Progenitors in the adult cerebral cortex: Cell cycle properties and regulation by physiological stimuli and injury

The adult brain parenchyma contains a widespread population of progenitors generating different cells of the oligodendrocyte lineage such as NG2+ cells and some mature oligodendrocytes. However, it is still largely unknown how proliferation and lineage decisions of these progenitors are regulated. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glia Jg. 59; H. 6; S. 869 - 881
Hauptverfasser: Simon, Christiane, Götz, Magdalena, Dimou, Leda
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.06.2011
Schlagworte:
ISSN:0894-1491, 1098-1136, 1098-1136
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The adult brain parenchyma contains a widespread population of progenitors generating different cells of the oligodendrocyte lineage such as NG2+ cells and some mature oligodendrocytes. However, it is still largely unknown how proliferation and lineage decisions of these progenitors are regulated. Here, we first characterized the cell cycle length, proliferative fraction, and progeny of dividing cells in the adult cerebral cortex and then compared these proliferation characteristics after two distinct stimuli, invasive acute brain injury and increased physiological activity by voluntary physical exercise. Our data show that adult parenchymal progenitors have a very long cell cycle due to an extended G1 phase, many of them can divide at least twice and only a limited proportion of the progeny differentiates into mature oligodendrocytes. After stab wound injury, however, many of these progenitors re‐enter the cell cycle very fast, suggesting that the normally long G1 phase is subject to regulation and can be abruptly shortened. In striking contrast, voluntary physical exercise shows the opposite effect with increased exit of the cell cycle followed by an enhanced and fast differentiation into mature oligodendrocytes. Taken together, our data demonstrate that the endogenous population of adult brain parenchymal progenitors is subject to profound modulation by environmental stimuli in both directions, either faster proliferation or faster differentiation. © 2011 Wiley‐Liss, Inc.
AbstractList The adult brain parenchyma contains a widespread population of progenitors generating different cells of the oligodendrocyte lineage such as NG2+ cells and some mature oligodendrocytes. However, it is still largely unknown how proliferation and lineage decisions of these progenitors are regulated. Here, we first characterized the cell cycle length, proliferative fraction, and progeny of dividing cells in the adult cerebral cortex and then compared these proliferation characteristics after two distinct stimuli, invasive acute brain injury and increased physiological activity by voluntary physical exercise. Our data show that adult parenchymal progenitors have a very long cell cycle due to an extended G1 phase, many of them can divide at least twice and only a limited proportion of the progeny differentiates into mature oligodendrocytes. After stab wound injury, however, many of these progenitors re-enter the cell cycle very fast, suggesting that the normally long G1 phase is subject to regulation and can be abruptly shortened. In striking contrast, voluntary physical exercise shows the opposite effect with increased exit of the cell cycle followed by an enhanced and fast differentiation into mature oligodendrocytes. Taken together, our data demonstrate that the endogenous population of adult brain parenchymal progenitors is subject to profound modulation by environmental stimuli in both directions, either faster proliferation or faster differentiation.The adult brain parenchyma contains a widespread population of progenitors generating different cells of the oligodendrocyte lineage such as NG2+ cells and some mature oligodendrocytes. However, it is still largely unknown how proliferation and lineage decisions of these progenitors are regulated. Here, we first characterized the cell cycle length, proliferative fraction, and progeny of dividing cells in the adult cerebral cortex and then compared these proliferation characteristics after two distinct stimuli, invasive acute brain injury and increased physiological activity by voluntary physical exercise. Our data show that adult parenchymal progenitors have a very long cell cycle due to an extended G1 phase, many of them can divide at least twice and only a limited proportion of the progeny differentiates into mature oligodendrocytes. After stab wound injury, however, many of these progenitors re-enter the cell cycle very fast, suggesting that the normally long G1 phase is subject to regulation and can be abruptly shortened. In striking contrast, voluntary physical exercise shows the opposite effect with increased exit of the cell cycle followed by an enhanced and fast differentiation into mature oligodendrocytes. Taken together, our data demonstrate that the endogenous population of adult brain parenchymal progenitors is subject to profound modulation by environmental stimuli in both directions, either faster proliferation or faster differentiation.
The adult brain parenchyma contains a widespread population of progenitors generating different cells of the oligodendrocyte lineage such as NG2+ cells and some mature oligodendrocytes. However, it is still largely unknown how proliferation and lineage decisions of these progenitors are regulated. Here, we first characterized the cell cycle length, proliferative fraction, and progeny of dividing cells in the adult cerebral cortex and then compared these proliferation characteristics after two distinct stimuli, invasive acute brain injury and increased physiological activity by voluntary physical exercise. Our data show that adult parenchymal progenitors have a very long cell cycle due to an extended G1 phase, many of them can divide at least twice and only a limited proportion of the progeny differentiates into mature oligodendrocytes. After stab wound injury, however, many of these progenitors re-enter the cell cycle very fast, suggesting that the normally long G1 phase is subject to regulation and can be abruptly shortened. In striking contrast, voluntary physical exercise shows the opposite effect with increased exit of the cell cycle followed by an enhanced and fast differentiation into mature oligodendrocytes. Taken together, our data demonstrate that the endogenous population of adult brain parenchymal progenitors is subject to profound modulation by environmental stimuli in both directions, either faster proliferation or faster differentiation. [copy 2011 Wiley-Liss, Inc.
The adult brain parenchyma contains a widespread population of progenitors generating different cells of the oligodendrocyte lineage such as NG2+ cells and some mature oligodendrocytes. However, it is still largely unknown how proliferation and lineage decisions of these progenitors are regulated. Here, we first characterized the cell cycle length, proliferative fraction, and progeny of dividing cells in the adult cerebral cortex and then compared these proliferation characteristics after two distinct stimuli, invasive acute brain injury and increased physiological activity by voluntary physical exercise. Our data show that adult parenchymal progenitors have a very long cell cycle due to an extended G1 phase, many of them can divide at least twice and only a limited proportion of the progeny differentiates into mature oligodendrocytes. After stab wound injury, however, many of these progenitors re‐enter the cell cycle very fast, suggesting that the normally long G1 phase is subject to regulation and can be abruptly shortened. In striking contrast, voluntary physical exercise shows the opposite effect with increased exit of the cell cycle followed by an enhanced and fast differentiation into mature oligodendrocytes. Taken together, our data demonstrate that the endogenous population of adult brain parenchymal progenitors is subject to profound modulation by environmental stimuli in both directions, either faster proliferation or faster differentiation. © 2011 Wiley‐Liss, Inc.
The adult brain parenchyma contains a widespread population of progenitors generating different cells of the oligodendrocyte lineage such as NG2+ cells and some mature oligodendrocytes. However, it is still largely unknown how proliferation and lineage decisions of these progenitors are regulated. Here, we first characterized the cell cycle length, proliferative fraction, and progeny of dividing cells in the adult cerebral cortex and then compared these proliferation characteristics after two distinct stimuli, invasive acute brain injury and increased physiological activity by voluntary physical exercise. Our data show that adult parenchymal progenitors have a very long cell cycle due to an extended G1 phase, many of them can divide at least twice and only a limited proportion of the progeny differentiates into mature oligodendrocytes. After stab wound injury, however, many of these progenitors re-enter the cell cycle very fast, suggesting that the normally long G1 phase is subject to regulation and can be abruptly shortened. In striking contrast, voluntary physical exercise shows the opposite effect with increased exit of the cell cycle followed by an enhanced and fast differentiation into mature oligodendrocytes. Taken together, our data demonstrate that the endogenous population of adult brain parenchymal progenitors is subject to profound modulation by environmental stimuli in both directions, either faster proliferation or faster differentiation. ? 2011 Wiley-Liss, Inc.
The adult brain parenchyma contains a widespread population of progenitors generating different cells of the oligodendrocyte lineage such as NG2+ cells and some mature oligodendrocytes. However, it is still largely unknown how proliferation and lineage decisions of these progenitors are regulated. Here, we first characterized the cell cycle length, proliferative fraction, and progeny of dividing cells in the adult cerebral cortex and then compared these proliferation characteristics after two distinct stimuli, invasive acute brain injury and increased physiological activity by voluntary physical exercise. Our data show that adult parenchymal progenitors have a very long cell cycle due to an extended G1 phase, many of them can divide at least twice and only a limited proportion of the progeny differentiates into mature oligodendrocytes. After stab wound injury, however, many of these progenitors re-enter the cell cycle very fast, suggesting that the normally long G1 phase is subject to regulation and can be abruptly shortened. In striking contrast, voluntary physical exercise shows the opposite effect with increased exit of the cell cycle followed by an enhanced and fast differentiation into mature oligodendrocytes. Taken together, our data demonstrate that the endogenous population of adult brain parenchymal progenitors is subject to profound modulation by environmental stimuli in both directions, either faster proliferation or faster differentiation.
Author Dimou, Leda
Götz, Magdalena
Simon, Christiane
Author_xml – sequence: 1
  givenname: Christiane
  surname: Simon
  fullname: Simon, Christiane
  organization: Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Germany
– sequence: 2
  givenname: Magdalena
  surname: Götz
  fullname: Götz, Magdalena
  organization: Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Germany
– sequence: 3
  givenname: Leda
  surname: Dimou
  fullname: Dimou, Leda
  email: leda.dimou@lrz.uni-muenchen.de
  organization: Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21446038$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1vEzEQxS1URNPChT8A-QaqtGXG3k9uVUTTSuHjAIKb5XXGqYuzm9q7gv3vcZOGA0LlNBrp955m3jthR13fEWMvEc4RQLxde6fPBWJRPmEzhKbOEGV5xGZQN3mGeYPH7CTGWwBMS_WMHQvM8xJkPWPhc-jX1LmhD5G7jg83xPVq9AM3FKgN2nPTh4F-veNz8mmZjCe-Df2WwuAoct2teKD16PXg-o63E9_eTNH1vl87k9RxcJvRux3nutsxTM_ZU6t9pBcP85R9vXz_ZX6VLT8trucXy8zkTV1muSx1K4zFxlqhLYi2LGxlGitzslBUlQFCS1jnVWGwajCXtkECIyCXKyR5yl7vfdO1dyPFQW1cNOkJ3VE_RlWXQtQpkiaRbx4lUQpZg4Q0_otCOqXESkBCXz2gY7uhldoGt9FhUofwEwB7wIQ-xkBWGTfsYhyCdj55qft-1X2_atdvkpz9JTm4_hPGPfzTeZoeIdVieX1x0GR7jYup9D8aHX6ospJVob59XKjvBZQfKgB1JX8DpJbEqg
CitedBy_id crossref_primary_10_3389_fcell_2021_662056
crossref_primary_10_1155_2013_354136
crossref_primary_10_1016_j_ccr_2011_08_011
crossref_primary_10_1016_j_neuron_2011_05_013
crossref_primary_10_1155_2014_217503
crossref_primary_10_1038_s41593_021_00917_2
crossref_primary_10_1016_j_molmed_2017_04_005
crossref_primary_10_3390_cells10102794
crossref_primary_10_3389_fncel_2018_00231
crossref_primary_10_1111_jnc_13354
crossref_primary_10_1080_14737175_2017_1287564
crossref_primary_10_1002_glia_23301
crossref_primary_10_1038_s41467_024_46625_w
crossref_primary_10_3389_fncel_2017_00024
crossref_primary_10_1016_j_ejphar_2023_175943
crossref_primary_10_1016_j_gde_2015_07_004
crossref_primary_10_1016_j_jbc_2022_102602
crossref_primary_10_1016_j_neuron_2013_01_006
crossref_primary_10_1038_nrn4023
crossref_primary_10_1016_j_expneurol_2017_09_011
crossref_primary_10_15252_embr_201745294
crossref_primary_10_1667_RR14737_1
crossref_primary_10_1038_s41598_024_52337_4
crossref_primary_10_1038_nn_4351
crossref_primary_10_1186_scrt473
crossref_primary_10_1002_glia_21237
crossref_primary_10_1038_nn_3815
crossref_primary_10_1111_j_1365_2990_2012_01301_x
crossref_primary_10_1093_cercor_bhx112
crossref_primary_10_1002_glia_23893
crossref_primary_10_1002_dneu_22590
crossref_primary_10_4137_JEN_S25520
crossref_primary_10_1016_j_brainres_2015_08_013
crossref_primary_10_1177_10507256251372171
crossref_primary_10_1111_bpa_12189
crossref_primary_10_1093_brain_awad421
crossref_primary_10_7554_eLife_28080
crossref_primary_10_1002_glia_22432
crossref_primary_10_1002_glia_22554
crossref_primary_10_1002_glia_22555
crossref_primary_10_1002_glia_22799
crossref_primary_10_1016_j_jneuroim_2024_578286
crossref_primary_10_1007_s11302_013_9366_3
crossref_primary_10_1371_journal_pone_0163841
crossref_primary_10_1126_science_1254960
crossref_primary_10_1002_cne_23618
crossref_primary_10_1016_j_neuroscience_2013_10_018
crossref_primary_10_1038_nn_3371
crossref_primary_10_1016_j_bbr_2017_04_027
crossref_primary_10_1371_journal_pone_0257395
crossref_primary_10_3390_jcm9061681
crossref_primary_10_1002_glia_22664
crossref_primary_10_3390_cells9051279
crossref_primary_10_1016_j_ibneur_2021_06_004
crossref_primary_10_3389_fcell_2021_665409
crossref_primary_10_1038_s42003_021_02404_7
crossref_primary_10_1016_j_pneurobio_2018_06_005
crossref_primary_10_1016_j_nbd_2011_05_021
crossref_primary_10_3389_fnins_2023_1237176
crossref_primary_10_1002_glia_23629
crossref_primary_10_1016_j_neures_2017_11_012
crossref_primary_10_1097_NEN_0000000000000038
crossref_primary_10_1002_glia_22898
crossref_primary_10_1038_ncb2736
crossref_primary_10_3390_ijms24087079
crossref_primary_10_1002_glia_24155
crossref_primary_10_1242_dev_092262
crossref_primary_10_1038_s41598_022_17081_7
crossref_primary_10_1371_journal_pone_0063258
crossref_primary_10_1002_glia_23617
crossref_primary_10_1152_physrev_00036_2013
crossref_primary_10_1038_s44319_025_00529_y
crossref_primary_10_1002_glia_22646
crossref_primary_10_1016_j_nicl_2018_02_021
crossref_primary_10_1002_glia_22648
crossref_primary_10_1002_glia_23055
crossref_primary_10_1007_s11033_022_07508_9
crossref_primary_10_1016_j_brainres_2015_09_012
crossref_primary_10_1016_j_neulet_2012_02_023
crossref_primary_10_1177_0300985818777794
crossref_primary_10_1242_jcs_151043
crossref_primary_10_3390_cells11030520
crossref_primary_10_1002_glia_24388
crossref_primary_10_1007_s11626_013_9709_y
crossref_primary_10_1038_s41593_018_0120_6
crossref_primary_10_2478_rrlm_2020_0005
crossref_primary_10_1002_glia_23607
crossref_primary_10_1016_j_molmed_2018_09_001
crossref_primary_10_3390_cells9061538
crossref_primary_10_1080_01616412_2020_1773629
crossref_primary_10_1002_bies_201400127
crossref_primary_10_1002_glia_23164
crossref_primary_10_1038_s41398_019_0662_8
crossref_primary_10_1002_hipo_22232
crossref_primary_10_1016_j_neuropharm_2012_01_015
crossref_primary_10_1002_glia_23288
crossref_primary_10_1002_glia_22750
crossref_primary_10_3390_cells10082045
crossref_primary_10_3389_fnins_2021_677988
crossref_primary_10_1111_cns_12690
crossref_primary_10_2337_db13_1762
crossref_primary_10_1002_glia_22506
crossref_primary_10_1007_s12272_019_01133_0
crossref_primary_10_1007_s11064_017_2343_4
crossref_primary_10_3389_fnins_2014_00122
crossref_primary_10_1371_journal_pbio_1001993
crossref_primary_10_1016_j_neulet_2019_134645
crossref_primary_10_1038_s41598_018_24385_0
crossref_primary_10_1016_j_pneurobio_2018_07_004
crossref_primary_10_4252_wjsc_v12_i1_8
crossref_primary_10_1016_j_exger_2023_112293
crossref_primary_10_3390_ijms19020331
crossref_primary_10_1002_glia_22859
crossref_primary_10_1016_j_neuropharm_2016_04_026
crossref_primary_10_1002_glia_22850
crossref_primary_10_3389_fnins_2014_00133
crossref_primary_10_1371_journal_pone_0036816
crossref_primary_10_1002_glia_24117
crossref_primary_10_1002_glia_23702
crossref_primary_10_1016_j_neuint_2024_105742
crossref_primary_10_1002_glia_24471
crossref_primary_10_1016_j_nbd_2024_106610
crossref_primary_10_1016_j_bcp_2017_05_008
crossref_primary_10_1002_glia_22295
crossref_primary_10_1038_nn_3505
crossref_primary_10_1038_nn_3503
crossref_primary_10_1096_fj_202200463R
crossref_primary_10_4103_1673_5374_270292
crossref_primary_10_3390_ijms21051852
crossref_primary_10_3390_brainsci7100131
crossref_primary_10_1016_j_neuron_2017_11_026
crossref_primary_10_2174_0929867326666190717112944
crossref_primary_10_1016_j_neuropharm_2015_09_016
crossref_primary_10_1002_glia_23936
crossref_primary_10_1007_s12264_013_1320_4
crossref_primary_10_1016_j_neurobiolaging_2014_02_028
crossref_primary_10_1007_s12035_013_8549_9
crossref_primary_10_1038_nn_3191
crossref_primary_10_3389_fncel_2020_00042
crossref_primary_10_1016_j_neuroscience_2013_10_075
crossref_primary_10_1177_17590914231155976
crossref_primary_10_1002_glia_23019
crossref_primary_10_1038_s41598_023_48926_4
crossref_primary_10_1016_j_neuron_2017_07_009
crossref_primary_10_2147_NDT_S247497
crossref_primary_10_3389_fnins_2014_00145
crossref_primary_10_1007_s13311_018_0630_7
crossref_primary_10_3390_ijms19092724
crossref_primary_10_1002_glia_24342
crossref_primary_10_1002_glia_23256
crossref_primary_10_1186_s13024_023_00616_5
crossref_primary_10_1016_j_neuroscience_2017_08_018
crossref_primary_10_1186_s12868_017_0347_2
crossref_primary_10_1016_j_expneurol_2024_115125
crossref_primary_10_3389_fneur_2019_01149
crossref_primary_10_1002_mds_27364
crossref_primary_10_1016_j_brainres_2015_06_003
crossref_primary_10_1515_tnsci_2020_0004
crossref_primary_10_1146_annurev_genet_071719_023616
crossref_primary_10_1186_s13041_019_0506_8
crossref_primary_10_1002_cne_23693
crossref_primary_10_1016_j_bbi_2019_11_017
crossref_primary_10_1016_j_tins_2017_06_009
crossref_primary_10_1016_j_brainres_2015_06_009
crossref_primary_10_1523_JNEUROSCI_1067_18_2018
crossref_primary_10_1016_j_expneurol_2018_08_010
crossref_primary_10_1007_s00018_013_1365_6
crossref_primary_10_1016_j_neuroimage_2021_118305
crossref_primary_10_1016_j_freeradbiomed_2024_10_298
crossref_primary_10_1016_j_tins_2016_02_001
crossref_primary_10_1007_s00418_011_0865_4
crossref_primary_10_1016_j_sleep_2019_02_020
crossref_primary_10_1089_neu_2019_6938
crossref_primary_10_1002_dneu_22539
crossref_primary_10_1038_s41583_020_00379_8
crossref_primary_10_1002_glia_22269
crossref_primary_10_1002_glia_23116
crossref_primary_10_3389_fncel_2018_00428
crossref_primary_10_1016_j_neulet_2019_134601
crossref_primary_10_1523_JNEUROSCI_5102_12_2013
crossref_primary_10_1016_j_brainres_2015_07_026
crossref_primary_10_3389_fncel_2024_1528918
crossref_primary_10_1007_s00401_021_02390_4
crossref_primary_10_1371_journal_pone_0145334
crossref_primary_10_1371_journal_pone_0127222
crossref_primary_10_4103_1673_5374_286950
crossref_primary_10_1016_j_neures_2020_12_005
crossref_primary_10_1016_j_bbi_2016_01_005
crossref_primary_10_1007_s12035_017_0647_7
crossref_primary_10_1523_JNEUROSCI_5885_12_2013
crossref_primary_10_1007_s13402_024_01007_8
crossref_primary_10_3389_fncel_2021_604865
crossref_primary_10_1002_glia_22929
crossref_primary_10_1523_JNEUROSCI_0103_19_2019
crossref_primary_10_1016_j_brainres_2022_147837
crossref_primary_10_1016_j_conb_2017_09_016
crossref_primary_10_1016_j_conb_2017_09_015
crossref_primary_10_3389_fnana_2018_00090
crossref_primary_10_1002_dneu_22552
crossref_primary_10_1523_JNEUROSCI_3060_13_2014
crossref_primary_10_1523_JNEUROSCI_2696_11_2011
crossref_primary_10_1016_j_neuroscience_2015_04_036
crossref_primary_10_3389_fnins_2017_00143
crossref_primary_10_1038_s41598_020_75973_y
crossref_primary_10_1146_annurev_neuro_080317_061853
crossref_primary_10_1016_j_immuni_2017_06_006
crossref_primary_10_1016_j_expneurol_2016_03_017
crossref_primary_10_1016_j_biomaterials_2018_02_037
crossref_primary_10_1212_NXI_0000000000200407
crossref_primary_10_1002_bies_201200108
crossref_primary_10_1146_annurev_neuro_072116_031054
crossref_primary_10_1371_journal_pone_0078236
crossref_primary_10_1667_RADE_21_00037_1
crossref_primary_10_1016_j_neuropharm_2015_08_001
crossref_primary_10_1016_j_stem_2013_01_019
crossref_primary_10_3389_fimmu_2024_1425706
crossref_primary_10_1016_j_brainres_2015_10_051
crossref_primary_10_1111_cns_13948
crossref_primary_10_1002_glia_23329
crossref_primary_10_1371_journal_pbio_2001993
crossref_primary_10_3389_fncel_2024_1335849
crossref_primary_10_3390_ijms21113808
crossref_primary_10_1111_ahe_12348
crossref_primary_10_3389_fphar_2014_00279
Cites_doi 10.1038/nn2060
10.1002/jnr.22335
10.1038/nn1162
10.1002/cne.1040
10.1038/nrn2495
10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9
10.1111/j.1469-7580.2005.00452.x
10.1016/S1044-7431(03)00210-0
10.1016/j.stem.2010.04.002
10.1016/j.bbr.2008.11.050
10.1038/nm837
10.1016/j.neuroscience.2004.05.028
10.1111/j.1460-9568.2007.05313.x
10.1177/1073858405282304
10.1523/JNEUROSCI.14-08-04716.1994
10.1523/JNEUROSCI.2120-05.2005
10.1038/nn.2500
10.1002/hipo.20621
10.1371/journal.pone.0000588
10.1523/JNEUROSCI.20-06-02218.2000
10.1523/JNEUROSCI.23-20-07710.2003
10.1016/0962-8924(93)90213-K
10.1006/mcne.2002.1102
10.1007/BF01190834
10.1002/glia.20121
10.1016/j.brainresrev.2009.12.006
10.1242/dev.004895
10.1073/pnas.0506535102
10.1002/dvg.20440
10.1523/JNEUROSCI.3572-04.2004
10.1083/jcb.200210110
10.1111/j.1750-3639.2009.00295.x
10.1038/nn.2220
10.1101/lm.43402
10.1016/j.brainresrev.2006.08.002
10.1002/jnr.20039
10.1523/JNEUROSCI.2500-09.2009
10.1002/(SICI)1098-1136(199903)26:1<84::AID-GLIA9>3.0.CO;2-L
10.1016/j.neuron.2010.09.009
10.1038/35012083
10.1085/jgp.200910194
10.1002/(SICI)1098-1136(199802)22:2<161::AID-GLIA7>3.0.CO;2-A
10.1523/JNEUROSCI.21-10-03392.2001
10.1006/exnr.1999.7224
10.1523/JNEUROSCI.2831-08.2008
10.1523/JNEUROSCI.23-27-09240.2003
10.1002/jnr.10338
10.3109/00207450903222741
10.1002/neu.1043
10.1038/6368
10.1016/j.stem.2010.07.014
10.1016/j.neuroscience.2006.01.055
10.1523/JNEUROSCI.18-12-04627.1998
10.1002/glia.440070406
10.1016/j.expneurol.2009.07.010
10.1002/cne.21787
10.1093/cercor/13.8.845
10.1016/S0306-4522(03)00285-9
10.1242/dev.105.2.387
10.1002/(SICI)1097-4695(19981115)37:3<413::AID-NEU7>3.0.CO;2-8
10.1111/j.1471-4159.2008.05570.x
10.1017/S1740925X09990354
10.1242/dev.125.15.2901
10.1006/mcne.2002.1114
10.1016/S0896-6273(02)01067-X
10.1073/pnas.0709002105
10.1016/0896-6273(94)90305-0
10.1038/nn1516
ContentType Journal Article
Copyright Copyright © 2011 Wiley‐Liss, Inc.
Copyright © 2011 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2011 Wiley‐Liss, Inc.
– notice: Copyright © 2011 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
P64
RC3
7X8
DOI 10.1002/glia.21156
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Genetics Abstracts

Neurosciences Abstracts
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1098-1136
EndPage 881
ExternalDocumentID 21446038
10_1002_glia_21156
GLIA21156
ark_67375_WNG_X506M700_H
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: The Helmholtz Association (HELMA)
– fundername: The Bundesministerium fuer Bildung und Forschung (BMBF)
– fundername: The Bavarian State Ministry of the Sciences
– fundername: The Friedrich Bauer Stiftung
– fundername: Breuer Stiftung and the Deutsche Forschungsgemeinschaft
  funderid: SFB596; SFB870
– fundername: Research and the Arts
– fundername: European Community (Integrated Project EuTRACC)
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GAKWD
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
X7M
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWD
RWI
WRC
WUP
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c4986-436ab2cf19ff2af02b65f7c9f34ef0577c0e1fe18475c179143f91e0c2043d1e3
IEDL.DBID DRFUL
ISICitedReferencesCount 259
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000289674400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0894-1491
1098-1136
IngestDate Thu Oct 02 11:02:12 EDT 2025
Fri Jul 11 15:18:57 EDT 2025
Fri Jul 11 16:35:15 EDT 2025
Mon Jul 21 06:01:06 EDT 2025
Tue Nov 18 22:32:18 EST 2025
Sat Nov 29 03:31:38 EST 2025
Wed Jan 22 16:22:40 EST 2025
Sun Sep 21 06:15:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2011 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4986-436ab2cf19ff2af02b65f7c9f34ef0577c0e1fe18475c179143f91e0c2043d1e3
Notes The Bundesministerium fuer Bildung und Forschung (BMBF)
The Bavarian State Ministry of the Sciences
European Community (Integrated Project EuTRACC)
ArticleID:GLIA21156
Breuer Stiftung and the Deutsche Forschungsgemeinschaft - No. SFB596; No. SFB870
The Helmholtz Association (HELMA)
Research and the Arts
The Friedrich Bauer Stiftung
istex:1239431A0EAAAEB4928D39B37F771C1C6B9E48FA
ark:/67375/WNG-X506M700-H
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 21446038
PQID 1017961720
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_862280119
proquest_miscellaneous_1323803032
proquest_miscellaneous_1017961720
pubmed_primary_21446038
crossref_citationtrail_10_1002_glia_21156
crossref_primary_10_1002_glia_21156
wiley_primary_10_1002_glia_21156_GLIA21156
istex_primary_ark_67375_WNG_X506M700_H
PublicationCentury 2000
PublicationDate June 2011
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: June 2011
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Glia
PublicationTitleAlternate Glia
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Barres BA,Raff MC. 1994. Control of oligodendrocyte number in the developing rat optic nerve. Neuron 12: 935-942.
Aguirre A,Gallo V. 2004. Postnatal neurogenesis and gliogenesis in the olfactory bulb from NG2-expressing progenitors of the subventricular zone. J Neurosci 24: 10530-10541.
Zawadzka M,Rivers LE,Fancy SP,Zhao C,Tripathi R,Jamen F,Young K,Goncharevich A,Pohl H,Rizzi M,Rowitch DH,Kessaris N,Suter U,Richardson WD,Franklin RJ. 2010. CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6: 578-590.
Etxeberria A,Mangin JM,Aguirre A,Gallo V. 2010. Adult-born SVZ progenitors receive transient synapses during remyelination in corpus callosum. Nat Neurosci 13: 287-289.
Belachew S,Chittajallu R,Aguirre AA,Yuan X,Kirby M,Anderson S,Gallo V. 2003. Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J Cell Biol 161: 169-186.
Geha S,Pallud J,Junier MP,Devaux B,Leonard N,Chassoux F,Chneiweiss H,Daumas-Duport C,Varlet P. 2010. NG2+/Olig2+ cells are the major cycle-related cell population of the adult human normal brain. Brain Pathol 20: 399-3411.
Tripathi RB,McTigue DM. 2008. Chronically increased ciliary neurotrophic factor and fibroblast growth factor-2 expression after spinal contusion in rats. J Comp Neurol 510: 129-144.
Irvine KA,Blakemore WF. 2007. A different regional response by mouse oligodendrocyte progenitor cells (OPCs) to high-dose X-irradiation has consequences for repopulating OPC-depleted normal tissue. Eur J Neurosci 25: 417-424.
Psachoulia K,Jamen F,Young KM,Richardson WD. 2009. Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biol 5: 57-67.
Nunes MC,Roy NS,Keyoung HM,Goodman RR,McKhann G,2nd,Jiang L,Kang J,Nedergaard M,Goldman SA. 2003. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med 9: 439-447.
Kerstetter AE,Padovani-Claudio DA,Bai L,Miller RH. 2009. Inhibition of CXCR2 signaling promotes recovery in models of multiple sclerosis. Exp Neurol 220: 44-56.
Bergles DE,Roberts JD,Somogyi P,Jahr CE. 2000. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405: 187-191.
Zhu X,Bergles DE,Nishiyama A. 2008. NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135: 145-157.
Alonso G. 2005. NG2 proteoglycan-expressing cells of the adult rat brain: Possible involvement in the formation of glial scar astrocytes following stab wound. Glia 49: 318-338.
Bengtsson SL,Nagy Z,Skare S,Forsman L,Forssberg H,Ullen F. 2005. Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci 8: 1148-1150.
Holmes MM,Galea LA,Mistlberger RE,Kempermann G. 2004. Adult hippocampal neurogenesis and voluntary running activity: Circadian and dose-dependent effects. J Neurosci Res 76: 216-222.
Karram K,Goebbels S,Schwab M,Jennissen K,Seifert G,Steinhauser C,Nave KA,Trotter J. 2008. NG2-expressing cells in the nervous system revealed by the NG2-EYFP-knockin mouse. Genesis 46: 743-757.
Wolswijk G,Noble M. 1989. Identification of an adult-specific glial progenitor cell. Development 105: 387-400.
Stevens B,Porta S,Haak LL,Gallo V,Fields RD. 2002. Adenosine: A neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36: 855-868.
Buffo A,Vosko MR,Erturk D,Hamann GF,Jucker M,Rowitch D,Gotz M. 2005. Expression pattern of the transcription factor Olig2 in response to brain injuries: Implications for neuronal repair. Proc Natl Acad Sci USA 102: 18183-18188.
Karadottir R,Hamilton NB,Bakiri Y,Attwell D. 2008. Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nat Neurosci 11: 450-456.
Panagiotakos G,Alshamy G,Chan B,Abrams R,Greenberg E,Saxena A,Bradbury M,Edgar M,Gutin P,Tabar V. 2007. Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain. PLoS One 2: e588
Scholzen T,Gerdes J. 2000. The Ki-67 protein: From the known and the unknown. J Cell Physiol 182: 311-322.
Nowakowski RS,Lewin SB,Miller MW. 1989. Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol 18: 311-318.
McTigue DM,Wei P,Stokes BT. 2001. Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord. J Neurosci 21: 3392-3400.
Mason JL,Xuan S,Dragatsis I,Efstratiadis A,Goldman JE. 2003. Insulin-like growth factor (IGF) signaling through type 1 IGF receptor plays an important role in remyelination. J Neurosci 23: 7710-7718.
Shi J,Marinovich A,Barres BA. 1998. Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve. J Neurosci 18: 4627-4636.
Fields RD. 2005. Myelination: An overlooked mechanism of synaptic plasticity? Neuroscientist 11: 528-531.
Muller J,Reyes-Haro D,Pivneva T,Nolte C,Schaette R,Lubke J,Kettenmann H. 2009. The principal neurons of the medial nucleus of the trapezoid body and NG2(+) glial cells receive coordinated excitatory synaptic input. J Gen Physiol 134: 115-127.
Cameron HA,McKay RD. 2001. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435: 406-417.
Watanabe M,Toyama Y,Nishiyama A. 2002. Differentiation of proliferated NG2-positive glial progenitor cells in a remyelinating lesion. J Neurosci Res 69: 826-836.
McTigue DM,Tripathi RB. 2008. The life, death, and replacement of oligodendrocytes in the adult CNS. J Neurochem 107: 1-19.
Nishiyama A,Komitova M,Suzuki R,Zhu X. 2009. Polydendrocytes (NG2 cells): Multifunctional cells with lineage plasticity. Nat Rev Neurosci 10: 9-22.
Trotter J,Karram K,Nishiyama A. 2010. NG2 cells: Properties, progeny and origin. Brain Res Rev 63: 72-82.
Hancock A,Priester C,Kidder E,Keith JR. 2009. Does 5-bromo-2′-deoxyuridine (BrdU) disrupt cell proliferation and neuronal maturation in the adult rat hippocampus in vivo? Behav Brain Res 199: 218-221.
Tan AM,Zhang W,Levine JM. 2005. NG2: A component of the glial scar that inhibits axon growth. J Anat 207: 717-725.
Horner PJ,Power AE,Kempermann G,Kuhn HG,Palmer TD,Winkler J,Thal LJ,Gage FH. 2000. Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci 20: 2218-2228.
Taylor DL,Pirianov G,Holland S,McGinnity CJ,Norman AL,Reali C,Diemel LT,Gveric D,Yeung D,Mehmet H. 2010. Attenuation of proliferation in oligodendrocyte precursor cells by activated microglia. JNeurosci Res 88: 1632-1644.
Dimou L,Simon C,Kirchhoff F,Takebayashi H,Gotz M. 2008. Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci 28: 10434-10442.
Levine JM,Reynolds R. 1999. Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Exp Neurol 160: 333-347.
Rhodes KE,Moon LD,Fawcett JW. 2003. Inhibiting cell proliferation during formation of the glial scar: Effects on axon regeneration in the CNS. Neuroscience 120: 41-56.
Gaser C,Schlaug G. 2003. Brain structures differ between musicians and non-musicians. J Neurosci 23: 9240-9245.
Redwine JM,Armstrong RC. 1998. In vivo proliferation of oligodendrocyte progenitors expressing PDGFalphaR during early remyelination. J Neurobiol 37: 413-428.
Dawson MR,Polito A,Levine JM,Reynolds R. 2003. NG2-expressing glial progenitor cells: An abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci 24: 476-488.
Levine JM,Stincone F,Lee YS. 1993. Development and differentiation of glial precursor cells in the rat cerebellum. Glia 7: 307-321.
Bednarczyk MR,Aumont A,Decary S,Bergeron R,Fernandes KJ. 2009. Prolonged voluntary wheel-running stimulates neural precursors in the hippocampus and forebrain of adult CD1 mice. Hippocampus 19: 913-927.
Levine JM. 1994. Increased expression of the NG2 chondroitin-sulfate proteoglycan after brain injury. J Neurosci 14: 4716-4730.
Pfeiffer SE,Warrington AE,Bansal R. 1993. The oligodendrocyte and its many cellular processes. Trends Cell Biol 3: 191-197.
Taupin P. 2007. BrdU immunohistochemistry for studying adult neurogenesis: Paradigms, pitfalls, limitations, and validation. Brain Res Rev 53: 198-214.
Amankulor NM,Hambardzumyan D,Pyonteck SM,Becher OJ,Joyce JA,Holland EC. 2009. Sonic hedgehog pathway activation is induced by acute brain injury and regulated by injury-related inflammation. J Neurosci 29: 10299-10308.
Anderson BJ,Eckburg PB,Relucio KI. 2002. Alterations in the thickness of motor cortical subregions after motor-skill learning and exercise. Learn Mem 9: 1-9.
Mason JL,Goldman JE. 2002. A2B5+ and O4+ cycling progenitors in the adult forebrain white matter respond differentially to PDGF-AA, FGF-2, and IGF-1. Mol Cell Neurosci 20: 30-42.
Yuan X,Eisen AM,McBain CJ,Gallo V. 1998. A role for glutamate and its receptors in the regulation of oligodendrocyte development in cerebellar tissue slices. Development 125: 2901-2914.
Rivers LE,Young KM,Rizzi M,Jamen F,Psachoulia K,Wade A,Kessaris N,Richardson WD. 2008. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11: 1392-1401.
Rhodes KE,Raivich G,Fawcett JW. 2006. The injury response of oligodendrocyte precursor cells is induced by platelets, macrophages and inflammation-associated cytokines. Neuroscience 140: 87-100.
Barnabe-Heider F,Goritz C,Sabelstrom H,Takebayashi H,Pfrieger FW,Meletis K,Frisen J. 2010. Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell 7: 470-482.
Lin SC,Bergles DE. 2004. Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nat Neurosci 7: 24-32.
Hampton DW,Rhodes KE,Zhao C,Franklin RJ,Fawcett JW. 2004. The responses of oligodendrocyte precursor cells, astrocytes and
1993; 7
2004; 127
2010; 13
2004; 7
2004; 24
2003; 13
2009; 199
2008; 107
2008; 105
2001; 48
1993; 3
2010; 63
2005; 25
2004; 76
1998; 18
2010; 20
1989; 105
2009; 10
2010; 68
2005; 102
2000; 405
2008; 28
2003; 9
2003; 161
1998; 125
2007; 2
2008; 510
2009; 19
2010; 7
2007; 25
2010; 6
2003; 120
2002; 36
2002; 9
1999; 26
2000; 20
2009; 134
2010; 120
2008; 11
1999; 2
2007; 53
2005; 49
1998; 22
2009; 29
2001; 21
1998; 37
2010; 88
2002; 69
2002; 20
1999; 160
2005; 8
1994; 12
2003; 24
2009; 220
2000; 182
2006; 140
2005; 207
1994; 14
2008; 46
2009; 5
2008; 135
2005; 11
2001; 435
2003; 23
1989; 18
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – reference: Buffo A,Vosko MR,Erturk D,Hamann GF,Jucker M,Rowitch D,Gotz M. 2005. Expression pattern of the transcription factor Olig2 in response to brain injuries: Implications for neuronal repair. Proc Natl Acad Sci USA 102: 18183-18188.
– reference: Dimou L,Simon C,Kirchhoff F,Takebayashi H,Gotz M. 2008. Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci 28: 10434-10442.
– reference: Barres BA,Raff MC. 1994. Control of oligodendrocyte number in the developing rat optic nerve. Neuron 12: 935-942.
– reference: Chen ZJ,Ughrin Y,Levine JM. 2002. Inhibition of axon growth by oligodendrocyte precursor cells. Mol Cell Neurosci 20: 125-139.
– reference: Taupin P. 2007. BrdU immunohistochemistry for studying adult neurogenesis: Paradigms, pitfalls, limitations, and validation. Brain Res Rev 53: 198-214.
– reference: Zhu X,Bergles DE,Nishiyama A. 2008. NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135: 145-157.
– reference: Barnabe-Heider F,Goritz C,Sabelstrom H,Takebayashi H,Pfrieger FW,Meletis K,Frisen J. 2010. Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell 7: 470-482.
– reference: Dawson MR,Polito A,Levine JM,Reynolds R. 2003. NG2-expressing glial progenitor cells: An abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci 24: 476-488.
– reference: Shi J,Marinovich A,Barres BA. 1998. Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve. J Neurosci 18: 4627-4636.
– reference: Nowakowski RS,Lewin SB,Miller MW. 1989. Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol 18: 311-318.
– reference: Redwine JM,Armstrong RC. 1998. In vivo proliferation of oligodendrocyte progenitors expressing PDGFalphaR during early remyelination. J Neurobiol 37: 413-428.
– reference: Amankulor NM,Hambardzumyan D,Pyonteck SM,Becher OJ,Joyce JA,Holland EC. 2009. Sonic hedgehog pathway activation is induced by acute brain injury and regulated by injury-related inflammation. J Neurosci 29: 10299-10308.
– reference: Nishiyama A,Komitova M,Suzuki R,Zhu X. 2009. Polydendrocytes (NG2 cells): Multifunctional cells with lineage plasticity. Nat Rev Neurosci 10: 9-22.
– reference: Geha S,Pallud J,Junier MP,Devaux B,Leonard N,Chassoux F,Chneiweiss H,Daumas-Duport C,Varlet P. 2010. NG2+/Olig2+ cells are the major cycle-related cell population of the adult human normal brain. Brain Pathol 20: 399-3411.
– reference: Levine JM,Stincone F,Lee YS. 1993. Development and differentiation of glial precursor cells in the rat cerebellum. Glia 7: 307-321.
– reference: Cameron HA,McKay RD. 2001. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435: 406-417.
– reference: Anderson BJ,Eckburg PB,Relucio KI. 2002. Alterations in the thickness of motor cortical subregions after motor-skill learning and exercise. Learn Mem 9: 1-9.
– reference: Tripathi RB,McTigue DM. 2008. Chronically increased ciliary neurotrophic factor and fibroblast growth factor-2 expression after spinal contusion in rats. J Comp Neurol 510: 129-144.
– reference: Irvine KA,Blakemore WF. 2007. A different regional response by mouse oligodendrocyte progenitor cells (OPCs) to high-dose X-irradiation has consequences for repopulating OPC-depleted normal tissue. Eur J Neurosci 25: 417-424.
– reference: Bergles DE,Roberts JD,Somogyi P,Jahr CE. 2000. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405: 187-191.
– reference: Pfeiffer SE,Warrington AE,Bansal R. 1993. The oligodendrocyte and its many cellular processes. Trends Cell Biol 3: 191-197.
– reference: Aguirre A,Gallo V. 2004. Postnatal neurogenesis and gliogenesis in the olfactory bulb from NG2-expressing progenitors of the subventricular zone. J Neurosci 24: 10530-10541.
– reference: Etxeberria A,Mangin JM,Aguirre A,Gallo V. 2010. Adult-born SVZ progenitors receive transient synapses during remyelination in corpus callosum. Nat Neurosci 13: 287-289.
– reference: Bednarczyk MR,Aumont A,Decary S,Bergeron R,Fernandes KJ. 2009. Prolonged voluntary wheel-running stimulates neural precursors in the hippocampus and forebrain of adult CD1 mice. Hippocampus 19: 913-927.
– reference: Gaser C,Schlaug G. 2003. Brain structures differ between musicians and non-musicians. J Neurosci 23: 9240-9245.
– reference: Belachew S,Chittajallu R,Aguirre AA,Yuan X,Kirby M,Anderson S,Gallo V. 2003. Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J Cell Biol 161: 169-186.
– reference: Keirstead HS,Levine JM,Blakemore WF. 1998. Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord. Glia 22: 161-170.
– reference: van Praag H,Kempermann G,Gage FH. 1999. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2: 266-270.
– reference: Karram K,Goebbels S,Schwab M,Jennissen K,Seifert G,Steinhauser C,Nave KA,Trotter J. 2008. NG2-expressing cells in the nervous system revealed by the NG2-EYFP-knockin mouse. Genesis 46: 743-757.
– reference: Alonso G. 2005. NG2 proteoglycan-expressing cells of the adult rat brain: Possible involvement in the formation of glial scar astrocytes following stab wound. Glia 49: 318-338.
– reference: Levine JM,Reynolds R. 1999. Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Exp Neurol 160: 333-347.
– reference: Taylor DL,Pirianov G,Holland S,McGinnity CJ,Norman AL,Reali C,Diemel LT,Gveric D,Yeung D,Mehmet H. 2010. Attenuation of proliferation in oligodendrocyte precursor cells by activated microglia. JNeurosci Res 88: 1632-1644.
– reference: Butt AM,Duncan A,Hornby MF,Kirvell SL,Hunter A,Levine JM,Berry M. 1999. Cells expressing the NG2 antigen contact nodes of Ranvier in adult CNS white matter. Glia 26: 84-91.
– reference: McTigue DM,Wei P,Stokes BT. 2001. Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord. J Neurosci 21: 3392-3400.
– reference: Rhodes KE,Raivich G,Fawcett JW. 2006. The injury response of oligodendrocyte precursor cells is induced by platelets, macrophages and inflammation-associated cytokines. Neuroscience 140: 87-100.
– reference: Psachoulia K,Jamen F,Young KM,Richardson WD. 2009. Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biol 5: 57-67.
– reference: Kang SH,Fukaya M,Yang JK,Rothstein JD,Bergles DE. 2010. NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68: 668-681.
– reference: Bengtsson SL,Nagy Z,Skare S,Forsman L,Forssberg H,Ullen F. 2005. Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci 8: 1148-1150.
– reference: Lin SC,Bergles DE. 2004. Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nat Neurosci 7: 24-32.
– reference: Levine JM. 1994. Increased expression of the NG2 chondroitin-sulfate proteoglycan after brain injury. J Neurosci 14: 4716-4730.
– reference: Krityakiarana W,Espinosa-Jeffrey A,Ghiani CA,Zhao PM,Topaldjikian N,Gomez-Pinilla F,Yamaguchi M,Kotchabhakdi N,de Vellis J. 2010. Voluntary exercise increases oligodendrogenesis in spinal cord. Int J Neurosci 120: 280-290.
– reference: Mason JL,Xuan S,Dragatsis I,Efstratiadis A,Goldman JE. 2003. Insulin-like growth factor (IGF) signaling through type 1 IGF receptor plays an important role in remyelination. J Neurosci 23: 7710-7718.
– reference: Rhodes KE,Moon LD,Fawcett JW. 2003. Inhibiting cell proliferation during formation of the glial scar: Effects on axon regeneration in the CNS. Neuroscience 120: 41-56.
– reference: Karadottir R,Hamilton NB,Bakiri Y,Attwell D. 2008. Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nat Neurosci 11: 450-456.
– reference: Kerstetter AE,Padovani-Claudio DA,Bai L,Miller RH. 2009. Inhibition of CXCR2 signaling promotes recovery in models of multiple sclerosis. Exp Neurol 220: 44-56.
– reference: Trotter J,Karram K,Nishiyama A. 2010. NG2 cells: Properties, progeny and origin. Brain Res Rev 63: 72-82.
– reference: Scholzen T,Gerdes J. 2000. The Ki-67 protein: From the known and the unknown. J Cell Physiol 182: 311-322.
– reference: Fortin D,Rom E,Sun H,Yayon A,Bansal R. 2005. Distinct fibroblast growth factor (FGF)/FGF receptor signaling pairs initiate diverse cellular responses in the oligodendrocyte lineage. J Neurosci 25: 7470-7479.
– reference: Zawadzka M,Rivers LE,Fancy SP,Zhao C,Tripathi R,Jamen F,Young K,Goncharevich A,Pohl H,Rizzi M,Rowitch DH,Kessaris N,Suter U,Richardson WD,Franklin RJ. 2010. CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6: 578-590.
– reference: Fields RD. 2005. Myelination: An overlooked mechanism of synaptic plasticity? Neuroscientist 11: 528-531.
– reference: Buffo A,Rite I,Tripathi P,Lepier A,Colak D,Horn AP,Mori T,Gotz M. 2008. Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proc Natl Acad Sci USA 105: 3581-3586.
– reference: Muller J,Reyes-Haro D,Pivneva T,Nolte C,Schaette R,Lubke J,Kettenmann H. 2009. The principal neurons of the medial nucleus of the trapezoid body and NG2(+) glial cells receive coordinated excitatory synaptic input. J Gen Physiol 134: 115-127.
– reference: Hampton DW,Rhodes KE,Zhao C,Franklin RJ,Fawcett JW. 2004. The responses of oligodendrocyte precursor cells, astrocytes and microglia to a cortical stab injury, in the brain. Neuroscience 127: 813-820.
– reference: Horner PJ,Power AE,Kempermann G,Kuhn HG,Palmer TD,Winkler J,Thal LJ,Gage FH. 2000. Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci 20: 2218-2228.
– reference: Mason JL,Goldman JE. 2002. A2B5+ and O4+ cycling progenitors in the adult forebrain white matter respond differentially to PDGF-AA, FGF-2, and IGF-1. Mol Cell Neurosci 20: 30-42.
– reference: Holmes MM,Galea LA,Mistlberger RE,Kempermann G. 2004. Adult hippocampal neurogenesis and voluntary running activity: Circadian and dose-dependent effects. J Neurosci Res 76: 216-222.
– reference: Nunes MC,Roy NS,Keyoung HM,Goodman RR,McKhann G,2nd,Jiang L,Kang J,Nedergaard M,Goldman SA. 2003. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med 9: 439-447.
– reference: Tan AM,Zhang W,Levine JM. 2005. NG2: A component of the glial scar that inhibits axon growth. J Anat 207: 717-725.
– reference: Panagiotakos G,Alshamy G,Chan B,Abrams R,Greenberg E,Saxena A,Bradbury M,Edgar M,Gutin P,Tabar V. 2007. Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain. PLoS One 2: e588
– reference: Ehninger D,Kempermann G. 2003. Regional effects of wheel running and environmental enrichment on cell genesis and microglia proliferation in the adult murine neocortex. Cereb Cortex 13: 845-851.
– reference: Hancock A,Priester C,Kidder E,Keith JR. 2009. Does 5-bromo-2′-deoxyuridine (BrdU) disrupt cell proliferation and neuronal maturation in the adult rat hippocampus in vivo? Behav Brain Res 199: 218-221.
– reference: Stevens B,Porta S,Haak LL,Gallo V,Fields RD. 2002. Adenosine: A neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36: 855-868.
– reference: Wolswijk G,Noble M. 1989. Identification of an adult-specific glial progenitor cell. Development 105: 387-400.
– reference: Watanabe M,Toyama Y,Nishiyama A. 2002. Differentiation of proliferated NG2-positive glial progenitor cells in a remyelinating lesion. J Neurosci Res 69: 826-836.
– reference: Gensert JM,Goldman JE. 2001. Heterogeneity of cycling glial progenitors in the adult mammalian cortex and white matter. J Neurobiol 48: 75-86.
– reference: McTigue DM,Tripathi RB. 2008. The life, death, and replacement of oligodendrocytes in the adult CNS. J Neurochem 107: 1-19.
– reference: Rivers LE,Young KM,Rizzi M,Jamen F,Psachoulia K,Wade A,Kessaris N,Richardson WD. 2008. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11: 1392-1401.
– reference: Yuan X,Eisen AM,McBain CJ,Gallo V. 1998. A role for glutamate and its receptors in the regulation of oligodendrocyte development in cerebellar tissue slices. Development 125: 2901-2914.
– volume: 120
  start-page: 280
  year: 2010
  end-page: 290
  article-title: Voluntary exercise increases oligodendrogenesis in spinal cord
  publication-title: Int J Neurosci
– volume: 20
  start-page: 30
  year: 2002
  end-page: 42
  article-title: A2B5+ and O4+ cycling progenitors in the adult forebrain white matter respond differentially to PDGF‐AA, FGF‐2, and IGF‐1
  publication-title: Mol Cell Neurosci
– volume: 10
  start-page: 9
  year: 2009
  end-page: 22
  article-title: Polydendrocytes (NG2 cells): Multifunctional cells with lineage plasticity
  publication-title: Nat Rev Neurosci
– volume: 20
  start-page: 399
  year: 2010
  end-page: 3411
  article-title: NG2+/Olig2+ cells are the major cycle‐related cell population of the adult human normal brain
  publication-title: Brain Pathol
– volume: 11
  start-page: 450
  year: 2008
  end-page: 456
  article-title: Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter
  publication-title: Nat Neurosci
– volume: 127
  start-page: 813
  year: 2004
  end-page: 820
  article-title: The responses of oligodendrocyte precursor cells, astrocytes and microglia to a cortical stab injury, in the brain
  publication-title: Neuroscience
– volume: 25
  start-page: 417
  year: 2007
  end-page: 424
  article-title: A different regional response by mouse oligodendrocyte progenitor cells (OPCs) to high‐dose X‐irradiation has consequences for repopulating OPC‐depleted normal tissue
  publication-title: Eur J Neurosci
– volume: 23
  start-page: 9240
  year: 2003
  end-page: 9245
  article-title: Brain structures differ between musicians and non‐musicians
  publication-title: J Neurosci
– volume: 6
  start-page: 578
  year: 2010
  end-page: 590
  article-title: CNS‐resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination
  publication-title: Cell Stem Cell
– volume: 102
  start-page: 18183
  year: 2005
  end-page: 18188
  article-title: Expression pattern of the transcription factor Olig2 in response to brain injuries: Implications for neuronal repair
  publication-title: Proc Natl Acad Sci USA
– volume: 63
  start-page: 72
  year: 2010
  end-page: 82
  article-title: NG2 cells: Properties, progeny and origin
  publication-title: Brain Res Rev
– volume: 134
  start-page: 115
  year: 2009
  end-page: 127
  article-title: The principal neurons of the medial nucleus of the trapezoid body and NG2(+) glial cells receive coordinated excitatory synaptic input
  publication-title: J Gen Physiol
– volume: 11
  start-page: 528
  year: 2005
  end-page: 531
  article-title: Myelination: An overlooked mechanism of synaptic plasticity?
  publication-title: Neuroscientist
– volume: 36
  start-page: 855
  year: 2002
  end-page: 868
  article-title: Adenosine: A neuron‐glial transmitter promoting myelination in the CNS in response to action potentials
  publication-title: Neuron
– volume: 69
  start-page: 826
  year: 2002
  end-page: 836
  article-title: Differentiation of proliferated NG2‐positive glial progenitor cells in a remyelinating lesion
  publication-title: J Neurosci Res
– volume: 49
  start-page: 318
  year: 2005
  end-page: 338
  article-title: NG2 proteoglycan‐expressing cells of the adult rat brain: Possible involvement in the formation of glial scar astrocytes following stab wound
  publication-title: Glia
– volume: 76
  start-page: 216
  year: 2004
  end-page: 222
  article-title: Adult hippocampal neurogenesis and voluntary running activity: Circadian and dose‐dependent effects
  publication-title: J Neurosci Res
– volume: 182
  start-page: 311
  year: 2000
  end-page: 322
  article-title: The Ki‐67 protein: From the known and the unknown
  publication-title: J Cell Physiol
– volume: 12
  start-page: 935
  year: 1994
  end-page: 942
  article-title: Control of oligodendrocyte number in the developing rat optic nerve
  publication-title: Neuron
– volume: 48
  start-page: 75
  year: 2001
  end-page: 86
  article-title: Heterogeneity of cycling glial progenitors in the adult mammalian cortex and white matter
  publication-title: J Neurobiol
– volume: 7
  start-page: 24
  year: 2004
  end-page: 32
  article-title: Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus
  publication-title: Nat Neurosci
– volume: 140
  start-page: 87
  year: 2006
  end-page: 100
  article-title: The injury response of oligodendrocyte precursor cells is induced by platelets, macrophages and inflammation‐associated cytokines
  publication-title: Neuroscience
– volume: 5
  start-page: 57
  year: 2009
  end-page: 67
  article-title: Cell cycle dynamics of NG2 cells in the postnatal and ageing brain
  publication-title: Neuron Glia Biol
– volume: 105
  start-page: 3581
  year: 2008
  end-page: 3586
  article-title: Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain
  publication-title: Proc Natl Acad Sci USA
– volume: 14
  start-page: 4716
  year: 1994
  end-page: 4730
  article-title: Increased expression of the NG2 chondroitin‐sulfate proteoglycan after brain injury
  publication-title: J Neurosci
– volume: 24
  start-page: 10530
  year: 2004
  end-page: 10541
  article-title: Postnatal neurogenesis and gliogenesis in the olfactory bulb from NG2‐expressing progenitors of the subventricular zone
  publication-title: J Neurosci
– volume: 25
  start-page: 7470
  year: 2005
  end-page: 7479
  article-title: Distinct fibroblast growth factor (FGF)/FGF receptor signaling pairs initiate diverse cellular responses in the oligodendrocyte lineage
  publication-title: J Neurosci
– volume: 125
  start-page: 2901
  year: 1998
  end-page: 2914
  article-title: A role for glutamate and its receptors in the regulation of oligodendrocyte development in cerebellar tissue slices
  publication-title: Development
– volume: 53
  start-page: 198
  year: 2007
  end-page: 214
  article-title: BrdU immunohistochemistry for studying adult neurogenesis: Paradigms, pitfalls, limitations, and validation
  publication-title: Brain Res Rev
– volume: 207
  start-page: 717
  year: 2005
  end-page: 725
  article-title: NG2: A component of the glial scar that inhibits axon growth
  publication-title: J Anat
– volume: 46
  start-page: 743
  year: 2008
  end-page: 757
  article-title: NG2‐expressing cells in the nervous system revealed by the NG2‐EYFP‐knockin mouse
  publication-title: Genesis
– volume: 19
  start-page: 913
  year: 2009
  end-page: 927
  article-title: Prolonged voluntary wheel‐running stimulates neural precursors in the hippocampus and forebrain of adult CD1 mice
  publication-title: Hippocampus
– volume: 199
  start-page: 218
  year: 2009
  end-page: 221
  article-title: Does 5‐bromo‐2′‐deoxyuridine (BrdU) disrupt cell proliferation and neuronal maturation in the adult rat hippocampus in vivo?
  publication-title: Behav Brain Res
– volume: 7
  start-page: 307
  year: 1993
  end-page: 321
  article-title: Development and differentiation of glial precursor cells in the rat cerebellum
  publication-title: Glia
– volume: 3
  start-page: 191
  year: 1993
  end-page: 197
  article-title: The oligodendrocyte and its many cellular processes
  publication-title: Trends Cell Biol
– volume: 20
  start-page: 125
  year: 2002
  end-page: 139
  article-title: Inhibition of axon growth by oligodendrocyte precursor cells
  publication-title: Mol Cell Neurosci
– volume: 435
  start-page: 406
  year: 2001
  end-page: 417
  article-title: Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus
  publication-title: J Comp Neurol
– volume: 18
  start-page: 4627
  year: 1998
  end-page: 4636
  article-title: Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve
  publication-title: J Neurosci
– volume: 135
  start-page: 145
  year: 2008
  end-page: 157
  article-title: NG2 cells generate both oligodendrocytes and gray matter astrocytes
  publication-title: Development
– volume: 28
  start-page: 10434
  year: 2008
  end-page: 10442
  article-title: Progeny of Olig2‐expressing progenitors in the gray and white matter of the adult mouse cerebral cortex
  publication-title: J Neurosci
– volume: 24
  start-page: 476
  year: 2003
  end-page: 488
  article-title: NG2‐expressing glial progenitor cells: An abundant and widespread population of cycling cells in the adult rat CNS
  publication-title: Mol Cell Neurosci
– volume: 18
  start-page: 311
  year: 1989
  end-page: 318
  article-title: Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA‐synthetic phase for an anatomically defined population
  publication-title: J Neurocytol
– volume: 105
  start-page: 387
  year: 1989
  end-page: 400
  article-title: Identification of an adult‐specific glial progenitor cell
  publication-title: Development
– volume: 26
  start-page: 84
  year: 1999
  end-page: 91
  article-title: Cells expressing the NG2 antigen contact nodes of Ranvier in adult CNS white matter
  publication-title: Glia
– volume: 510
  start-page: 129
  year: 2008
  end-page: 144
  article-title: Chronically increased ciliary neurotrophic factor and fibroblast growth factor‐2 expression after spinal contusion in rats
  publication-title: J Comp Neurol
– volume: 8
  start-page: 1148
  year: 2005
  end-page: 1150
  article-title: Extensive piano practicing has regionally specific effects on white matter development
  publication-title: Nat Neurosci
– volume: 161
  start-page: 169
  year: 2003
  end-page: 186
  article-title: Postnatal NG2 proteoglycan‐expressing progenitor cells are intrinsically multipotent and generate functional neurons
  publication-title: J Cell Biol
– volume: 9
  start-page: 1
  year: 2002
  end-page: 9
  article-title: Alterations in the thickness of motor cortical subregions after motor‐skill learning and exercise
  publication-title: Learn Mem
– volume: 220
  start-page: 44
  year: 2009
  end-page: 56
  article-title: Inhibition of CXCR2 signaling promotes recovery in models of multiple sclerosis
  publication-title: Exp Neurol
– volume: 107
  start-page: 1
  year: 2008
  end-page: 19
  article-title: The life, death, and replacement of oligodendrocytes in the adult CNS
  publication-title: J Neurochem
– volume: 2
  start-page: e588
  year: 2007
  article-title: Long‐term impact of radiation on the stem cell and oligodendrocyte precursors in the brain
  publication-title: PLoS One
– volume: 13
  start-page: 845
  year: 2003
  end-page: 851
  article-title: Regional effects of wheel running and environmental enrichment on cell genesis and microglia proliferation in the adult murine neocortex
  publication-title: Cereb Cortex
– volume: 120
  start-page: 41
  year: 2003
  end-page: 56
  article-title: Inhibiting cell proliferation during formation of the glial scar: Effects on axon regeneration in the CNS
  publication-title: Neuroscience
– volume: 21
  start-page: 3392
  year: 2001
  end-page: 3400
  article-title: Proliferation of NG2‐positive cells and altered oligodendrocyte numbers in the contused rat spinal cord
  publication-title: J Neurosci
– volume: 37
  start-page: 413
  year: 1998
  end-page: 428
  article-title: In vivo proliferation of oligodendrocyte progenitors expressing PDGFalphaR during early remyelination
  publication-title: J Neurobiol
– volume: 20
  start-page: 2218
  year: 2000
  end-page: 2228
  article-title: Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord
  publication-title: J Neurosci
– volume: 68
  start-page: 668
  year: 2010
  end-page: 681
  article-title: NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration
  publication-title: Neuron
– volume: 23
  start-page: 7710
  year: 2003
  end-page: 7718
  article-title: Insulin‐like growth factor (IGF) signaling through type 1 IGF receptor plays an important role in remyelination
  publication-title: J Neurosci
– volume: 7
  start-page: 470
  year: 2010
  end-page: 482
  article-title: Origin of new glial cells in intact and injured adult spinal cord
  publication-title: Cell Stem Cell
– volume: 9
  start-page: 439
  year: 2003
  end-page: 447
  article-title: Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain
  publication-title: Nat Med
– volume: 29
  start-page: 10299
  year: 2009
  end-page: 10308
  article-title: Sonic hedgehog pathway activation is induced by acute brain injury and regulated by injury‐related inflammation
  publication-title: J Neurosci
– volume: 13
  start-page: 287
  year: 2010
  end-page: 289
  article-title: Adult‐born SVZ progenitors receive transient synapses during remyelination in corpus callosum
  publication-title: Nat Neurosci
– volume: 22
  start-page: 161
  year: 1998
  end-page: 170
  article-title: Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord
  publication-title: Glia
– volume: 160
  start-page: 333
  year: 1999
  end-page: 347
  article-title: Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide‐induced demyelination
  publication-title: Exp Neurol
– volume: 11
  start-page: 1392
  year: 2008
  end-page: 1401
  article-title: PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice
  publication-title: Nat Neurosci
– volume: 88
  start-page: 1632
  year: 2010
  end-page: 1644
  article-title: Attenuation of proliferation in oligodendrocyte precursor cells by activated microglia
  publication-title: JNeurosci Res
– volume: 405
  start-page: 187
  year: 2000
  end-page: 191
  article-title: Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus
  publication-title: Nature
– volume: 2
  start-page: 266
  year: 1999
  end-page: 270
  article-title: Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus
  publication-title: Nat Neurosci
– ident: e_1_2_6_32_1
  doi: 10.1038/nn2060
– ident: e_1_2_6_61_1
  doi: 10.1002/jnr.22335
– ident: e_1_2_6_40_1
  doi: 10.1038/nn1162
– ident: e_1_2_6_15_1
  doi: 10.1002/cne.1040
– ident: e_1_2_6_46_1
  doi: 10.1038/nrn2495
– ident: e_1_2_6_56_1
  doi: 10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9
– ident: e_1_2_6_59_1
  doi: 10.1111/j.1469-7580.2005.00452.x
– ident: e_1_2_6_17_1
  doi: 10.1016/S1044-7431(03)00210-0
– ident: e_1_2_6_68_1
  doi: 10.1016/j.stem.2010.04.002
– ident: e_1_2_6_27_1
  doi: 10.1016/j.bbr.2008.11.050
– ident: e_1_2_6_48_1
  doi: 10.1038/nm837
– ident: e_1_2_6_26_1
  doi: 10.1016/j.neuroscience.2004.05.028
– ident: e_1_2_6_30_1
  doi: 10.1111/j.1460-9568.2007.05313.x
– ident: e_1_2_6_21_1
  doi: 10.1177/1073858405282304
– ident: e_1_2_6_37_1
  doi: 10.1523/JNEUROSCI.14-08-04716.1994
– ident: e_1_2_6_22_1
  doi: 10.1523/JNEUROSCI.2120-05.2005
– ident: e_1_2_6_20_1
  doi: 10.1038/nn.2500
– ident: e_1_2_6_8_1
  doi: 10.1002/hipo.20621
– ident: e_1_2_6_49_1
  doi: 10.1371/journal.pone.0000588
– ident: e_1_2_6_29_1
  doi: 10.1523/JNEUROSCI.20-06-02218.2000
– ident: e_1_2_6_42_1
  doi: 10.1523/JNEUROSCI.23-20-07710.2003
– ident: e_1_2_6_50_1
  doi: 10.1016/0962-8924(93)90213-K
– ident: e_1_2_6_16_1
  doi: 10.1006/mcne.2002.1102
– ident: e_1_2_6_47_1
  doi: 10.1007/BF01190834
– ident: e_1_2_6_3_1
  doi: 10.1002/glia.20121
– ident: e_1_2_6_63_1
  doi: 10.1016/j.brainresrev.2009.12.006
– ident: e_1_2_6_69_1
  doi: 10.1242/dev.004895
– ident: e_1_2_6_13_1
  doi: 10.1073/pnas.0506535102
– ident: e_1_2_6_33_1
  doi: 10.1002/dvg.20440
– ident: e_1_2_6_2_1
  doi: 10.1523/JNEUROSCI.3572-04.2004
– ident: e_1_2_6_9_1
  doi: 10.1083/jcb.200210110
– ident: e_1_2_6_24_1
  doi: 10.1111/j.1750-3639.2009.00295.x
– ident: e_1_2_6_55_1
  doi: 10.1038/nn.2220
– ident: e_1_2_6_5_1
  doi: 10.1101/lm.43402
– ident: e_1_2_6_60_1
  doi: 10.1016/j.brainresrev.2006.08.002
– ident: e_1_2_6_28_1
  doi: 10.1002/jnr.20039
– ident: e_1_2_6_4_1
  doi: 10.1523/JNEUROSCI.2500-09.2009
– ident: e_1_2_6_14_1
  doi: 10.1002/(SICI)1098-1136(199903)26:1<84::AID-GLIA9>3.0.CO;2-L
– ident: e_1_2_6_31_1
  doi: 10.1016/j.neuron.2010.09.009
– ident: e_1_2_6_11_1
  doi: 10.1038/35012083
– ident: e_1_2_6_45_1
  doi: 10.1085/jgp.200910194
– ident: e_1_2_6_34_1
  doi: 10.1002/(SICI)1098-1136(199802)22:2<161::AID-GLIA7>3.0.CO;2-A
– ident: e_1_2_6_44_1
  doi: 10.1523/JNEUROSCI.21-10-03392.2001
– ident: e_1_2_6_38_1
  doi: 10.1006/exnr.1999.7224
– ident: e_1_2_6_18_1
  doi: 10.1523/JNEUROSCI.2831-08.2008
– ident: e_1_2_6_23_1
  doi: 10.1523/JNEUROSCI.23-27-09240.2003
– ident: e_1_2_6_65_1
  doi: 10.1002/jnr.10338
– ident: e_1_2_6_36_1
  doi: 10.3109/00207450903222741
– ident: e_1_2_6_25_1
  doi: 10.1002/neu.1043
– ident: e_1_2_6_64_1
  doi: 10.1038/6368
– ident: e_1_2_6_6_1
  doi: 10.1016/j.stem.2010.07.014
– ident: e_1_2_6_54_1
  doi: 10.1016/j.neuroscience.2006.01.055
– ident: e_1_2_6_57_1
  doi: 10.1523/JNEUROSCI.18-12-04627.1998
– ident: e_1_2_6_39_1
  doi: 10.1002/glia.440070406
– ident: e_1_2_6_35_1
  doi: 10.1016/j.expneurol.2009.07.010
– ident: e_1_2_6_62_1
  doi: 10.1002/cne.21787
– ident: e_1_2_6_19_1
  doi: 10.1093/cercor/13.8.845
– ident: e_1_2_6_53_1
  doi: 10.1016/S0306-4522(03)00285-9
– ident: e_1_2_6_66_1
  doi: 10.1242/dev.105.2.387
– ident: e_1_2_6_52_1
  doi: 10.1002/(SICI)1097-4695(19981115)37:3<413::AID-NEU7>3.0.CO;2-8
– ident: e_1_2_6_43_1
  doi: 10.1111/j.1471-4159.2008.05570.x
– ident: e_1_2_6_51_1
  doi: 10.1017/S1740925X09990354
– ident: e_1_2_6_67_1
  doi: 10.1242/dev.125.15.2901
– ident: e_1_2_6_41_1
  doi: 10.1006/mcne.2002.1114
– ident: e_1_2_6_58_1
  doi: 10.1016/S0896-6273(02)01067-X
– ident: e_1_2_6_12_1
  doi: 10.1073/pnas.0709002105
– ident: e_1_2_6_7_1
  doi: 10.1016/0896-6273(94)90305-0
– ident: e_1_2_6_10_1
  doi: 10.1038/nn1516
SSID ssj0011497
Score 2.4826243
Snippet The adult brain parenchyma contains a widespread population of progenitors generating different cells of the oligodendrocyte lineage such as NG2+ cells and...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 869
SubjectTerms Animals
Brain injury
Cell cycle
cell cycle regulation
Cell Differentiation - physiology
Cell Lineage - physiology
Cell Proliferation
Cerebral Cortex - cytology
Cerebral Cortex - physiology
Cortex
cortical injury
Data processing
Differentiation
Disease Models, Animal
Environmental effects
G1 phase
Mice
microglia
Oligodendrocytes
Oligodendroglia - physiology
Parenchyma
Physical training
Progeny
reactive astrocytes
running wheel
Stem cells
Stem Cells - cytology
Stem Cells - physiology
Wounds
Title Progenitors in the adult cerebral cortex: Cell cycle properties and regulation by physiological stimuli and injury
URI https://api.istex.fr/ark:/67375/WNG-X506M700-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fglia.21156
https://www.ncbi.nlm.nih.gov/pubmed/21446038
https://www.proquest.com/docview/1017961720
https://www.proquest.com/docview/1323803032
https://www.proquest.com/docview/862280119
Volume 59
WOSCitedRecordID wos000289674400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1098-1136
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011497
  issn: 0894-1491
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_aZA97Wbd1H95H0dgobOBW_pRd-hK6pR1koYyV5U3IsjS8ZU5w2tL897uTE5dCVxh7k-EkZN2H7k7S7wDe4a6nUxFipFoaDFBKrvxM6dKnh9eFSIRQxqHrj8R4nE0m-ekGHK7fwrT4EF3CjTTD2WtScFUs9q9BQ39MK7WH4UuSbkI_RMGNe9D_-HV4NupOEdD7b5E-89jHdtDBk4b7171vbEh9Wtur27zNm86r232GW_8374fwYOV1skErJo9gw9SPYXtQY8T9e8l2mbsH6hLs29CcNjOUqorK8LCqZughMofSwbRp6Jh5yjTd0L06YEdmih9LHJLNKanfEDorU3XJmrbEPTKdFUs2Xw9PEsHQqNCdLEdX1T-RqU_gbPjp29GJv6rM4Os4z1I_jlJVhNoGubWhsjws0sQKndsoNhY9QKG5CazB6FEkmgBQ48jmgeGaXuKWgYmeQq-e1eY5MJuVaW7QlEQmjhPFVRFwhX2syoVOdeTB-zV7pF7BllP1jKlsAZdDSQsq3YJ68LajnbdgHbdS7ToudySq-UXX20Qiv4-P5STh6RfBuTzx4M1aDCQqHZ2kqNrMLhbS2THy_fgdNBF6Q2hCo9AD9hcaDCfDjFD3PHjWilk3KQdlx6PMgw9Omu74IXk8-jxwrRf_QvwS7rcJckopvYLeeXNhXsM9fXleLZod2BSTbGelUX8AusQjIA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9swED-2ZLB92at7eE-NjcIKXuWn7H0L3dKUuaGMluWbUGSppMuc4Laj-e93Jzsuha4w9k2Gk5B1p9Pd6fQ7gA946ulUhOiplgYdlJIrP1O69Onh9VQkQijj0PULMR5nk0l-0Obm0FuYBh-iC7jRznD6mjY4BaS3L1FDj-cz9Qn9lyS9Df0Y5SjpQf_L9-FR0V0joPnfQH3msY_toMMnDbcve185kfq0uBfXmZtXrVd3_Awf_OfEH8L91u5kg0ZQHsEtUz2GjUGFPvevFdtkLhPUhdg3oD6oFyhXMyrEw2YVQxuROZwOpk1NF81zpilH9-Iz2zFz_FjhkGxJYf2a8FmZqkpWN0Xuke1sumLL9fAkEwzVCmVlObpZdYJsfQJHw6-HOyO_rc3g6zjPUj-OUjUNtQ1ya0NleThNEyt0bqPYWLQBheYmsAb9R5FogkCNI5sHhmt6i1sGJnoKvWpRmefAbFamuUFlEpk4ThRX04Ar7GNVLnSqIw8-rvkjdQtcTvUz5rKBXA4lLah0C-rB-4522cB1XEu16djckaj6JyW4iUT-GO_KScLTfcG5HHnwbi0HErcd3aWoyizOT6XTZGT98RtoIrSHUIlGoQfsLzToUIYZ4e558KyRs25SDsyOR5kHW06cbvghuVvsDVzrxb8Qv4W7o8P9QhZ7428v4V4TLqcA0yvondXn5jXc0b_PZqf1m3Zj_QE-liYo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3raxQxEB-0J9IvvupjfUaUgsLa7DO7fjtary2exyEW71vIZpOyeu4d21Z6_70z2b0thVoQv2VhErKZR2Ymk18A3uKup1MRYqRaGgxQSq78TOnSp4vXhUiEUMah64_FZJLNZvm0q82huzAtPkSfcCPNcPaaFNwsS7tzgRp6PK_UB4xfkvQmDOIkT1EvB3tfR0fj_hgB3f8W6jOPfWwHPT5puHPR-9KONKDFPb_K3bzsvbrtZ3T3Pyd-D-50ficbtoJyH26Y-gFsDWuMuX-t2DZzlaAuxb4FzbRZoFxV9BAPq2qGPiJzOB1Mm4YOmudMU43u-Ue2a-b4scIh2ZLS-g3hszJVl6xpH7lHtrNixZbr4UkmGJoVqspydFX9A9n6EI5Gn77tHvjd2wy-jvMs9eMoVUWobZBbGyrLwyJNrNC5jWJj0QcUmpvAGowfRaIJAjWObB4YrukubhmY6BFs1IvaPAFmszLNDRqTyMRxorgqAq6wj1W50KmOPHi35o_UHXA5vZ8xly3kcihpQaVbUA_e9LTLFq7jSqptx-aeRDU_qcBNJPL7ZF_OEp5-EZzLAw9er-VAotrRWYqqzeLsRDpLRt4fv4YmQn8IjWgUesD-QoMBZZgR7p4Hj1s56yflwOx4lHnw3onTNT8k98eHQ9d6-i_Er-D2dG8kx4eTz89gs82WU37pOWycNmfmBdzSv0-rk-Zlp1d_AJJJJaM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progenitors+in+the+adult+cerebral+cortex%3A+Cell+cycle+properties+and+regulation+by+physiological+stimuli+and+injury&rft.jtitle=Glia&rft.au=Simon%2C+Christiane&rft.au=G%C3%B6tz%2C+Magdalena&rft.au=Dimou%2C+Leda&rft.date=2011-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0894-1491&rft.eissn=1098-1136&rft.volume=59&rft.issue=6&rft.spage=869&rft.epage=881&rft_id=info:doi/10.1002%2Fglia.21156&rft.externalDBID=10.1002%252Fglia.21156&rft.externalDocID=GLIA21156
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1491&client=summon