell Environ doi: 10.1111/pce.13953 – volume: 10 start-page: 845 year: 2015 ident: 1361_CR38 publication-title: Nat Protoc doi: 10.1038/nprot.2015.053 – volume: 8 start-page: 130 year: 2019 ident: 1361_CR8 publication-title: Plants doi: 10.3390/plants8050130 – volume: 27 start-page: R865 year: 2017 ident: 1361_CR29 publication-title: Curr Biol doi: 10.1016/j.cub.2017.05.025 – volume: 115 start-page: 6064 year: 2018 ident: 1361_CR14 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1801105115 – volume: 100 start-page: 1467 year: 2007 ident: 1361_CR79 publication-title: Ann Bot doi: 10.1093/aob/mcm248 – volume: 56 start-page: 177 year: 2015 ident: 1361_CR54 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcv001 – volume: 163 start-page: 86 year: 2013 ident: 1361_CR70 publication-title: Plant Physiol doi: 10.1104/pp.113.221788 – volume: 78 start-page: 56 year: 2016 ident: 1361_CR82 publication-title: Solid State Nucl Magn Reson doi: 10.1016/j.ssnmr.2016.08.001 – volume: 64 start-page: 4225 year: 2013 ident: 1361_CR27 publication-title: J Exp Bot doi: 10.1093/jxb/ert229 – volume: 59 start-page: 875 year: 2008 ident: 1361_CR24 publication-title: J Exp Bot doi: 10.1093/jxb/ern013 – volume: 119 start-page: 153 year: 2006 ident: 1361_CR58 publication-title: J Plant Res doi: 10.1007/s10265-006-0262-6 – volume: 15 year: 2020 ident: 1361_CR53 publication-title: PLOS ONE doi: 10.1371/journal.pone.0235344 – volume: 61 start-page: 451 year: 2006 ident: 1361_CR3 publication-title: Plant Mol Biol doi: 10.1007/s11103-006-0021-z – volume: 369 start-page: 698 year: 2020 ident: 1361_CR55 publication-title: Science doi: 10.1126/science.abc3710 – volume: 50 start-page: 539 year: 2012 ident: 1361_CR16 publication-title: Magn Reson Chem doi: 10.1002/mrc.3836 – volume: 161 start-page: 440 year: 2013 ident: 1361_CR34 publication-title: Plant Physiol doi: 10.1104/pp.112.207308 – volume: 284 start-page: 1976 year: 1999 ident: 1361_CR65 publication-title: Science doi: 10.1126/science.284.5422.1976 – volume: 51 start-page: 188 year: 1973 ident: 1361_CR37 publication-title: Plant Physiol doi: 10.1104/pp.51.1.188 – volume: 2 year: 2007 ident: 1361_CR84 publication-title: PLOS ONE doi: 10.1371/journal.pone.0000718 – volume: 18 start-page: 891 year: 2008 ident: 1361_CR62 publication-title: Glycobiology doi: 10.1093/glycob/cwn078 – volume: 182 start-page: 1946 year: 2020 ident: 1361_CR41 publication-title: Plant Physiol doi: 10.1104/pp.19.01529 – volume: 9 start-page: 1773 year: 2018 ident: 1361_CR86 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01773 – volume: 30 start-page: 187 year: 2007 ident: 1361_CR18 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2006.01618.x – volume: 118 start-page: 3 year: 1986 ident: 1361_CR92 publication-title: Methods Enzymol doi: 10.1016/0076-6879(86)18062-1 – volume: 64 start-page: 645 year: 2010 ident: 1361_CR91 publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04351.x – volume: 62 start-page: 261 year: 2011 ident: 1361_CR48 publication-title: J Exp Bot doi: 10.1093/jxb/erq263 – volume: 203 start-page: 554 year: 2014 ident: 1361_CR72 publication-title: New Phytol doi: 10.1111/nph.12812 – volume: 9 start-page: 1210 year: 2018 ident: 1361_CR61 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01210 – volume: 23 start-page: 2819 year: 2016 ident: 1361_CR52 publication-title: Cellulose doi: 10.1007/s10570-016-0995-x – year: 2011 ident: 1361_CR22 publication-title: Ann Bot doi: 10.1093/aob/mcr128 – volume: 22 start-page: 3501 year: 2015 ident: 1361_CR56 publication-title: Cellulose doi: 10.1007/s10570-015-0778-9 – volume: 87 start-page: 1 year: 2015 ident: 1361_CR42 publication-title: Plant Mol Biol doi: 10.1007/s11103-014-0256-z – volume: 15 start-page: 1662 year: 2003 ident: 1361_CR46 publication-title: Plant Cell doi: 10.1105/tpc.009837 – volume: 281 start-page: 3419 year: 2006 ident: 1361_CR10 publication-title: J Biol Chem doi: 10.1074/jbc.M606379200 – volume: 70 start-page: 5495 year: 2019 ident: 1361_CR88 publication-title: J Exp Bot doi: 10.1093/jxb/erz311 – volume: 372 start-page: 706 year: 2021 ident: 1361_CR94 publication-title: Science doi: 10.1126/science.abf2824 – volume: 20 start-page: 1519 year: 2008 ident: 1361_CR11 publication-title: Plant Cell doi: 10.1105/tpc.108.059873 – volume: 3 year: 2019 ident: 1361_CR23 publication-title: Plant Direct doi: 10.1002/pld3.166 – volume: 154 start-page: 978 year: 2010 ident: 1361_CR69 publication-title: Plant Physiol doi: 10.1104/pp.110.162057 – volume: 158 start-page: 1933 year: 2012 ident: 1361_CR59 publication-title: Plant Physiol doi: 10.1104/pp.111.192880 – volume: 367 start-page: 1003 year: 2020 ident: 1361_CR26 publication-title: Science doi: 10.1126/science.aaz5103 – volume: 60 start-page: 3959 year: 2009 ident: 1361_CR47 publication-title: J Exp Bot doi: 10.1093/jxb/erp229 – volume: 6 start-page: 39155 year: 2016 ident: 1361_CR28 publication-title: Sci Rep doi: 10.1038/srep39155 – volume: 64 start-page: 2481 year: 2013 ident: 1361_CR51 publication-title: J Exp Bot doi: 10.1093/jxb/ert107 – volume: 288 start-page: 15786 year: 2013 ident: 1361_CR20 publication-title: J Biol Chem doi: 10.1074/jbc.M113.462887 – volume: 4 start-page: 439 year: 2013 ident: 1361_CR31 publication-title: Front Plant Sci doi: 10.3389/fpls.2013.00439 – volume: 273 start-page: 11134 year: 1998 ident: 1361_CR30 publication-title: J Biol Chem doi: 10.1074/jbc.273.18.11134 – volume: 50 start-page: 413 year: 2009 ident: 1361_CR40 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcp003 – volume: 45 start-page: 77 year: 2004 ident: 1361_CR35 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pch007 – volume: 24 start-page: 4511 year: 2012 ident: 1361_CR63 publication-title: Plant Cell doi: 10.1105/tpc.112.103390 – volume: 46 start-page: 77 year: 2018 ident: 1361_CR13 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2018.07.016 – volume: 574 start-page: 679 year: 2019 ident: 1361_CR57 publication-title: Nature doi: 10.1038/s41586-019-1693-2 – year: 2021 ident: 1361_CR74 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcab093 – volume: 7 start-page: 13902 year: 2016 ident: 1361_CR76 publication-title: Nature Commun doi: 10.1038/ncomms13902 – volume: 17 start-page: 2210 year: 2016 ident: 1361_CR83 publication-title: Biomacromol doi: 10.1021/acs.biomac.6b00441 – volume: 108 start-page: 1099 year: 1995 ident: 1361_CR9 publication-title: Plant Physiol doi: 10.1104/pp.108.3.1099 – volume: 165 start-page: 429 year: 2005 ident: 1361_CR43 publication-title: New Phytol doi: 10.1111/j.1469-8137.2004.01238.x – volume: 42 start-page: 525 year: 2005 ident: 1361_CR49 publication-title: Plant J doi: 10.1111/j.1365-313X.2005.02395.x – volume: 42 start-page: 1025 year: 2001 ident: 1361_CR89 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pce154 – volume: 42 start-page: 389 year: 2004 ident: 1361_CR44 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2004.03.003 – volume: 7 start-page: 1 year: 2017 ident: 1361_CR75 publication-title: Sci Rep doi: 10.1038/srep46099 – volume: 39 start-page: 50 year: 2021 ident: 1361_CR96 publication-title: Plant Mol Biol Rep doi: 10.1007/s11105-020-01233-y – volume: 67 start-page: 503 year: 2016 ident: 1361_CR81 publication-title: J Exp Bot doi: 10.1093/jxb/erv416 – volume: 16 start-page: 874 year: 2004 ident: 1361_CR33 publication-title: Plant Cell doi: 10.1105/tpc.020065 – volume: 104 start-page: 59 year: 2020 ident: 1361_CR87 publication-title: Plant J doi: 10.1111/tpj.14905 – volume: 24 start-page: 4731 year: 2012 ident: 1361_CR97 publication-title: Plant Cell doi: 10.1105/tpc.112.106039 – volume: 19 start-page: 1947 year: 2007 ident: 1361_CR2 publication-title: Plant Cell doi: 10.1105/tpc.107.051391 – volume: 106 start-page: 1660 year: 2021 ident: 1361_CR71 publication-title: Plant J doi: 10.1111/tpj.15262 – volume: 154 start-page: 483 year: 2010 ident: 1361_CR36 publication-title: Plant Physiol doi: 10.1104/pp.110.161240 |
| SSID | ssj0017598 |
| Score | 2.5457509 |
| SecondaryResourceType | review_article |
| Snippet | Plants possess an outer cell layer called the cell wall. This matrix comprises various molecules, such as polysaccharides and proteins, and serves a wide array... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 145 |
| SubjectTerms | Biochemistry Biomedical and Life Sciences Cell Wall - metabolism Cell walls Cellulose cellulose microfibrils Current Topics in Plant Research Enzymes Flowers & plants Genes Genetic analysis Genomics Genotype & phenotype Glycosyltransferases - chemistry Glycosyltransferases - genetics Glycosyltransferases - metabolism Hydrolase hydrolases Hydrolases - metabolism Life Sciences Loosening Mathematical analysis Microfibrils Physiology Plant Biochemistry Plant Ecology Plant Physiology Plant Sciences plasticity Polysaccharides Polysaccharides - metabolism reverse genetics Roles Saccharides Xyloglucan xyloglucan:xyloglucosyl transferase xyloglucans |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB503QdfvI96UcE3LfZI0-2jiuKDLOLFvpU0SVGQVvZw3X_vTHqs4gHavjRkGobJpPNNk5kBOFCpL1SW-Y4KVeAwmaaOYJI7gVKSehRPTZ7Zq6jb7fR68XUVFDaoT7vXW5LmS_0h2M3nFE1M7m_APWc8C3No7jpUsOHm9qHZO4hCUwEXDSEuZcbcKlTm-zE-m6MvGPPL_qgxOxeL_2N4CRYqmGmflHqxDDM6X4H2aYFQcLIKN-R0loU6cUAbMaBN9o3myC4y035DR56Os4vc1jl6rmTSyuPtE8Tb-vhxovoFPdnlL5I1uL84vzu7dKriCo4MXW_oeKmrGKUb87nkAc9Y7CMaE1EaaoF3jMgoVKEfS_RoNKI2yaWfKWwqlipXu8E6tPIi15tge5GOhGRcIDRC_CdShrCBhTFCB85Uxi3wahknsso8TgUwnpNpzmQSVYKiSoyokrEFh807L2XejV-pd-qpS6o1OEgozU5gErhZsN904-qhLRGR62JENIhXPPQ5-W80CDEDvEILNkq1aFgKqJ4EwhwLjmodmDLwM79bfyPfhnmfoi7M0bcdaA37I70Lbfk6fBr094z2vwP3kf8Y priority: 102 providerName: Springer Nature |
| Title | Reconsidering the function of the xyloglucan endotransglucosylase/hydrolase family |
| URI | https://link.springer.com/article/10.1007/s10265-021-01361-w https://www.ncbi.nlm.nih.gov/pubmed/35000024 https://www.proquest.com/docview/2635340859 https://www.proquest.com/docview/2618518996 https://www.proquest.com/docview/2661033335 |
| Volume | 135 |
| WOSCitedRecordID | wos000740414800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1618-0860 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017598 issn: 0918-9440 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-Nj4e9MAYbyyhVkPYGFonjOORpogg0aVtXFZj6Fjm2I5CmBNoy1v9-d47bCqH1ZYlkxbKjnHK273e-8x3AJ1NyZaqKM5OahAldlkwJLVlijKYWI0sXZ_Zb1u-fjkb5wG-4Tbxb5XxNdAu1aTTtkZ9Q0JTEheP6fP_AKGsUWVd9Co012KAoCdy57g0WVoQsdblwUSTipBYi8odm_NE5LulsMinTiYzZ03PB9AJtvrCUOgF0-eZ_Sd-GLQ89w7N2rLyFV7begc1eg_BwtgtDUkTb5J34-RBxYUgyj_gWNpWr_0HlnlzcVR3aGrVZEnOty_sMMbg9uZ2ZcUNPYbtt8g5uLi-uz78wn3CB6TSKpywuIyMoBBmXWiayEjlHhKayMrUK7xzRUmpSnmvUciwiOS01rwxWjShNZKPkPazXTW0_QBhnNlNaSIVwCTGhKgVCCZHmCCekMJUMIJ7_7UL7aOSUFONXsYyjTBwqkEOF41DxFMDR4p37NhbHyt6dOTcKPy8nxZIVARwumnFGkZlE1bZ5pD6IYWLUQ-WqPgg7E7zSAPbaAbIgKaEcEwh9Ajiej5glAf-m9-NqevfhNaeTF879rQPr0_GjPYBN_Xt6Nxl3YS0bZa487cJG76I_GGLte_SVSv6j6-YFlsOrn38Bf68O7Q |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED91pdJ44WsDAmUEaXvarDaO45AHhPjYtKmlm6ZN2luW2I5AQknpByX_FH8jd07SaprWtz2QvMSyE53j893vbN8dwK5OeaKzjDMdaJ8JlaYsEUoyX2tFNVqmNs7sMByN3l9dRWct-Nv4wtCxykYmWkGtC0Vr5D0KmuLbcFwfx78YZY2i3dUmhUbFFgNTLtBkm344-Yrju8f50eHFl2NWZxVgKuh7M-alfS0ozhaXSvoyExFHGJKEaWASvCOEBIEOeKQQyhuEK0oqnmksapHqvun7-N0NeCDIEqKjgvx0uWsRBjb3LqpgFCLYoHbSqV31uCRfaDLefemxxU1FeAvd3tqZtQrv6PH_9quewKMaWrufqrnwFFomfwadzwXC33ILzsnQrpKTYnddxL0u6XTiS7fIbPlPiYqAssDlrsnRWic1Xh3pL9HGML3vpZ4U9ORWy0LbcHkv_XkO7bzIzUtwvdCEiRIyQTiImDdJBUIlEUQIl6TQmXTAa0Y3VnW0dUr68TNexYkmjoiRI2LLEfHCgf3lO-Mq1sja1t1m9ONa7kzj1dA78G5ZjRKDtoGS3BRzaoMYzUM7W65rg7Daxytw4EXFkEuSfMqhgdDOgYOGQ1cE3E3vq_X0voXN44tvw3h4Mhq8hoecvEzsUb8utGeTuXkDHfV79mM62bFzzoXr--bcfzc3ZJs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dT5xAEJ_oaUxftGqtqLWY1Ce7OViWRR6M8eui0Vwupia-IewuaRMDenf2yr_mX-cMH3cxxnvzofDChoUM8GPmN7s7MwA_dMJjnaacaV97TKgkYbFQknlaKzqjZVLmmb0Kut3929uwNwPPTSwMLatsdGKpqHWuaIy8TUlTvDIdVzutl0X0TjuHD4-MKkjRTGtTTqOCyKUpRui-DQ4uTvFb73LeOft1cs7qCgNM-Y47ZG7iaEE5t7hU0pOpCDlSkjhIfBPjHiI98LXPQ4W03iB1UVLxVGNTi0Q7xvHwvrMwFyDJEC2YOz7r9q7HcxiBX1biRYOMKkUIpw7ZqQP3uKTIaHLlPemy0Wuz-IbrvpmnLc1fZ-l_fnGfYbEm3fZR9Zcsw4zJVmD-OEdiXKzCNbngVdlSfHQbGbFN1p4Qa-dp2f5XoImg-nCZbTL048nAV4v9C_Q-TPt3ofs5HdnVgNEXuPmQ51mDVpZnZh1sNzBBrISMkSgiG44TgSRK-CESKSl0Ki1wmy8dqToPO5UDuY8mGaQJHRGiIyrREY0s2Btf81BlIZnae6tBQlRrpEE0gYEFO-PTqEtogijOTP5EfZC9ueiBy2l9kHB7uPkWfK3AORbJo-oaSPos-NmgdSLA-_JuTJf3OywgYKOri-7lJnziFH5SrgHcgtaw_2S-wbz6O_wz6G_XP6ANdx8N3RfFim64 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconsidering+the+function+of+the+xyloglucan+endotransglucosylase%2Fhydrolase+family&rft.jtitle=Journal+of+plant+research&rft.au=Ishida%2C+Konan&rft.au=Yokoyama%2C+Ryusuke&rft.date=2022-03-01&rft.issn=0918-9440&rft.eissn=1618-0860&rft.volume=135&rft.issue=2&rft.spage=145&rft.epage=156&rft_id=info:doi/10.1007%2Fs10265-021-01361-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10265_021_01361_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-9440&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-9440&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-9440&client=summon |