A fast and effective breakpoints heuristic algorithm for the quadratic knapsack problem
The Quadratic Knapsack Problem (QKP) involves selecting a subset of elements that maximizes the sum of pairwise and singleton utilities without exceeding a given budget. The pairwise utilities are nonnegative, the singleton utilities may be positive, negative, or zero, and the node costs are nonnega...
Uloženo v:
| Vydáno v: | European journal of operational research Ročník 323; číslo 2; s. 425 - 440 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.06.2025
|
| Témata: | |
| ISSN: | 0377-2217 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The Quadratic Knapsack Problem (QKP) involves selecting a subset of elements that maximizes the sum of pairwise and singleton utilities without exceeding a given budget. The pairwise utilities are nonnegative, the singleton utilities may be positive, negative, or zero, and the node costs are nonnegative. We introduce a Breakpoints Algorithm for QKP, named QKBP, which is based on a technique proposed in Hochbaum (2009) for efficiently generating the concave envelope of the solutions to the relaxation of the problem for all values of the budget. Our approach utilizes the fact that breakpoints in the concave envelopes are optimal solutions for their respective budgets. For budgets between breakpoints, a fast greedy heuristic derives high-quality solutions from the optimal solutions of adjacent breakpoints. The QKBP algorithm is a heuristic which is highly scalable due to an efficient parametric cut procedure used to generate the concave envelope. This efficiency is further improved by a newly developed compact problem formulation. Our extensive computational study on both existing and new benchmark instances, with up to 10,000 elements, shows that while some leading algorithms perform well on a few instances, QKBP consistently delivers high-quality solutions regardless of instance size, density, or budget. Moreover, QKBP achieves these results in significantly faster running times than all leading algorithms. The source code of the QKBP algorithm, the benchmark instances, and the detailed results are publicly available on GitHub.
•We introduce a new heuristic for the Quadratic Knapsack Problem.•Our heuristic is scalable, solving instances with thousands of elements in seconds.•Scalability comes from combining a parametric cut procedure with a greedy algorithm.•Effectiveness and robust performance is demonstrated in extensive computational tests. |
|---|---|
| ISSN: | 0377-2217 |
| DOI: | 10.1016/j.ejor.2024.12.019 |