Quantum Meets Fine-Grained Complexity: Sublinear Time Quantum Algorithms for String Problems
Longest common substring (LCS), longest palindrome substring (LPS), and Ulam distance (UL) are three fundamental string problems that can be classically solved in near linear time. In this work, we present sublinear time quantum algorithms for these problems along with quantum lower bounds. Our resu...
Uložené v:
| Vydané v: | Algorithmica Ročník 85; číslo 5; s. 1251 - 1286 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.05.2023
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0178-4617, 1432-0541 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Longest common substring (LCS), longest palindrome substring (LPS), and Ulam distance (UL) are three fundamental string problems that can be classically solved in near linear time. In this work, we present sublinear time quantum algorithms for these problems along with quantum lower bounds. Our results shed light on a very surprising fact: Although the classic solutions for LCS and LPS are almost identical (via suffix trees), their quantum computational complexities are different. While we give an exact
O
~
(
n
)
time algorithm for LPS, we prove that LCS needs at least time
Ω
~
(
n
2
/
3
)
even for 0/1 strings. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0178-4617 1432-0541 |
| DOI: | 10.1007/s00453-022-01066-z |