MAP estimation for hyperspectral image resolution enhancement using an auxiliary sensor

This paper presents a novel maximum a posteriori estimator for enhancing the spatial resolution of an image using co-registered high spatial-resolution imagery from an auxiliary sensor. Here, we focus on the use of high-resolution panchromatic data to enhance hyperspectral imagery. However, the esti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on image processing Ročník 13; číslo 9; s. 1174 - 1184
Hlavní autoři: Hardie, R.C., Eismann, M.T., Wilson, G.L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.09.2004
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1057-7149, 1941-0042
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper presents a novel maximum a posteriori estimator for enhancing the spatial resolution of an image using co-registered high spatial-resolution imagery from an auxiliary sensor. Here, we focus on the use of high-resolution panchromatic data to enhance hyperspectral imagery. However, the estimation framework developed allows for any number of spectral bands in the primary and auxiliary image. The proposed technique is suitable for applications where some correlation, either localized or global, exists between the auxiliary image and the image being enhanced. To exploit localized correlations, a spatially varying statistical model, based on vector quantization, is used. Another important aspect of the proposed algorithm is that it allows for the use of an accurate observation model relating the "true" scene with the low-resolutions observations. Experimental results with hyperspectral data derived from the airborne visible-infrared imaging spectrometer are presented to demonstrate the efficacy of the proposed estimator.
AbstractList This paper presents a novel maximum a posteriori estimator for enhancing the spatial resolution of an image using co-registered high spatial-resolution imagery from an auxiliary sensor. Here, we focus on the use of high-resolution panchomatic data to enhance hyperspectral imagery. However, the estimation framework developed allows for any number of spectral bands in the primary and auxiliary image. The proposed technique is suitable for applications where some correlation, either localized or global, exists between the auxiliary image and the image being enhanced. To exploit localized correlations, a spatially varying statistical model, based on vector quantization, is used. Another important aspect of the proposed algorithm is that it allows for the use of an accurate observation model relating the "true" scene with the low-resolutions observations. Experimental results with hyperspectral data derived from the airborne visible-infrared imaging spectrometer are presented to demonstrate the efficacy of the proposed estimator.
This paper presents a novel maximum a posteriori estimator for enhancing the spatial resolution of an image using co-registered high spatial-resolution imagery from an auxiliary sensor. Here, we focus on the use of high-resolution panchomatic data to enhance hyperspectral imagery. However, the estimation framework developed allows for any number of spectral bands in the primary and auxiliary image. The proposed technique is suitable for applications where some correlation, either localized or global, exists between the auxiliary image and the image being enhanced. To exploit localized correlations, a spatially varying statistical model, based on vector quantization, is used. Another important aspect of the proposed algorithm is that it allows for the use of an accurate observation model relating the "true" scene with the low-resolutions observations. Experimental results with hyperspectral data derived from the airborne visible-infrared imaging spectrometer are presented to demonstrate the efficacy of the proposed estimator.This paper presents a novel maximum a posteriori estimator for enhancing the spatial resolution of an image using co-registered high spatial-resolution imagery from an auxiliary sensor. Here, we focus on the use of high-resolution panchomatic data to enhance hyperspectral imagery. However, the estimation framework developed allows for any number of spectral bands in the primary and auxiliary image. The proposed technique is suitable for applications where some correlation, either localized or global, exists between the auxiliary image and the image being enhanced. To exploit localized correlations, a spatially varying statistical model, based on vector quantization, is used. Another important aspect of the proposed algorithm is that it allows for the use of an accurate observation model relating the "true" scene with the low-resolutions observations. Experimental results with hyperspectral data derived from the airborne visible-infrared imaging spectrometer are presented to demonstrate the efficacy of the proposed estimator.
This paper presents a novel maximum a posteriori estimator for enhancing the spatial resolution of an image using co-registered high spatial-resolution imagery from an auxiliary sensor. Here, we focus on the use of high-resolution panchromatic data to enhance hyperspectral imagery. However, the estimation framework developed allows for any number of spectral bands in the primary and auxiliary image. The proposed technique is suitable for applications where some correlation, either localized or global, exists between the auxiliary image and the image being enhanced. To exploit localized correlations, a spatially varying statistical model, based on vector quantization, is used. Another important aspect of the proposed algorithm is that it allows for the use of an accurate observation model relating the "true" scene with the low-resolutions observations. Experimental results with hyperspectral data derived from the airborne visible-infrared imaging spectrometer are presented to demonstrate the efficacy of the proposed estimator.
Author Eismann, M.T.
Wilson, G.L.
Hardie, R.C.
Author_xml – sequence: 1
  givenname: R.C.
  surname: Hardie
  fullname: Hardie, R.C.
  organization: Comput. Eng. & Electro-Opt. Program, Univ. of Dayton, USA
– sequence: 2
  givenname: M.T.
  surname: Eismann
  fullname: Eismann, M.T.
– sequence: 3
  givenname: G.L.
  surname: Wilson
  fullname: Wilson, G.L.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16023686$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15449580$$D View this record in MEDLINE/PubMed
BookMark eNqFkstrFTEUxoNU7EPXLgQZBHU1t3lMHmdZitpCxS4qLkMmc6ZNmZu5JjPg_e_N7b22ULBdJSS_7yTnfN8h2YtjRELeMrpgjMLx1fnlglPaLAwHreEFOWDQsLqc8L2yp1LXmjWwTw5zvqWUNZKpV2SfyaYBaegB-fX95LLCPIWlm8IYq35M1c16hSmv0E_JDVW5ucYqYR6H-Q7BeOOixyXGqZpziNeVi5Wb_4QhuLSuMsY8ptfkZe-GjG926xH5-fXL1elZffHj2_npyUXtG4CplppKZjpohOoV7zgq0RvJOW1bcFq1pu0oeM8FdCCYaXRHqWr7HrV3qkUtjsjnbd1VGn_PpRG7DNnjMLiI45wtUKYk1VoV8tOTpFLAqBHPg9wI4BI2b394BN6Oc4qlXWuMkKKUMwV6v4PmdomdXaUy0LS2_ywowMcd4LJ3Q5_KcEN-4BTlQpnNt-SW82nMOWFvfZjuTCs2hcEyajeRsCUSdhMJu41E0R0_0t2X_q_i3VYREPGBFlxQAPEX-Di_Ww
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_ACCESS_2020_2981690
crossref_primary_10_1109_TGRS_2017_2718728
crossref_primary_10_1109_JSTARS_2013_2267204
crossref_primary_10_1109_JSTARS_2020_3020586
crossref_primary_10_1109_TGRS_2020_2983063
crossref_primary_10_1109_TGRS_2009_2017737
crossref_primary_10_3389_fpls_2023_1280445
crossref_primary_10_1080_08839514_2024_2335101
crossref_primary_10_1109_LGRS_2022_3215281
crossref_primary_10_1109_JSTARS_2019_2900644
crossref_primary_10_3390_s23042341
crossref_primary_10_1109_TGRS_2004_837324
crossref_primary_10_1109_TGRS_2021_3063105
crossref_primary_10_1088_1742_5468_2015_10_P10008
crossref_primary_10_1109_TGRS_2012_2184122
crossref_primary_10_3390_rs11101173
crossref_primary_10_1109_JSTSP_2021_3054338
crossref_primary_10_1364_AO_48_002188
crossref_primary_10_3390_app11167365
crossref_primary_10_1109_LGRS_2018_2884087
crossref_primary_10_3390_info10110353
crossref_primary_10_1109_TGRS_2014_2298056
crossref_primary_10_1109_ACCESS_2020_2982494
crossref_primary_10_1109_ACCESS_2020_3009263
crossref_primary_10_1007_s11760_017_1217_1
crossref_primary_10_1016_j_patcog_2021_108280
crossref_primary_10_1109_TIP_2016_2576401
crossref_primary_10_3390_rs8030172
crossref_primary_10_3390_rs9111196
crossref_primary_10_1109_TGRS_2019_2918932
crossref_primary_10_1364_AO_46_007068
crossref_primary_10_3390_rs11030324
crossref_primary_10_1109_TGRS_2004_830644
crossref_primary_10_1111_j_1365_2966_2011_19480_x
crossref_primary_10_1109_LGRS_2011_2168598
crossref_primary_10_1109_LGRS_2013_2294476
crossref_primary_10_1109_JSTARS_2014_2356512
crossref_primary_10_1109_TGRS_2025_3553445
crossref_primary_10_3390_rs14184470
crossref_primary_10_1007_s11042_020_09952_w
crossref_primary_10_1109_TGRS_2012_2195666
crossref_primary_10_1080_01431161_2020_1782507
crossref_primary_10_1109_MGRS_2016_2637824
crossref_primary_10_1080_01431161_2016_1274444
crossref_primary_10_1109_TGRS_2014_2371812
crossref_primary_10_1364_AO_58_000850
crossref_primary_10_1109_TGRS_2022_3141765
crossref_primary_10_1109_JSTARS_2019_2908984
crossref_primary_10_1109_TIP_2018_2866954
crossref_primary_10_1080_2150704X_2021_1979270
crossref_primary_10_1186_1687_6180_2011_79
crossref_primary_10_1109_TNNLS_2023_3281355
crossref_primary_10_1109_ACCESS_2018_2879943
crossref_primary_10_3390_app10010237
crossref_primary_10_1109_JSTARS_2022_3140211
crossref_primary_10_1109_TGRS_2014_2375320
crossref_primary_10_1109_TGRS_2019_2924096
crossref_primary_10_1109_TGRS_2014_2311815
crossref_primary_10_1109_MGRS_2024_3509139
crossref_primary_10_1109_TGRS_2008_917270
crossref_primary_10_1109_TGRS_2016_2596290
crossref_primary_10_3390_rs17050825
crossref_primary_10_1016_j_asr_2025_07_100
crossref_primary_10_1016_j_knosys_2022_109878
crossref_primary_10_1109_JSTARS_2021_3075727
crossref_primary_10_1109_TIP_2019_2928895
crossref_primary_10_1080_01431161_2014_934402
crossref_primary_10_1109_TGRS_2017_2681721
crossref_primary_10_3390_rs70606828
crossref_primary_10_1109_TGRS_2019_2916654
crossref_primary_10_3390_rs10040592
crossref_primary_10_1109_MGRS_2015_2440094
crossref_primary_10_3390_jimaging4100118
crossref_primary_10_1007_s11432_007_0008_7
crossref_primary_10_1049_iet_spr_2016_0141
crossref_primary_10_1109_TGRS_2024_3388531
crossref_primary_10_1109_TCI_2017_2692645
crossref_primary_10_3390_rs15112853
crossref_primary_10_1109_TGRS_2023_3321318
crossref_primary_10_1109_LGRS_2008_915935
crossref_primary_10_1109_TGRS_2014_2381272
crossref_primary_10_1109_LGRS_2008_2000739
crossref_primary_10_3390_rs14041021
crossref_primary_10_1007_s00500_022_07291_6
crossref_primary_10_1117_1_JRS_16_036518
crossref_primary_10_1016_j_inffus_2020_08_008
crossref_primary_10_1109_JSTARS_2023_3344117
crossref_primary_10_1109_TIP_2018_2869727
crossref_primary_10_1007_s11432_022_3609_4
crossref_primary_10_1109_TPAMI_2025_3545605
crossref_primary_10_3390_app10175809
crossref_primary_10_1007_s11045_016_0415_2
crossref_primary_10_1016_j_sigpro_2020_107734
crossref_primary_10_1109_ACCESS_2018_2850340
crossref_primary_10_1109_JSTARS_2023_3242048
crossref_primary_10_3390_rs15010207
crossref_primary_10_1109_TCI_2017_2703987
crossref_primary_10_1109_TGRS_2019_2946803
crossref_primary_10_3390_s24041267
crossref_primary_10_1109_MGRS_2018_2890023
crossref_primary_10_1080_10106049_2020_1818855
crossref_primary_10_1109_TGRS_2024_3415121
crossref_primary_10_1186_s13673_020_00215_z
crossref_primary_10_1109_JSEN_2022_3201226
crossref_primary_10_1016_j_inffus_2020_08_013
crossref_primary_10_1109_JSTARS_2022_3199207
crossref_primary_10_1109_JSTARS_2015_2440092
crossref_primary_10_1109_TGRS_2023_3269074
crossref_primary_10_1109_TNNLS_2019_2920857
crossref_primary_10_3390_rs16071248
crossref_primary_10_1364_AO_43_006596
crossref_primary_10_1016_j_ijleo_2014_01_005
crossref_primary_10_1016_j_optcom_2022_128464
crossref_primary_10_1109_TNNLS_2021_3056181
crossref_primary_10_1016_j_inffus_2013_08_005
crossref_primary_10_1109_TGRS_2022_3159999
crossref_primary_10_1109_TIP_2007_899598
crossref_primary_10_1109_TIP_2021_3098246
crossref_primary_10_3390_rs10091416
crossref_primary_10_1109_TGRS_2016_2598784
crossref_primary_10_3390_rs15020354
crossref_primary_10_1007_s11432_022_3588_0
crossref_primary_10_3390_rs17040666
crossref_primary_10_1109_ACCESS_2019_2961240
crossref_primary_10_1109_TGRS_2023_3250621
crossref_primary_10_3390_rs9050443
crossref_primary_10_3390_rs14225890
crossref_primary_10_1109_TGRS_2011_2161320
crossref_primary_10_1016_j_infrared_2021_103631
crossref_primary_10_3390_rs13152930
crossref_primary_10_1109_TGRS_2016_2623626
crossref_primary_10_3390_rs17111947
crossref_primary_10_1109_TIP_2018_2836307
crossref_primary_10_1016_j_knosys_2025_113755
crossref_primary_10_1016_j_patcog_2025_112374
crossref_primary_10_1109_TCI_2022_3214149
crossref_primary_10_3390_app11010288
crossref_primary_10_1016_j_aeue_2015_11_004
crossref_primary_10_1016_j_inffus_2024_102803
crossref_primary_10_1109_TNNLS_2020_2980398
crossref_primary_10_1088_1755_1315_34_1_012042
crossref_primary_10_1016_j_patcog_2012_10_030
crossref_primary_10_1016_j_cviu_2025_104382
crossref_primary_10_3390_rs9111139
crossref_primary_10_1109_TGRS_2020_3000267
crossref_primary_10_1109_JSTARS_2017_2785411
crossref_primary_10_1016_j_inffus_2018_11_012
crossref_primary_10_1109_TIP_2015_2458572
crossref_primary_10_1109_JSTARS_2019_2902847
crossref_primary_10_1109_TGRS_2018_2798663
crossref_primary_10_1080_19479832_2010_551522
crossref_primary_10_1109_TGRS_2020_2994238
crossref_primary_10_1109_TGRS_2017_2766080
crossref_primary_10_1109_JSTSP_2015_2407855
crossref_primary_10_1109_TGRS_2021_3124240
crossref_primary_10_1145_3386313
crossref_primary_10_3390_s18113598
Cites_doi 10.1109/IGARSS.1995.519644
10.1117/12.179787
10.1109/TSMC.1976.4309486
10.1016/S0034-4257(97)00090-4
10.1117/1.601623
10.1117/12.257182
10.1109/83.650116
10.1109/IGARSS.1995.524134
10.1117/12.21332
10.1016/S0034-4257(99)00074-7
10.1117/12.478792
10.1109/36.536531
10.1109/TCOM.1980.1094577
10.1117/12.173573
10.1016/0034-4257(87)90049-6
ContentType Journal Article
Copyright 2004 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004
Copyright_xml – notice: 2004 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004
DBID RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TIP.2004.829779
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList MEDLINE
MEDLINE - Academic
Computer and Information Systems Abstracts

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 1184
ExternalDocumentID 2426200031
15449580
16023686
10_1109_TIP_2004_829779
1323099
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Comparative Study
Evaluation Studies
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c499t-570518d9436f62d2e63f85220bb9a76b8bd09cc239d931847d006bffe7ca6be73
IEDL.DBID RIE
ISICitedReferencesCount 229
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000223356600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
IngestDate Sun Nov 09 14:11:44 EST 2025
Sun Nov 09 10:32:50 EST 2025
Sat Sep 27 20:08:01 EDT 2025
Fri Jul 25 08:41:06 EDT 2025
Wed Feb 19 01:46:58 EST 2025
Mon Jul 21 09:11:02 EDT 2025
Tue Nov 18 21:43:02 EST 2025
Sat Nov 29 08:02:22 EST 2025
Tue Aug 26 16:39:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Parameter estimation
maximum a posteriori (MAP) estimation
Multisensor
Vector quantization
Image processing
Hyperspectral
resolution enhancement
multispectral
Hyperspectral imaging sensor
Statistical model
A posteriori estimation
panchromatic sharpening
Spatial resolution
Image enhancement
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c499t-570518d9436f62d2e63f85220bb9a76b8bd09cc239d931847d006bffe7ca6be73
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Undefined-3
PMID 15449580
PQID 883531088
PQPubID 23500
PageCount 11
ParticipantIDs pubmed_primary_15449580
proquest_miscellaneous_28392597
proquest_journals_883531088
crossref_primary_10_1109_TIP_2004_829779
proquest_miscellaneous_901650776
crossref_citationtrail_10_1109_TIP_2004_829779
ieee_primary_1323099
proquest_miscellaneous_66910836
pascalfrancis_primary_16023686
PublicationCentury 2000
PublicationDate 2004-09-01
PublicationDateYYYYMMDD 2004-09-01
PublicationDate_xml – month: 09
  year: 2004
  text: 2004-09-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2004
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Chavez (ref4) 1991; 57
ref13
Munechika (ref6) 1993; 59
ref12
ref15
ref14
ref20
Shettigara (ref5) 1992; 58
ref11
Schowengerdt (ref1) 1980; 46
ref10
Ranchin (ref16) 2000; 66
ref21
ref2
Carper (ref3) 1990; 56
Kay (ref17) 1993
ref19
ref18
ref8
ref7
ref9
Porter (ref22) 1990; 1298
References_xml – volume: 46
  start-page: 1325
  issue: 10
  year: 1980
  ident: ref1
  article-title: Reconstruction of multispatial, multispectral image data using spatial frequency content
  publication-title: Photogramm. Eng. Remote Sens.
– ident: ref10
  doi: 10.1109/IGARSS.1995.519644
– ident: ref7
  doi: 10.1117/12.179787
– ident: ref20
  doi: 10.1109/TSMC.1976.4309486
– volume-title: Fundamentals of Statistical Signal Processing: Estimation Theory
  year: 1993
  ident: ref17
– ident: ref13
  doi: 10.1016/S0034-4257(97)00090-4
– ident: ref18
  doi: 10.1117/1.601623
– ident: ref12
  doi: 10.1117/12.257182
– ident: ref19
  doi: 10.1109/83.650116
– volume: 66
  start-page: 49
  year: 2000
  ident: ref16
  article-title: Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation
  publication-title: Photogramm. Eng. Remote Sens.
– ident: ref9
  doi: 10.1109/IGARSS.1995.524134
– volume: 1298
  start-page: 11
  year: 1990
  ident: ref22
  article-title: Evolution of the airborne visible/infrared imaging spectrometer (AVIRIS) flight and ground data processing system
  publication-title: Proc. SPIE
  doi: 10.1117/12.21332
– volume: 59
  start-page: 67
  year: 1993
  ident: ref6
  article-title: Resolution enhancement of multispectral image data to improve classification accuracy
  publication-title: Photogramm. Eng. Remote Sens.
– ident: ref14
  doi: 10.1016/S0034-4257(99)00074-7
– ident: ref15
  doi: 10.1117/12.478792
– ident: ref11
  doi: 10.1109/36.536531
– volume: 56
  year: 1990
  ident: ref3
  article-title: The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data
  publication-title: Photogramm. Eng. Remote Sens.
– ident: ref21
  doi: 10.1109/TCOM.1980.1094577
– volume: 58
  start-page: 561
  year: 1992
  ident: ref5
  article-title: A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set
  publication-title: Photogramm. Eng. Remote Sens.
– ident: ref8
  doi: 10.1117/12.173573
– volume: 57
  start-page: 295
  issue: 3
  year: 1991
  ident: ref4
  article-title: Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic
  publication-title: Photogramm. Eng. Remote Sens.
– ident: ref2
  doi: 10.1016/0034-4257(87)90049-6
SSID ssj0014516
Score 2.2891777
Snippet This paper presents a novel maximum a posteriori estimator for enhancing the spatial resolution of an image using co-registered high spatial-resolution imagery...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1174
SubjectTerms Algorithms
Applied sciences
Artificial intelligence
Computer science; control theory; systems
Computer Simulation
Correlation
Effectiveness
Estimators
Exact sciences and technology
Hyperspectral imaging
Hyperspectral sensors
Image Enhancement - instrumentation
Image Enhancement - methods
Image Interpretation, Computer-Assisted - instrumentation
Image Interpretation, Computer-Assisted - methods
Image processing
Image resolution
Image sensors
Imagery
Information Storage and Retrieval - methods
Information, signal and communications theory
Layout
Maximum a posteriori estimation
Models, Statistical
Numerical Analysis, Computer-Assisted
Optical imaging
Pattern Recognition, Automated
Pattern recognition. Digital image processing. Computational geometry
Reproducibility of Results
Sensitivity and Specificity
Sensors
Signal processing
Signal Processing, Computer-Assisted
Spatial resolution
Spectral bands
Spectroscopy
Subtraction Technique
Telecommunications and information theory
Transducers
Vector quantization
Title MAP estimation for hyperspectral image resolution enhancement using an auxiliary sensor
URI https://ieeexplore.ieee.org/document/1323099
https://www.ncbi.nlm.nih.gov/pubmed/15449580
https://www.proquest.com/docview/883531088
https://www.proquest.com/docview/28392597
https://www.proquest.com/docview/66910836
https://www.proquest.com/docview/901650776
Volume 13
WOSCitedRecordID wos000223356600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4B4kAPUB6lLm3YA4cecEj82McRVUWtBCgHELlZ6_UaIiGnshME_74zu0tCJXLozdJOYiczk_2-7HwzACe4x6pMKxmnWos4qwymlKqGsTAJbUhZKrkTCl-K62s5HqvRGpwutDDWWld8Zvt06c7yq6mZ019lZ8icUkQ067AuBPdarcWJAQ2cdSebuYgFwv7Qxmc4UGc3v0eOCPZJRipcn9A8Q2JArSDfbEZuugrVRuoOv57az7VYDTzdBnSx83-P_hG2A9Bk5z4ydmHNNnuwE0AnCynd7cGHNx0J9-Hu6nzEqPGGVzQyhLTsAamqV2S2-Ia4cm8ZkvQQs8w2DxQ5dH9GVfT3TDdMz58njxPdvrAOefK0PYDbi583P37FYfZCbJADzeJcYLbKSmUpr3lSJZantUSsNihLpQUvZVkNlDFJqiqFPwuZqDB9y7q2wmheWpF-go1m2tjPwNCIBOt5nZMWBS8zM7QII0uL3A7RUQT9VycUJjQmp_kYj4UjKANVoANpXGZWeAdG8H3xgj--J8dq033yxdLMuyGC3j9eXq5z6qgveQRHr24vQlJ3hUS0imhYygiOF6uYjXTEohs7nXdFQngTOdpqC84RoMkU78BWWChSmFGXpQgOfcAtHy_E7Zf3P9YRbPnCIiqB-wobs3Zuv8GmeZpNuraHWTOWPZc1fwE_2BCy
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5RqFR6KC304fLaQw891CHxYx9HhECghiiHVOVmrddriIQcZCdV--87s7skVGoO3CzteP2YGe833plvAL7gGqsyrWScai3irDLoUqoaxMIktCBlqeSuUHgoRiN5c6PGG_BtWQtjrXXJZ7ZHh24vv5qZBf0qO8HIKUVE8wK2qHNWqNZa7hlQy1m3t5mLWCDwD0Q-g746mVyNXSjYo0JS4ZhCcQaVExnkk-XI9Veh7Ejd4QuqfWeL9dDTLUEXO8-7-bfwJkBNdupt4x1s2GYXdgLsZMGpu114_YSTcA9-Xp-OGVFv-JpGhqCW3WGw6msyW5wQR24twzA9WC2zzR3ZDl2fUR79LdMN04vf0_upbv-wDiPlWfseflycT84u49B9ITYYBc3jXKC_ykplKa95UiWWp7VEtNYvS6UFL2VZ9ZUxSaoqhR-GTFTowGVdW2E0L61IP8BmM2vsJ2AoRCXreZ1TNQoeZmZgEUiWFqM7xEcR9B6VUJhATU4dMu4LF6L0VYEKpIaZWeEVGMHX5QkPnpVjvege6WIl5tUQwdE_Wl6Nc-LUlzyC_Ue1F8Gtu0IiXkU8LGUEx8tR9EfaZNGNnS26IiHEiVHaegnOEaLJFK_A1kgoqjEjnqUIPnqDW91esNvP_3-sY3h1ObkeFsOr0fd92PZpRpQQdwCb83ZhD-Gl-TWfdu2R852_JLATEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MAP+estimation+for+hyperspectral+image+resolution+enhancement+using+an+auxiliary+sensor&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Hardie%2C+Russell+C&rft.au=Eismann%2C+Michael+T&rft.au=Wilson%2C+Gregory+L&rft.date=2004-09-01&rft.issn=1057-7149&rft.volume=13&rft.issue=9&rft.spage=1174&rft_id=info:doi/10.1109%2FTIP.2004.829779&rft_id=info%3Apmid%2F15449580&rft.externalDocID=15449580
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon