Progenitors in the adult cerebral cortex: Cell cycle properties and regulation by physiological stimuli and injury
The adult brain parenchyma contains a widespread population of progenitors generating different cells of the oligodendrocyte lineage such as NG2+ cells and some mature oligodendrocytes. However, it is still largely unknown how proliferation and lineage decisions of these progenitors are regulated. H...
Gespeichert in:
| Veröffentlicht in: | Glia Jg. 59; H. 6; S. 869 - 881 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.06.2011
|
| Schlagworte: | |
| ISSN: | 0894-1491, 1098-1136, 1098-1136 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The adult brain parenchyma contains a widespread population of progenitors generating different cells of the oligodendrocyte lineage such as NG2+ cells and some mature oligodendrocytes. However, it is still largely unknown how proliferation and lineage decisions of these progenitors are regulated. Here, we first characterized the cell cycle length, proliferative fraction, and progeny of dividing cells in the adult cerebral cortex and then compared these proliferation characteristics after two distinct stimuli, invasive acute brain injury and increased physiological activity by voluntary physical exercise. Our data show that adult parenchymal progenitors have a very long cell cycle due to an extended G1 phase, many of them can divide at least twice and only a limited proportion of the progeny differentiates into mature oligodendrocytes. After stab wound injury, however, many of these progenitors re‐enter the cell cycle very fast, suggesting that the normally long G1 phase is subject to regulation and can be abruptly shortened. In striking contrast, voluntary physical exercise shows the opposite effect with increased exit of the cell cycle followed by an enhanced and fast differentiation into mature oligodendrocytes. Taken together, our data demonstrate that the endogenous population of adult brain parenchymal progenitors is subject to profound modulation by environmental stimuli in both directions, either faster proliferation or faster differentiation. © 2011 Wiley‐Liss, Inc. |
|---|---|
| AbstractList | The adult brain parenchyma contains a widespread population of progenitors generating different cells of the oligodendrocyte lineage such as NG2+ cells and some mature oligodendrocytes. However, it is still largely unknown how proliferation and lineage decisions of these progenitors are regulated. Here, we first characterized the cell cycle length, proliferative fraction, and progeny of dividing cells in the adult cerebral cortex and then compared these proliferation characteristics after two distinct stimuli, invasive acute brain injury and increased physiological activity by voluntary physical exercise. Our data show that adult parenchymal progenitors have a very long cell cycle due to an extended G1 phase, many of them can divide at least twice and only a limited proportion of the progeny differentiates into mature oligodendrocytes. After stab wound injury, however, many of these progenitors re-enter the cell cycle very fast, suggesting that the normally long G1 phase is subject to regulation and can be abruptly shortened. In striking contrast, voluntary physical exercise shows the opposite effect with increased exit of the cell cycle followed by an enhanced and fast differentiation into mature oligodendrocytes. Taken together, our data demonstrate that the endogenous population of adult brain parenchymal progenitors is subject to profound modulation by environmental stimuli in both directions, either faster proliferation or faster differentiation.The adult brain parenchyma contains a widespread population of progenitors generating different cells of the oligodendrocyte lineage such as NG2+ cells and some mature oligodendrocytes. However, it is still largely unknown how proliferation and lineage decisions of these progenitors are regulated. Here, we first characterized the cell cycle length, proliferative fraction, and progeny of dividing cells in the adult cerebral cortex and then compared these proliferation characteristics after two distinct stimuli, invasive acute brain injury and increased physiological activity by voluntary physical exercise. Our data show that adult parenchymal progenitors have a very long cell cycle due to an extended G1 phase, many of them can divide at least twice and only a limited proportion of the progeny differentiates into mature oligodendrocytes. After stab wound injury, however, many of these progenitors re-enter the cell cycle very fast, suggesting that the normally long G1 phase is subject to regulation and can be abruptly shortened. In striking contrast, voluntary physical exercise shows the opposite effect with increased exit of the cell cycle followed by an enhanced and fast differentiation into mature oligodendrocytes. Taken together, our data demonstrate that the endogenous population of adult brain parenchymal progenitors is subject to profound modulation by environmental stimuli in both directions, either faster proliferation or faster differentiation. The adult brain parenchyma contains a widespread population of progenitors generating different cells of the oligodendrocyte lineage such as NG2+ cells and some mature oligodendrocytes. However, it is still largely unknown how proliferation and lineage decisions of these progenitors are regulated. Here, we first characterized the cell cycle length, proliferative fraction, and progeny of dividing cells in the adult cerebral cortex and then compared these proliferation characteristics after two distinct stimuli, invasive acute brain injury and increased physiological activity by voluntary physical exercise. Our data show that adult parenchymal progenitors have a very long cell cycle due to an extended G1 phase, many of them can divide at least twice and only a limited proportion of the progeny differentiates into mature oligodendrocytes. After stab wound injury, however, many of these progenitors re-enter the cell cycle very fast, suggesting that the normally long G1 phase is subject to regulation and can be abruptly shortened. In striking contrast, voluntary physical exercise shows the opposite effect with increased exit of the cell cycle followed by an enhanced and fast differentiation into mature oligodendrocytes. Taken together, our data demonstrate that the endogenous population of adult brain parenchymal progenitors is subject to profound modulation by environmental stimuli in both directions, either faster proliferation or faster differentiation. [copy 2011 Wiley-Liss, Inc. The adult brain parenchyma contains a widespread population of progenitors generating different cells of the oligodendrocyte lineage such as NG2+ cells and some mature oligodendrocytes. However, it is still largely unknown how proliferation and lineage decisions of these progenitors are regulated. Here, we first characterized the cell cycle length, proliferative fraction, and progeny of dividing cells in the adult cerebral cortex and then compared these proliferation characteristics after two distinct stimuli, invasive acute brain injury and increased physiological activity by voluntary physical exercise. Our data show that adult parenchymal progenitors have a very long cell cycle due to an extended G1 phase, many of them can divide at least twice and only a limited proportion of the progeny differentiates into mature oligodendrocytes. After stab wound injury, however, many of these progenitors re‐enter the cell cycle very fast, suggesting that the normally long G1 phase is subject to regulation and can be abruptly shortened. In striking contrast, voluntary physical exercise shows the opposite effect with increased exit of the cell cycle followed by an enhanced and fast differentiation into mature oligodendrocytes. Taken together, our data demonstrate that the endogenous population of adult brain parenchymal progenitors is subject to profound modulation by environmental stimuli in both directions, either faster proliferation or faster differentiation. © 2011 Wiley‐Liss, Inc. The adult brain parenchyma contains a widespread population of progenitors generating different cells of the oligodendrocyte lineage such as NG2+ cells and some mature oligodendrocytes. However, it is still largely unknown how proliferation and lineage decisions of these progenitors are regulated. Here, we first characterized the cell cycle length, proliferative fraction, and progeny of dividing cells in the adult cerebral cortex and then compared these proliferation characteristics after two distinct stimuli, invasive acute brain injury and increased physiological activity by voluntary physical exercise. Our data show that adult parenchymal progenitors have a very long cell cycle due to an extended G1 phase, many of them can divide at least twice and only a limited proportion of the progeny differentiates into mature oligodendrocytes. After stab wound injury, however, many of these progenitors re-enter the cell cycle very fast, suggesting that the normally long G1 phase is subject to regulation and can be abruptly shortened. In striking contrast, voluntary physical exercise shows the opposite effect with increased exit of the cell cycle followed by an enhanced and fast differentiation into mature oligodendrocytes. Taken together, our data demonstrate that the endogenous population of adult brain parenchymal progenitors is subject to profound modulation by environmental stimuli in both directions, either faster proliferation or faster differentiation. ? 2011 Wiley-Liss, Inc. The adult brain parenchyma contains a widespread population of progenitors generating different cells of the oligodendrocyte lineage such as NG2+ cells and some mature oligodendrocytes. However, it is still largely unknown how proliferation and lineage decisions of these progenitors are regulated. Here, we first characterized the cell cycle length, proliferative fraction, and progeny of dividing cells in the adult cerebral cortex and then compared these proliferation characteristics after two distinct stimuli, invasive acute brain injury and increased physiological activity by voluntary physical exercise. Our data show that adult parenchymal progenitors have a very long cell cycle due to an extended G1 phase, many of them can divide at least twice and only a limited proportion of the progeny differentiates into mature oligodendrocytes. After stab wound injury, however, many of these progenitors re-enter the cell cycle very fast, suggesting that the normally long G1 phase is subject to regulation and can be abruptly shortened. In striking contrast, voluntary physical exercise shows the opposite effect with increased exit of the cell cycle followed by an enhanced and fast differentiation into mature oligodendrocytes. Taken together, our data demonstrate that the endogenous population of adult brain parenchymal progenitors is subject to profound modulation by environmental stimuli in both directions, either faster proliferation or faster differentiation. |
| Author | Dimou, Leda Götz, Magdalena Simon, Christiane |
| Author_xml | – sequence: 1 givenname: Christiane surname: Simon fullname: Simon, Christiane organization: Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Germany – sequence: 2 givenname: Magdalena surname: Götz fullname: Götz, Magdalena organization: Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Germany – sequence: 3 givenname: Leda surname: Dimou fullname: Dimou, Leda email: leda.dimou@lrz.uni-muenchen.de organization: Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21446038$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1vEzEQxS1URNPChT8A-QaqtGXG3k9uVUTTSuHjAIKb5XXGqYuzm9q7gv3vcZOGA0LlNBrp955m3jthR13fEWMvEc4RQLxde6fPBWJRPmEzhKbOEGV5xGZQN3mGeYPH7CTGWwBMS_WMHQvM8xJkPWPhc-jX1LmhD5G7jg83xPVq9AM3FKgN2nPTh4F-veNz8mmZjCe-Df2WwuAoct2teKD16PXg-o63E9_eTNH1vl87k9RxcJvRux3nutsxTM_ZU6t9pBcP85R9vXz_ZX6VLT8trucXy8zkTV1muSx1K4zFxlqhLYi2LGxlGitzslBUlQFCS1jnVWGwajCXtkECIyCXKyR5yl7vfdO1dyPFQW1cNOkJ3VE_RlWXQtQpkiaRbx4lUQpZg4Q0_otCOqXESkBCXz2gY7uhldoGt9FhUofwEwB7wIQ-xkBWGTfsYhyCdj55qft-1X2_atdvkpz9JTm4_hPGPfzTeZoeIdVieX1x0GR7jYup9D8aHX6ospJVob59XKjvBZQfKgB1JX8DpJbEqg |
| CitedBy_id | crossref_primary_10_3389_fcell_2021_662056 crossref_primary_10_1155_2013_354136 crossref_primary_10_1016_j_ccr_2011_08_011 crossref_primary_10_1016_j_neuron_2011_05_013 crossref_primary_10_1155_2014_217503 crossref_primary_10_1038_s41593_021_00917_2 crossref_primary_10_1016_j_molmed_2017_04_005 crossref_primary_10_3390_cells10102794 crossref_primary_10_3389_fncel_2018_00231 crossref_primary_10_1111_jnc_13354 crossref_primary_10_1080_14737175_2017_1287564 crossref_primary_10_1002_glia_23301 crossref_primary_10_1038_s41467_024_46625_w crossref_primary_10_3389_fncel_2017_00024 crossref_primary_10_1016_j_ejphar_2023_175943 crossref_primary_10_1016_j_gde_2015_07_004 crossref_primary_10_1016_j_jbc_2022_102602 crossref_primary_10_1016_j_neuron_2013_01_006 crossref_primary_10_1038_nrn4023 crossref_primary_10_1016_j_expneurol_2017_09_011 crossref_primary_10_15252_embr_201745294 crossref_primary_10_1667_RR14737_1 crossref_primary_10_1038_s41598_024_52337_4 crossref_primary_10_1038_nn_4351 crossref_primary_10_1186_scrt473 crossref_primary_10_1002_glia_21237 crossref_primary_10_1038_nn_3815 crossref_primary_10_1111_j_1365_2990_2012_01301_x crossref_primary_10_1093_cercor_bhx112 crossref_primary_10_1002_glia_23893 crossref_primary_10_1002_dneu_22590 crossref_primary_10_4137_JEN_S25520 crossref_primary_10_1016_j_brainres_2015_08_013 crossref_primary_10_1177_10507256251372171 crossref_primary_10_1111_bpa_12189 crossref_primary_10_1093_brain_awad421 crossref_primary_10_7554_eLife_28080 crossref_primary_10_1002_glia_22432 crossref_primary_10_1002_glia_22554 crossref_primary_10_1002_glia_22555 crossref_primary_10_1002_glia_22799 crossref_primary_10_1016_j_jneuroim_2024_578286 crossref_primary_10_1007_s11302_013_9366_3 crossref_primary_10_1371_journal_pone_0163841 crossref_primary_10_1126_science_1254960 crossref_primary_10_1002_cne_23618 crossref_primary_10_1016_j_neuroscience_2013_10_018 crossref_primary_10_1038_nn_3371 crossref_primary_10_1016_j_bbr_2017_04_027 crossref_primary_10_1371_journal_pone_0257395 crossref_primary_10_3390_jcm9061681 crossref_primary_10_1002_glia_22664 crossref_primary_10_3390_cells9051279 crossref_primary_10_1016_j_ibneur_2021_06_004 crossref_primary_10_3389_fcell_2021_665409 crossref_primary_10_1038_s42003_021_02404_7 crossref_primary_10_1016_j_pneurobio_2018_06_005 crossref_primary_10_1016_j_nbd_2011_05_021 crossref_primary_10_3389_fnins_2023_1237176 crossref_primary_10_1002_glia_23629 crossref_primary_10_1016_j_neures_2017_11_012 crossref_primary_10_1097_NEN_0000000000000038 crossref_primary_10_1002_glia_22898 crossref_primary_10_1038_ncb2736 crossref_primary_10_3390_ijms24087079 crossref_primary_10_1002_glia_24155 crossref_primary_10_1242_dev_092262 crossref_primary_10_1038_s41598_022_17081_7 crossref_primary_10_1371_journal_pone_0063258 crossref_primary_10_1002_glia_23617 crossref_primary_10_1152_physrev_00036_2013 crossref_primary_10_1038_s44319_025_00529_y crossref_primary_10_1002_glia_22646 crossref_primary_10_1016_j_nicl_2018_02_021 crossref_primary_10_1002_glia_22648 crossref_primary_10_1002_glia_23055 crossref_primary_10_1007_s11033_022_07508_9 crossref_primary_10_1016_j_brainres_2015_09_012 crossref_primary_10_1016_j_neulet_2012_02_023 crossref_primary_10_1177_0300985818777794 crossref_primary_10_1242_jcs_151043 crossref_primary_10_3390_cells11030520 crossref_primary_10_1002_glia_24388 crossref_primary_10_1007_s11626_013_9709_y crossref_primary_10_1038_s41593_018_0120_6 crossref_primary_10_2478_rrlm_2020_0005 crossref_primary_10_1002_glia_23607 crossref_primary_10_1016_j_molmed_2018_09_001 crossref_primary_10_3390_cells9061538 crossref_primary_10_1080_01616412_2020_1773629 crossref_primary_10_1002_bies_201400127 crossref_primary_10_1002_glia_23164 crossref_primary_10_1038_s41398_019_0662_8 crossref_primary_10_1002_hipo_22232 crossref_primary_10_1016_j_neuropharm_2012_01_015 crossref_primary_10_1002_glia_23288 crossref_primary_10_1002_glia_22750 crossref_primary_10_3390_cells10082045 crossref_primary_10_3389_fnins_2021_677988 crossref_primary_10_1111_cns_12690 crossref_primary_10_2337_db13_1762 crossref_primary_10_1002_glia_22506 crossref_primary_10_1007_s12272_019_01133_0 crossref_primary_10_1007_s11064_017_2343_4 crossref_primary_10_3389_fnins_2014_00122 crossref_primary_10_1371_journal_pbio_1001993 crossref_primary_10_1016_j_neulet_2019_134645 crossref_primary_10_1038_s41598_018_24385_0 crossref_primary_10_1016_j_pneurobio_2018_07_004 crossref_primary_10_4252_wjsc_v12_i1_8 crossref_primary_10_1016_j_exger_2023_112293 crossref_primary_10_3390_ijms19020331 crossref_primary_10_1002_glia_22859 crossref_primary_10_1016_j_neuropharm_2016_04_026 crossref_primary_10_1002_glia_22850 crossref_primary_10_3389_fnins_2014_00133 crossref_primary_10_1371_journal_pone_0036816 crossref_primary_10_1002_glia_24117 crossref_primary_10_1002_glia_23702 crossref_primary_10_1016_j_neuint_2024_105742 crossref_primary_10_1002_glia_24471 crossref_primary_10_1016_j_nbd_2024_106610 crossref_primary_10_1016_j_bcp_2017_05_008 crossref_primary_10_1002_glia_22295 crossref_primary_10_1038_nn_3505 crossref_primary_10_1038_nn_3503 crossref_primary_10_1096_fj_202200463R crossref_primary_10_4103_1673_5374_270292 crossref_primary_10_3390_ijms21051852 crossref_primary_10_3390_brainsci7100131 crossref_primary_10_1016_j_neuron_2017_11_026 crossref_primary_10_2174_0929867326666190717112944 crossref_primary_10_1016_j_neuropharm_2015_09_016 crossref_primary_10_1002_glia_23936 crossref_primary_10_1007_s12264_013_1320_4 crossref_primary_10_1016_j_neurobiolaging_2014_02_028 crossref_primary_10_1007_s12035_013_8549_9 crossref_primary_10_1038_nn_3191 crossref_primary_10_3389_fncel_2020_00042 crossref_primary_10_1016_j_neuroscience_2013_10_075 crossref_primary_10_1177_17590914231155976 crossref_primary_10_1002_glia_23019 crossref_primary_10_1038_s41598_023_48926_4 crossref_primary_10_1016_j_neuron_2017_07_009 crossref_primary_10_2147_NDT_S247497 crossref_primary_10_3389_fnins_2014_00145 crossref_primary_10_1007_s13311_018_0630_7 crossref_primary_10_3390_ijms19092724 crossref_primary_10_1002_glia_24342 crossref_primary_10_1002_glia_23256 crossref_primary_10_1186_s13024_023_00616_5 crossref_primary_10_1016_j_neuroscience_2017_08_018 crossref_primary_10_1186_s12868_017_0347_2 crossref_primary_10_1016_j_expneurol_2024_115125 crossref_primary_10_3389_fneur_2019_01149 crossref_primary_10_1002_mds_27364 crossref_primary_10_1016_j_brainres_2015_06_003 crossref_primary_10_1515_tnsci_2020_0004 crossref_primary_10_1146_annurev_genet_071719_023616 crossref_primary_10_1186_s13041_019_0506_8 crossref_primary_10_1002_cne_23693 crossref_primary_10_1016_j_bbi_2019_11_017 crossref_primary_10_1016_j_tins_2017_06_009 crossref_primary_10_1016_j_brainres_2015_06_009 crossref_primary_10_1523_JNEUROSCI_1067_18_2018 crossref_primary_10_1016_j_expneurol_2018_08_010 crossref_primary_10_1007_s00018_013_1365_6 crossref_primary_10_1016_j_neuroimage_2021_118305 crossref_primary_10_1016_j_freeradbiomed_2024_10_298 crossref_primary_10_1016_j_tins_2016_02_001 crossref_primary_10_1007_s00418_011_0865_4 crossref_primary_10_1016_j_sleep_2019_02_020 crossref_primary_10_1089_neu_2019_6938 crossref_primary_10_1002_dneu_22539 crossref_primary_10_1038_s41583_020_00379_8 crossref_primary_10_1002_glia_22269 crossref_primary_10_1002_glia_23116 crossref_primary_10_3389_fncel_2018_00428 crossref_primary_10_1016_j_neulet_2019_134601 crossref_primary_10_1523_JNEUROSCI_5102_12_2013 crossref_primary_10_1016_j_brainres_2015_07_026 crossref_primary_10_3389_fncel_2024_1528918 crossref_primary_10_1007_s00401_021_02390_4 crossref_primary_10_1371_journal_pone_0145334 crossref_primary_10_1371_journal_pone_0127222 crossref_primary_10_4103_1673_5374_286950 crossref_primary_10_1016_j_neures_2020_12_005 crossref_primary_10_1016_j_bbi_2016_01_005 crossref_primary_10_1007_s12035_017_0647_7 crossref_primary_10_1523_JNEUROSCI_5885_12_2013 crossref_primary_10_1007_s13402_024_01007_8 crossref_primary_10_3389_fncel_2021_604865 crossref_primary_10_1002_glia_22929 crossref_primary_10_1523_JNEUROSCI_0103_19_2019 crossref_primary_10_1016_j_brainres_2022_147837 crossref_primary_10_1016_j_conb_2017_09_016 crossref_primary_10_1016_j_conb_2017_09_015 crossref_primary_10_3389_fnana_2018_00090 crossref_primary_10_1002_dneu_22552 crossref_primary_10_1523_JNEUROSCI_3060_13_2014 crossref_primary_10_1523_JNEUROSCI_2696_11_2011 crossref_primary_10_1016_j_neuroscience_2015_04_036 crossref_primary_10_3389_fnins_2017_00143 crossref_primary_10_1038_s41598_020_75973_y crossref_primary_10_1146_annurev_neuro_080317_061853 crossref_primary_10_1016_j_immuni_2017_06_006 crossref_primary_10_1016_j_expneurol_2016_03_017 crossref_primary_10_1016_j_biomaterials_2018_02_037 crossref_primary_10_1212_NXI_0000000000200407 crossref_primary_10_1002_bies_201200108 crossref_primary_10_1146_annurev_neuro_072116_031054 crossref_primary_10_1371_journal_pone_0078236 crossref_primary_10_1667_RADE_21_00037_1 crossref_primary_10_1016_j_neuropharm_2015_08_001 crossref_primary_10_1016_j_stem_2013_01_019 crossref_primary_10_3389_fimmu_2024_1425706 crossref_primary_10_1016_j_brainres_2015_10_051 crossref_primary_10_1111_cns_13948 crossref_primary_10_1002_glia_23329 crossref_primary_10_1371_journal_pbio_2001993 crossref_primary_10_3389_fncel_2024_1335849 crossref_primary_10_3390_ijms21113808 crossref_primary_10_1111_ahe_12348 crossref_primary_10_3389_fphar_2014_00279 |
| Cites_doi | 10.1038/nn2060 10.1002/jnr.22335 10.1038/nn1162 10.1002/cne.1040 10.1038/nrn2495 10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9 10.1111/j.1469-7580.2005.00452.x 10.1016/S1044-7431(03)00210-0 10.1016/j.stem.2010.04.002 10.1016/j.bbr.2008.11.050 10.1038/nm837 10.1016/j.neuroscience.2004.05.028 10.1111/j.1460-9568.2007.05313.x 10.1177/1073858405282304 10.1523/JNEUROSCI.14-08-04716.1994 10.1523/JNEUROSCI.2120-05.2005 10.1038/nn.2500 10.1002/hipo.20621 10.1371/journal.pone.0000588 10.1523/JNEUROSCI.20-06-02218.2000 10.1523/JNEUROSCI.23-20-07710.2003 10.1016/0962-8924(93)90213-K 10.1006/mcne.2002.1102 10.1007/BF01190834 10.1002/glia.20121 10.1016/j.brainresrev.2009.12.006 10.1242/dev.004895 10.1073/pnas.0506535102 10.1002/dvg.20440 10.1523/JNEUROSCI.3572-04.2004 10.1083/jcb.200210110 10.1111/j.1750-3639.2009.00295.x 10.1038/nn.2220 10.1101/lm.43402 10.1016/j.brainresrev.2006.08.002 10.1002/jnr.20039 10.1523/JNEUROSCI.2500-09.2009 10.1002/(SICI)1098-1136(199903)26:1<84::AID-GLIA9>3.0.CO;2-L 10.1016/j.neuron.2010.09.009 10.1038/35012083 10.1085/jgp.200910194 10.1002/(SICI)1098-1136(199802)22:2<161::AID-GLIA7>3.0.CO;2-A 10.1523/JNEUROSCI.21-10-03392.2001 10.1006/exnr.1999.7224 10.1523/JNEUROSCI.2831-08.2008 10.1523/JNEUROSCI.23-27-09240.2003 10.1002/jnr.10338 10.3109/00207450903222741 10.1002/neu.1043 10.1038/6368 10.1016/j.stem.2010.07.014 10.1016/j.neuroscience.2006.01.055 10.1523/JNEUROSCI.18-12-04627.1998 10.1002/glia.440070406 10.1016/j.expneurol.2009.07.010 10.1002/cne.21787 10.1093/cercor/13.8.845 10.1016/S0306-4522(03)00285-9 10.1242/dev.105.2.387 10.1002/(SICI)1097-4695(19981115)37:3<413::AID-NEU7>3.0.CO;2-8 10.1111/j.1471-4159.2008.05570.x 10.1017/S1740925X09990354 10.1242/dev.125.15.2901 10.1006/mcne.2002.1114 10.1016/S0896-6273(02)01067-X 10.1073/pnas.0709002105 10.1016/0896-6273(94)90305-0 10.1038/nn1516 |
| ContentType | Journal Article |
| Copyright | Copyright © 2011 Wiley‐Liss, Inc. Copyright © 2011 Wiley-Liss, Inc. |
| Copyright_xml | – notice: Copyright © 2011 Wiley‐Liss, Inc. – notice: Copyright © 2011 Wiley-Liss, Inc. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 8FD FR3 P64 RC3 7X8 |
| DOI | 10.1002/glia.21156 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Genetics Abstracts Neurosciences Abstracts MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1098-1136 |
| EndPage | 881 |
| ExternalDocumentID | 21446038 10_1002_glia_21156 GLIA21156 ark_67375_WNG_X506M700_H |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Comparative Study |
| GrantInformation_xml | – fundername: The Helmholtz Association (HELMA) – fundername: The Bundesministerium fuer Bildung und Forschung (BMBF) – fundername: The Bavarian State Ministry of the Sciences – fundername: The Friedrich Bauer Stiftung – fundername: Breuer Stiftung and the Deutsche Forschungsgemeinschaft funderid: SFB596; SFB870 – fundername: Research and the Arts – fundername: European Community (Integrated Project EuTRACC) |
| GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GAKWD GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WXSBR WYISQ X7M XG1 XV2 ZGI ZXP ZZTAW ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWD RWI WRC WUP AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7TK 8FD FR3 P64 RC3 7X8 |
| ID | FETCH-LOGICAL-c4986-436ab2cf19ff2af02b65f7c9f34ef0577c0e1fe18475c179143f91e0c2043d1e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 259 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000289674400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0894-1491 1098-1136 |
| IngestDate | Thu Oct 02 11:02:12 EDT 2025 Fri Jul 11 15:18:57 EDT 2025 Fri Jul 11 16:35:15 EDT 2025 Mon Jul 21 06:01:06 EDT 2025 Tue Nov 18 22:32:18 EST 2025 Sat Nov 29 03:31:38 EST 2025 Wed Jan 22 16:22:40 EST 2025 Sun Sep 21 06:15:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2011 Wiley-Liss, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4986-436ab2cf19ff2af02b65f7c9f34ef0577c0e1fe18475c179143f91e0c2043d1e3 |
| Notes | The Bundesministerium fuer Bildung und Forschung (BMBF) The Bavarian State Ministry of the Sciences European Community (Integrated Project EuTRACC) ArticleID:GLIA21156 Breuer Stiftung and the Deutsche Forschungsgemeinschaft - No. SFB596; No. SFB870 The Helmholtz Association (HELMA) Research and the Arts The Friedrich Bauer Stiftung istex:1239431A0EAAAEB4928D39B37F771C1C6B9E48FA ark:/67375/WNG-X506M700-H ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PMID | 21446038 |
| PQID | 1017961720 |
| PQPubID | 23462 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_862280119 proquest_miscellaneous_1323803032 proquest_miscellaneous_1017961720 pubmed_primary_21446038 crossref_citationtrail_10_1002_glia_21156 crossref_primary_10_1002_glia_21156 wiley_primary_10_1002_glia_21156_GLIA21156 istex_primary_ark_67375_WNG_X506M700_H |
| PublicationCentury | 2000 |
| PublicationDate | June 2011 |
| PublicationDateYYYYMMDD | 2011-06-01 |
| PublicationDate_xml | – month: 06 year: 2011 text: June 2011 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: United States |
| PublicationTitle | Glia |
| PublicationTitleAlternate | Glia |
| PublicationYear | 2011 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
| References | Barres BA,Raff MC. 1994. Control of oligodendrocyte number in the developing rat optic nerve. Neuron 12: 935-942. Aguirre A,Gallo V. 2004. Postnatal neurogenesis and gliogenesis in the olfactory bulb from NG2-expressing progenitors of the subventricular zone. J Neurosci 24: 10530-10541. Zawadzka M,Rivers LE,Fancy SP,Zhao C,Tripathi R,Jamen F,Young K,Goncharevich A,Pohl H,Rizzi M,Rowitch DH,Kessaris N,Suter U,Richardson WD,Franklin RJ. 2010. CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6: 578-590. Etxeberria A,Mangin JM,Aguirre A,Gallo V. 2010. Adult-born SVZ progenitors receive transient synapses during remyelination in corpus callosum. Nat Neurosci 13: 287-289. Belachew S,Chittajallu R,Aguirre AA,Yuan X,Kirby M,Anderson S,Gallo V. 2003. Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J Cell Biol 161: 169-186. Geha S,Pallud J,Junier MP,Devaux B,Leonard N,Chassoux F,Chneiweiss H,Daumas-Duport C,Varlet P. 2010. NG2+/Olig2+ cells are the major cycle-related cell population of the adult human normal brain. Brain Pathol 20: 399-3411. Tripathi RB,McTigue DM. 2008. Chronically increased ciliary neurotrophic factor and fibroblast growth factor-2 expression after spinal contusion in rats. J Comp Neurol 510: 129-144. Irvine KA,Blakemore WF. 2007. A different regional response by mouse oligodendrocyte progenitor cells (OPCs) to high-dose X-irradiation has consequences for repopulating OPC-depleted normal tissue. Eur J Neurosci 25: 417-424. Psachoulia K,Jamen F,Young KM,Richardson WD. 2009. Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biol 5: 57-67. Nunes MC,Roy NS,Keyoung HM,Goodman RR,McKhann G,2nd,Jiang L,Kang J,Nedergaard M,Goldman SA. 2003. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med 9: 439-447. Kerstetter AE,Padovani-Claudio DA,Bai L,Miller RH. 2009. Inhibition of CXCR2 signaling promotes recovery in models of multiple sclerosis. Exp Neurol 220: 44-56. Bergles DE,Roberts JD,Somogyi P,Jahr CE. 2000. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405: 187-191. Zhu X,Bergles DE,Nishiyama A. 2008. NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135: 145-157. Alonso G. 2005. NG2 proteoglycan-expressing cells of the adult rat brain: Possible involvement in the formation of glial scar astrocytes following stab wound. Glia 49: 318-338. Bengtsson SL,Nagy Z,Skare S,Forsman L,Forssberg H,Ullen F. 2005. Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci 8: 1148-1150. Holmes MM,Galea LA,Mistlberger RE,Kempermann G. 2004. Adult hippocampal neurogenesis and voluntary running activity: Circadian and dose-dependent effects. J Neurosci Res 76: 216-222. Karram K,Goebbels S,Schwab M,Jennissen K,Seifert G,Steinhauser C,Nave KA,Trotter J. 2008. NG2-expressing cells in the nervous system revealed by the NG2-EYFP-knockin mouse. Genesis 46: 743-757. Wolswijk G,Noble M. 1989. Identification of an adult-specific glial progenitor cell. Development 105: 387-400. Stevens B,Porta S,Haak LL,Gallo V,Fields RD. 2002. Adenosine: A neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36: 855-868. Buffo A,Vosko MR,Erturk D,Hamann GF,Jucker M,Rowitch D,Gotz M. 2005. Expression pattern of the transcription factor Olig2 in response to brain injuries: Implications for neuronal repair. Proc Natl Acad Sci USA 102: 18183-18188. Karadottir R,Hamilton NB,Bakiri Y,Attwell D. 2008. Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nat Neurosci 11: 450-456. Panagiotakos G,Alshamy G,Chan B,Abrams R,Greenberg E,Saxena A,Bradbury M,Edgar M,Gutin P,Tabar V. 2007. Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain. PLoS One 2: e588 Scholzen T,Gerdes J. 2000. The Ki-67 protein: From the known and the unknown. J Cell Physiol 182: 311-322. Nowakowski RS,Lewin SB,Miller MW. 1989. Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol 18: 311-318. McTigue DM,Wei P,Stokes BT. 2001. Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord. J Neurosci 21: 3392-3400. Mason JL,Xuan S,Dragatsis I,Efstratiadis A,Goldman JE. 2003. Insulin-like growth factor (IGF) signaling through type 1 IGF receptor plays an important role in remyelination. J Neurosci 23: 7710-7718. Shi J,Marinovich A,Barres BA. 1998. Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve. J Neurosci 18: 4627-4636. Fields RD. 2005. Myelination: An overlooked mechanism of synaptic plasticity? Neuroscientist 11: 528-531. Muller J,Reyes-Haro D,Pivneva T,Nolte C,Schaette R,Lubke J,Kettenmann H. 2009. The principal neurons of the medial nucleus of the trapezoid body and NG2(+) glial cells receive coordinated excitatory synaptic input. J Gen Physiol 134: 115-127. Cameron HA,McKay RD. 2001. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435: 406-417. Watanabe M,Toyama Y,Nishiyama A. 2002. Differentiation of proliferated NG2-positive glial progenitor cells in a remyelinating lesion. J Neurosci Res 69: 826-836. McTigue DM,Tripathi RB. 2008. The life, death, and replacement of oligodendrocytes in the adult CNS. J Neurochem 107: 1-19. Nishiyama A,Komitova M,Suzuki R,Zhu X. 2009. Polydendrocytes (NG2 cells): Multifunctional cells with lineage plasticity. Nat Rev Neurosci 10: 9-22. Trotter J,Karram K,Nishiyama A. 2010. NG2 cells: Properties, progeny and origin. Brain Res Rev 63: 72-82. Hancock A,Priester C,Kidder E,Keith JR. 2009. Does 5-bromo-2′-deoxyuridine (BrdU) disrupt cell proliferation and neuronal maturation in the adult rat hippocampus in vivo? Behav Brain Res 199: 218-221. Tan AM,Zhang W,Levine JM. 2005. NG2: A component of the glial scar that inhibits axon growth. J Anat 207: 717-725. Horner PJ,Power AE,Kempermann G,Kuhn HG,Palmer TD,Winkler J,Thal LJ,Gage FH. 2000. Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci 20: 2218-2228. Taylor DL,Pirianov G,Holland S,McGinnity CJ,Norman AL,Reali C,Diemel LT,Gveric D,Yeung D,Mehmet H. 2010. Attenuation of proliferation in oligodendrocyte precursor cells by activated microglia. JNeurosci Res 88: 1632-1644. Dimou L,Simon C,Kirchhoff F,Takebayashi H,Gotz M. 2008. Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci 28: 10434-10442. Levine JM,Reynolds R. 1999. Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Exp Neurol 160: 333-347. Rhodes KE,Moon LD,Fawcett JW. 2003. Inhibiting cell proliferation during formation of the glial scar: Effects on axon regeneration in the CNS. Neuroscience 120: 41-56. Gaser C,Schlaug G. 2003. Brain structures differ between musicians and non-musicians. J Neurosci 23: 9240-9245. Redwine JM,Armstrong RC. 1998. In vivo proliferation of oligodendrocyte progenitors expressing PDGFalphaR during early remyelination. J Neurobiol 37: 413-428. Dawson MR,Polito A,Levine JM,Reynolds R. 2003. NG2-expressing glial progenitor cells: An abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci 24: 476-488. Levine JM,Stincone F,Lee YS. 1993. Development and differentiation of glial precursor cells in the rat cerebellum. Glia 7: 307-321. Bednarczyk MR,Aumont A,Decary S,Bergeron R,Fernandes KJ. 2009. Prolonged voluntary wheel-running stimulates neural precursors in the hippocampus and forebrain of adult CD1 mice. Hippocampus 19: 913-927. Levine JM. 1994. Increased expression of the NG2 chondroitin-sulfate proteoglycan after brain injury. J Neurosci 14: 4716-4730. Pfeiffer SE,Warrington AE,Bansal R. 1993. The oligodendrocyte and its many cellular processes. Trends Cell Biol 3: 191-197. Taupin P. 2007. BrdU immunohistochemistry for studying adult neurogenesis: Paradigms, pitfalls, limitations, and validation. Brain Res Rev 53: 198-214. Amankulor NM,Hambardzumyan D,Pyonteck SM,Becher OJ,Joyce JA,Holland EC. 2009. Sonic hedgehog pathway activation is induced by acute brain injury and regulated by injury-related inflammation. J Neurosci 29: 10299-10308. Anderson BJ,Eckburg PB,Relucio KI. 2002. Alterations in the thickness of motor cortical subregions after motor-skill learning and exercise. Learn Mem 9: 1-9. Mason JL,Goldman JE. 2002. A2B5+ and O4+ cycling progenitors in the adult forebrain white matter respond differentially to PDGF-AA, FGF-2, and IGF-1. Mol Cell Neurosci 20: 30-42. Yuan X,Eisen AM,McBain CJ,Gallo V. 1998. A role for glutamate and its receptors in the regulation of oligodendrocyte development in cerebellar tissue slices. Development 125: 2901-2914. Rivers LE,Young KM,Rizzi M,Jamen F,Psachoulia K,Wade A,Kessaris N,Richardson WD. 2008. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11: 1392-1401. Rhodes KE,Raivich G,Fawcett JW. 2006. The injury response of oligodendrocyte precursor cells is induced by platelets, macrophages and inflammation-associated cytokines. Neuroscience 140: 87-100. Barnabe-Heider F,Goritz C,Sabelstrom H,Takebayashi H,Pfrieger FW,Meletis K,Frisen J. 2010. Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell 7: 470-482. Lin SC,Bergles DE. 2004. Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nat Neurosci 7: 24-32. Hampton DW,Rhodes KE,Zhao C,Franklin RJ,Fawcett JW. 2004. The responses of oligodendrocyte precursor cells, astrocytes and 1993; 7 2004; 127 2010; 13 2004; 7 2004; 24 2003; 13 2009; 199 2008; 107 2008; 105 2001; 48 1993; 3 2010; 63 2005; 25 2004; 76 1998; 18 2010; 20 1989; 105 2009; 10 2010; 68 2005; 102 2000; 405 2008; 28 2003; 9 2003; 161 1998; 125 2007; 2 2008; 510 2009; 19 2010; 7 2007; 25 2010; 6 2003; 120 2002; 36 2002; 9 1999; 26 2000; 20 2009; 134 2010; 120 2008; 11 1999; 2 2007; 53 2005; 49 1998; 22 2009; 29 2001; 21 1998; 37 2010; 88 2002; 69 2002; 20 1999; 160 2005; 8 1994; 12 2003; 24 2009; 220 2000; 182 2006; 140 2005; 207 1994; 14 2008; 46 2009; 5 2008; 135 2005; 11 2001; 435 2003; 23 1989; 18 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
| References_xml | – reference: Buffo A,Vosko MR,Erturk D,Hamann GF,Jucker M,Rowitch D,Gotz M. 2005. Expression pattern of the transcription factor Olig2 in response to brain injuries: Implications for neuronal repair. Proc Natl Acad Sci USA 102: 18183-18188. – reference: Dimou L,Simon C,Kirchhoff F,Takebayashi H,Gotz M. 2008. Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci 28: 10434-10442. – reference: Barres BA,Raff MC. 1994. Control of oligodendrocyte number in the developing rat optic nerve. Neuron 12: 935-942. – reference: Chen ZJ,Ughrin Y,Levine JM. 2002. Inhibition of axon growth by oligodendrocyte precursor cells. Mol Cell Neurosci 20: 125-139. – reference: Taupin P. 2007. BrdU immunohistochemistry for studying adult neurogenesis: Paradigms, pitfalls, limitations, and validation. Brain Res Rev 53: 198-214. – reference: Zhu X,Bergles DE,Nishiyama A. 2008. NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135: 145-157. – reference: Barnabe-Heider F,Goritz C,Sabelstrom H,Takebayashi H,Pfrieger FW,Meletis K,Frisen J. 2010. Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell 7: 470-482. – reference: Dawson MR,Polito A,Levine JM,Reynolds R. 2003. NG2-expressing glial progenitor cells: An abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci 24: 476-488. – reference: Shi J,Marinovich A,Barres BA. 1998. Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve. J Neurosci 18: 4627-4636. – reference: Nowakowski RS,Lewin SB,Miller MW. 1989. Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol 18: 311-318. – reference: Redwine JM,Armstrong RC. 1998. In vivo proliferation of oligodendrocyte progenitors expressing PDGFalphaR during early remyelination. J Neurobiol 37: 413-428. – reference: Amankulor NM,Hambardzumyan D,Pyonteck SM,Becher OJ,Joyce JA,Holland EC. 2009. Sonic hedgehog pathway activation is induced by acute brain injury and regulated by injury-related inflammation. J Neurosci 29: 10299-10308. – reference: Nishiyama A,Komitova M,Suzuki R,Zhu X. 2009. Polydendrocytes (NG2 cells): Multifunctional cells with lineage plasticity. Nat Rev Neurosci 10: 9-22. – reference: Geha S,Pallud J,Junier MP,Devaux B,Leonard N,Chassoux F,Chneiweiss H,Daumas-Duport C,Varlet P. 2010. NG2+/Olig2+ cells are the major cycle-related cell population of the adult human normal brain. Brain Pathol 20: 399-3411. – reference: Levine JM,Stincone F,Lee YS. 1993. Development and differentiation of glial precursor cells in the rat cerebellum. Glia 7: 307-321. – reference: Cameron HA,McKay RD. 2001. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435: 406-417. – reference: Anderson BJ,Eckburg PB,Relucio KI. 2002. Alterations in the thickness of motor cortical subregions after motor-skill learning and exercise. Learn Mem 9: 1-9. – reference: Tripathi RB,McTigue DM. 2008. Chronically increased ciliary neurotrophic factor and fibroblast growth factor-2 expression after spinal contusion in rats. J Comp Neurol 510: 129-144. – reference: Irvine KA,Blakemore WF. 2007. A different regional response by mouse oligodendrocyte progenitor cells (OPCs) to high-dose X-irradiation has consequences for repopulating OPC-depleted normal tissue. Eur J Neurosci 25: 417-424. – reference: Bergles DE,Roberts JD,Somogyi P,Jahr CE. 2000. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405: 187-191. – reference: Pfeiffer SE,Warrington AE,Bansal R. 1993. The oligodendrocyte and its many cellular processes. Trends Cell Biol 3: 191-197. – reference: Aguirre A,Gallo V. 2004. Postnatal neurogenesis and gliogenesis in the olfactory bulb from NG2-expressing progenitors of the subventricular zone. J Neurosci 24: 10530-10541. – reference: Etxeberria A,Mangin JM,Aguirre A,Gallo V. 2010. Adult-born SVZ progenitors receive transient synapses during remyelination in corpus callosum. Nat Neurosci 13: 287-289. – reference: Bednarczyk MR,Aumont A,Decary S,Bergeron R,Fernandes KJ. 2009. Prolonged voluntary wheel-running stimulates neural precursors in the hippocampus and forebrain of adult CD1 mice. Hippocampus 19: 913-927. – reference: Gaser C,Schlaug G. 2003. Brain structures differ between musicians and non-musicians. J Neurosci 23: 9240-9245. – reference: Belachew S,Chittajallu R,Aguirre AA,Yuan X,Kirby M,Anderson S,Gallo V. 2003. Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J Cell Biol 161: 169-186. – reference: Keirstead HS,Levine JM,Blakemore WF. 1998. Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord. Glia 22: 161-170. – reference: van Praag H,Kempermann G,Gage FH. 1999. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2: 266-270. – reference: Karram K,Goebbels S,Schwab M,Jennissen K,Seifert G,Steinhauser C,Nave KA,Trotter J. 2008. NG2-expressing cells in the nervous system revealed by the NG2-EYFP-knockin mouse. Genesis 46: 743-757. – reference: Alonso G. 2005. NG2 proteoglycan-expressing cells of the adult rat brain: Possible involvement in the formation of glial scar astrocytes following stab wound. Glia 49: 318-338. – reference: Levine JM,Reynolds R. 1999. Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Exp Neurol 160: 333-347. – reference: Taylor DL,Pirianov G,Holland S,McGinnity CJ,Norman AL,Reali C,Diemel LT,Gveric D,Yeung D,Mehmet H. 2010. Attenuation of proliferation in oligodendrocyte precursor cells by activated microglia. JNeurosci Res 88: 1632-1644. – reference: Butt AM,Duncan A,Hornby MF,Kirvell SL,Hunter A,Levine JM,Berry M. 1999. Cells expressing the NG2 antigen contact nodes of Ranvier in adult CNS white matter. Glia 26: 84-91. – reference: McTigue DM,Wei P,Stokes BT. 2001. Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord. J Neurosci 21: 3392-3400. – reference: Rhodes KE,Raivich G,Fawcett JW. 2006. The injury response of oligodendrocyte precursor cells is induced by platelets, macrophages and inflammation-associated cytokines. Neuroscience 140: 87-100. – reference: Psachoulia K,Jamen F,Young KM,Richardson WD. 2009. Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biol 5: 57-67. – reference: Kang SH,Fukaya M,Yang JK,Rothstein JD,Bergles DE. 2010. NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68: 668-681. – reference: Bengtsson SL,Nagy Z,Skare S,Forsman L,Forssberg H,Ullen F. 2005. Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci 8: 1148-1150. – reference: Lin SC,Bergles DE. 2004. Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nat Neurosci 7: 24-32. – reference: Levine JM. 1994. Increased expression of the NG2 chondroitin-sulfate proteoglycan after brain injury. J Neurosci 14: 4716-4730. – reference: Krityakiarana W,Espinosa-Jeffrey A,Ghiani CA,Zhao PM,Topaldjikian N,Gomez-Pinilla F,Yamaguchi M,Kotchabhakdi N,de Vellis J. 2010. Voluntary exercise increases oligodendrogenesis in spinal cord. Int J Neurosci 120: 280-290. – reference: Mason JL,Xuan S,Dragatsis I,Efstratiadis A,Goldman JE. 2003. Insulin-like growth factor (IGF) signaling through type 1 IGF receptor plays an important role in remyelination. J Neurosci 23: 7710-7718. – reference: Rhodes KE,Moon LD,Fawcett JW. 2003. Inhibiting cell proliferation during formation of the glial scar: Effects on axon regeneration in the CNS. Neuroscience 120: 41-56. – reference: Karadottir R,Hamilton NB,Bakiri Y,Attwell D. 2008. Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nat Neurosci 11: 450-456. – reference: Kerstetter AE,Padovani-Claudio DA,Bai L,Miller RH. 2009. Inhibition of CXCR2 signaling promotes recovery in models of multiple sclerosis. Exp Neurol 220: 44-56. – reference: Trotter J,Karram K,Nishiyama A. 2010. NG2 cells: Properties, progeny and origin. Brain Res Rev 63: 72-82. – reference: Scholzen T,Gerdes J. 2000. The Ki-67 protein: From the known and the unknown. J Cell Physiol 182: 311-322. – reference: Fortin D,Rom E,Sun H,Yayon A,Bansal R. 2005. Distinct fibroblast growth factor (FGF)/FGF receptor signaling pairs initiate diverse cellular responses in the oligodendrocyte lineage. J Neurosci 25: 7470-7479. – reference: Zawadzka M,Rivers LE,Fancy SP,Zhao C,Tripathi R,Jamen F,Young K,Goncharevich A,Pohl H,Rizzi M,Rowitch DH,Kessaris N,Suter U,Richardson WD,Franklin RJ. 2010. CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6: 578-590. – reference: Fields RD. 2005. Myelination: An overlooked mechanism of synaptic plasticity? Neuroscientist 11: 528-531. – reference: Buffo A,Rite I,Tripathi P,Lepier A,Colak D,Horn AP,Mori T,Gotz M. 2008. Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proc Natl Acad Sci USA 105: 3581-3586. – reference: Muller J,Reyes-Haro D,Pivneva T,Nolte C,Schaette R,Lubke J,Kettenmann H. 2009. The principal neurons of the medial nucleus of the trapezoid body and NG2(+) glial cells receive coordinated excitatory synaptic input. J Gen Physiol 134: 115-127. – reference: Hampton DW,Rhodes KE,Zhao C,Franklin RJ,Fawcett JW. 2004. The responses of oligodendrocyte precursor cells, astrocytes and microglia to a cortical stab injury, in the brain. Neuroscience 127: 813-820. – reference: Horner PJ,Power AE,Kempermann G,Kuhn HG,Palmer TD,Winkler J,Thal LJ,Gage FH. 2000. Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci 20: 2218-2228. – reference: Mason JL,Goldman JE. 2002. A2B5+ and O4+ cycling progenitors in the adult forebrain white matter respond differentially to PDGF-AA, FGF-2, and IGF-1. Mol Cell Neurosci 20: 30-42. – reference: Holmes MM,Galea LA,Mistlberger RE,Kempermann G. 2004. Adult hippocampal neurogenesis and voluntary running activity: Circadian and dose-dependent effects. J Neurosci Res 76: 216-222. – reference: Nunes MC,Roy NS,Keyoung HM,Goodman RR,McKhann G,2nd,Jiang L,Kang J,Nedergaard M,Goldman SA. 2003. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med 9: 439-447. – reference: Tan AM,Zhang W,Levine JM. 2005. NG2: A component of the glial scar that inhibits axon growth. J Anat 207: 717-725. – reference: Panagiotakos G,Alshamy G,Chan B,Abrams R,Greenberg E,Saxena A,Bradbury M,Edgar M,Gutin P,Tabar V. 2007. Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain. PLoS One 2: e588 – reference: Ehninger D,Kempermann G. 2003. Regional effects of wheel running and environmental enrichment on cell genesis and microglia proliferation in the adult murine neocortex. Cereb Cortex 13: 845-851. – reference: Hancock A,Priester C,Kidder E,Keith JR. 2009. Does 5-bromo-2′-deoxyuridine (BrdU) disrupt cell proliferation and neuronal maturation in the adult rat hippocampus in vivo? Behav Brain Res 199: 218-221. – reference: Stevens B,Porta S,Haak LL,Gallo V,Fields RD. 2002. Adenosine: A neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36: 855-868. – reference: Wolswijk G,Noble M. 1989. Identification of an adult-specific glial progenitor cell. Development 105: 387-400. – reference: Watanabe M,Toyama Y,Nishiyama A. 2002. Differentiation of proliferated NG2-positive glial progenitor cells in a remyelinating lesion. J Neurosci Res 69: 826-836. – reference: Gensert JM,Goldman JE. 2001. Heterogeneity of cycling glial progenitors in the adult mammalian cortex and white matter. J Neurobiol 48: 75-86. – reference: McTigue DM,Tripathi RB. 2008. The life, death, and replacement of oligodendrocytes in the adult CNS. J Neurochem 107: 1-19. – reference: Rivers LE,Young KM,Rizzi M,Jamen F,Psachoulia K,Wade A,Kessaris N,Richardson WD. 2008. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11: 1392-1401. – reference: Yuan X,Eisen AM,McBain CJ,Gallo V. 1998. A role for glutamate and its receptors in the regulation of oligodendrocyte development in cerebellar tissue slices. Development 125: 2901-2914. – volume: 120 start-page: 280 year: 2010 end-page: 290 article-title: Voluntary exercise increases oligodendrogenesis in spinal cord publication-title: Int J Neurosci – volume: 20 start-page: 30 year: 2002 end-page: 42 article-title: A2B5+ and O4+ cycling progenitors in the adult forebrain white matter respond differentially to PDGF‐AA, FGF‐2, and IGF‐1 publication-title: Mol Cell Neurosci – volume: 10 start-page: 9 year: 2009 end-page: 22 article-title: Polydendrocytes (NG2 cells): Multifunctional cells with lineage plasticity publication-title: Nat Rev Neurosci – volume: 20 start-page: 399 year: 2010 end-page: 3411 article-title: NG2+/Olig2+ cells are the major cycle‐related cell population of the adult human normal brain publication-title: Brain Pathol – volume: 11 start-page: 450 year: 2008 end-page: 456 article-title: Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter publication-title: Nat Neurosci – volume: 127 start-page: 813 year: 2004 end-page: 820 article-title: The responses of oligodendrocyte precursor cells, astrocytes and microglia to a cortical stab injury, in the brain publication-title: Neuroscience – volume: 25 start-page: 417 year: 2007 end-page: 424 article-title: A different regional response by mouse oligodendrocyte progenitor cells (OPCs) to high‐dose X‐irradiation has consequences for repopulating OPC‐depleted normal tissue publication-title: Eur J Neurosci – volume: 23 start-page: 9240 year: 2003 end-page: 9245 article-title: Brain structures differ between musicians and non‐musicians publication-title: J Neurosci – volume: 6 start-page: 578 year: 2010 end-page: 590 article-title: CNS‐resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination publication-title: Cell Stem Cell – volume: 102 start-page: 18183 year: 2005 end-page: 18188 article-title: Expression pattern of the transcription factor Olig2 in response to brain injuries: Implications for neuronal repair publication-title: Proc Natl Acad Sci USA – volume: 63 start-page: 72 year: 2010 end-page: 82 article-title: NG2 cells: Properties, progeny and origin publication-title: Brain Res Rev – volume: 134 start-page: 115 year: 2009 end-page: 127 article-title: The principal neurons of the medial nucleus of the trapezoid body and NG2(+) glial cells receive coordinated excitatory synaptic input publication-title: J Gen Physiol – volume: 11 start-page: 528 year: 2005 end-page: 531 article-title: Myelination: An overlooked mechanism of synaptic plasticity? publication-title: Neuroscientist – volume: 36 start-page: 855 year: 2002 end-page: 868 article-title: Adenosine: A neuron‐glial transmitter promoting myelination in the CNS in response to action potentials publication-title: Neuron – volume: 69 start-page: 826 year: 2002 end-page: 836 article-title: Differentiation of proliferated NG2‐positive glial progenitor cells in a remyelinating lesion publication-title: J Neurosci Res – volume: 49 start-page: 318 year: 2005 end-page: 338 article-title: NG2 proteoglycan‐expressing cells of the adult rat brain: Possible involvement in the formation of glial scar astrocytes following stab wound publication-title: Glia – volume: 76 start-page: 216 year: 2004 end-page: 222 article-title: Adult hippocampal neurogenesis and voluntary running activity: Circadian and dose‐dependent effects publication-title: J Neurosci Res – volume: 182 start-page: 311 year: 2000 end-page: 322 article-title: The Ki‐67 protein: From the known and the unknown publication-title: J Cell Physiol – volume: 12 start-page: 935 year: 1994 end-page: 942 article-title: Control of oligodendrocyte number in the developing rat optic nerve publication-title: Neuron – volume: 48 start-page: 75 year: 2001 end-page: 86 article-title: Heterogeneity of cycling glial progenitors in the adult mammalian cortex and white matter publication-title: J Neurobiol – volume: 7 start-page: 24 year: 2004 end-page: 32 article-title: Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus publication-title: Nat Neurosci – volume: 140 start-page: 87 year: 2006 end-page: 100 article-title: The injury response of oligodendrocyte precursor cells is induced by platelets, macrophages and inflammation‐associated cytokines publication-title: Neuroscience – volume: 5 start-page: 57 year: 2009 end-page: 67 article-title: Cell cycle dynamics of NG2 cells in the postnatal and ageing brain publication-title: Neuron Glia Biol – volume: 105 start-page: 3581 year: 2008 end-page: 3586 article-title: Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain publication-title: Proc Natl Acad Sci USA – volume: 14 start-page: 4716 year: 1994 end-page: 4730 article-title: Increased expression of the NG2 chondroitin‐sulfate proteoglycan after brain injury publication-title: J Neurosci – volume: 24 start-page: 10530 year: 2004 end-page: 10541 article-title: Postnatal neurogenesis and gliogenesis in the olfactory bulb from NG2‐expressing progenitors of the subventricular zone publication-title: J Neurosci – volume: 25 start-page: 7470 year: 2005 end-page: 7479 article-title: Distinct fibroblast growth factor (FGF)/FGF receptor signaling pairs initiate diverse cellular responses in the oligodendrocyte lineage publication-title: J Neurosci – volume: 125 start-page: 2901 year: 1998 end-page: 2914 article-title: A role for glutamate and its receptors in the regulation of oligodendrocyte development in cerebellar tissue slices publication-title: Development – volume: 53 start-page: 198 year: 2007 end-page: 214 article-title: BrdU immunohistochemistry for studying adult neurogenesis: Paradigms, pitfalls, limitations, and validation publication-title: Brain Res Rev – volume: 207 start-page: 717 year: 2005 end-page: 725 article-title: NG2: A component of the glial scar that inhibits axon growth publication-title: J Anat – volume: 46 start-page: 743 year: 2008 end-page: 757 article-title: NG2‐expressing cells in the nervous system revealed by the NG2‐EYFP‐knockin mouse publication-title: Genesis – volume: 19 start-page: 913 year: 2009 end-page: 927 article-title: Prolonged voluntary wheel‐running stimulates neural precursors in the hippocampus and forebrain of adult CD1 mice publication-title: Hippocampus – volume: 199 start-page: 218 year: 2009 end-page: 221 article-title: Does 5‐bromo‐2′‐deoxyuridine (BrdU) disrupt cell proliferation and neuronal maturation in the adult rat hippocampus in vivo? publication-title: Behav Brain Res – volume: 7 start-page: 307 year: 1993 end-page: 321 article-title: Development and differentiation of glial precursor cells in the rat cerebellum publication-title: Glia – volume: 3 start-page: 191 year: 1993 end-page: 197 article-title: The oligodendrocyte and its many cellular processes publication-title: Trends Cell Biol – volume: 20 start-page: 125 year: 2002 end-page: 139 article-title: Inhibition of axon growth by oligodendrocyte precursor cells publication-title: Mol Cell Neurosci – volume: 435 start-page: 406 year: 2001 end-page: 417 article-title: Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus publication-title: J Comp Neurol – volume: 18 start-page: 4627 year: 1998 end-page: 4636 article-title: Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve publication-title: J Neurosci – volume: 135 start-page: 145 year: 2008 end-page: 157 article-title: NG2 cells generate both oligodendrocytes and gray matter astrocytes publication-title: Development – volume: 28 start-page: 10434 year: 2008 end-page: 10442 article-title: Progeny of Olig2‐expressing progenitors in the gray and white matter of the adult mouse cerebral cortex publication-title: J Neurosci – volume: 24 start-page: 476 year: 2003 end-page: 488 article-title: NG2‐expressing glial progenitor cells: An abundant and widespread population of cycling cells in the adult rat CNS publication-title: Mol Cell Neurosci – volume: 18 start-page: 311 year: 1989 end-page: 318 article-title: Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA‐synthetic phase for an anatomically defined population publication-title: J Neurocytol – volume: 105 start-page: 387 year: 1989 end-page: 400 article-title: Identification of an adult‐specific glial progenitor cell publication-title: Development – volume: 26 start-page: 84 year: 1999 end-page: 91 article-title: Cells expressing the NG2 antigen contact nodes of Ranvier in adult CNS white matter publication-title: Glia – volume: 510 start-page: 129 year: 2008 end-page: 144 article-title: Chronically increased ciliary neurotrophic factor and fibroblast growth factor‐2 expression after spinal contusion in rats publication-title: J Comp Neurol – volume: 8 start-page: 1148 year: 2005 end-page: 1150 article-title: Extensive piano practicing has regionally specific effects on white matter development publication-title: Nat Neurosci – volume: 161 start-page: 169 year: 2003 end-page: 186 article-title: Postnatal NG2 proteoglycan‐expressing progenitor cells are intrinsically multipotent and generate functional neurons publication-title: J Cell Biol – volume: 9 start-page: 1 year: 2002 end-page: 9 article-title: Alterations in the thickness of motor cortical subregions after motor‐skill learning and exercise publication-title: Learn Mem – volume: 220 start-page: 44 year: 2009 end-page: 56 article-title: Inhibition of CXCR2 signaling promotes recovery in models of multiple sclerosis publication-title: Exp Neurol – volume: 107 start-page: 1 year: 2008 end-page: 19 article-title: The life, death, and replacement of oligodendrocytes in the adult CNS publication-title: J Neurochem – volume: 2 start-page: e588 year: 2007 article-title: Long‐term impact of radiation on the stem cell and oligodendrocyte precursors in the brain publication-title: PLoS One – volume: 13 start-page: 845 year: 2003 end-page: 851 article-title: Regional effects of wheel running and environmental enrichment on cell genesis and microglia proliferation in the adult murine neocortex publication-title: Cereb Cortex – volume: 120 start-page: 41 year: 2003 end-page: 56 article-title: Inhibiting cell proliferation during formation of the glial scar: Effects on axon regeneration in the CNS publication-title: Neuroscience – volume: 21 start-page: 3392 year: 2001 end-page: 3400 article-title: Proliferation of NG2‐positive cells and altered oligodendrocyte numbers in the contused rat spinal cord publication-title: J Neurosci – volume: 37 start-page: 413 year: 1998 end-page: 428 article-title: In vivo proliferation of oligodendrocyte progenitors expressing PDGFalphaR during early remyelination publication-title: J Neurobiol – volume: 20 start-page: 2218 year: 2000 end-page: 2228 article-title: Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord publication-title: J Neurosci – volume: 68 start-page: 668 year: 2010 end-page: 681 article-title: NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration publication-title: Neuron – volume: 23 start-page: 7710 year: 2003 end-page: 7718 article-title: Insulin‐like growth factor (IGF) signaling through type 1 IGF receptor plays an important role in remyelination publication-title: J Neurosci – volume: 7 start-page: 470 year: 2010 end-page: 482 article-title: Origin of new glial cells in intact and injured adult spinal cord publication-title: Cell Stem Cell – volume: 9 start-page: 439 year: 2003 end-page: 447 article-title: Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain publication-title: Nat Med – volume: 29 start-page: 10299 year: 2009 end-page: 10308 article-title: Sonic hedgehog pathway activation is induced by acute brain injury and regulated by injury‐related inflammation publication-title: J Neurosci – volume: 13 start-page: 287 year: 2010 end-page: 289 article-title: Adult‐born SVZ progenitors receive transient synapses during remyelination in corpus callosum publication-title: Nat Neurosci – volume: 22 start-page: 161 year: 1998 end-page: 170 article-title: Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord publication-title: Glia – volume: 160 start-page: 333 year: 1999 end-page: 347 article-title: Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide‐induced demyelination publication-title: Exp Neurol – volume: 11 start-page: 1392 year: 2008 end-page: 1401 article-title: PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice publication-title: Nat Neurosci – volume: 88 start-page: 1632 year: 2010 end-page: 1644 article-title: Attenuation of proliferation in oligodendrocyte precursor cells by activated microglia publication-title: JNeurosci Res – volume: 405 start-page: 187 year: 2000 end-page: 191 article-title: Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus publication-title: Nature – volume: 2 start-page: 266 year: 1999 end-page: 270 article-title: Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus publication-title: Nat Neurosci – ident: e_1_2_6_32_1 doi: 10.1038/nn2060 – ident: e_1_2_6_61_1 doi: 10.1002/jnr.22335 – ident: e_1_2_6_40_1 doi: 10.1038/nn1162 – ident: e_1_2_6_15_1 doi: 10.1002/cne.1040 – ident: e_1_2_6_46_1 doi: 10.1038/nrn2495 – ident: e_1_2_6_56_1 doi: 10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9 – ident: e_1_2_6_59_1 doi: 10.1111/j.1469-7580.2005.00452.x – ident: e_1_2_6_17_1 doi: 10.1016/S1044-7431(03)00210-0 – ident: e_1_2_6_68_1 doi: 10.1016/j.stem.2010.04.002 – ident: e_1_2_6_27_1 doi: 10.1016/j.bbr.2008.11.050 – ident: e_1_2_6_48_1 doi: 10.1038/nm837 – ident: e_1_2_6_26_1 doi: 10.1016/j.neuroscience.2004.05.028 – ident: e_1_2_6_30_1 doi: 10.1111/j.1460-9568.2007.05313.x – ident: e_1_2_6_21_1 doi: 10.1177/1073858405282304 – ident: e_1_2_6_37_1 doi: 10.1523/JNEUROSCI.14-08-04716.1994 – ident: e_1_2_6_22_1 doi: 10.1523/JNEUROSCI.2120-05.2005 – ident: e_1_2_6_20_1 doi: 10.1038/nn.2500 – ident: e_1_2_6_8_1 doi: 10.1002/hipo.20621 – ident: e_1_2_6_49_1 doi: 10.1371/journal.pone.0000588 – ident: e_1_2_6_29_1 doi: 10.1523/JNEUROSCI.20-06-02218.2000 – ident: e_1_2_6_42_1 doi: 10.1523/JNEUROSCI.23-20-07710.2003 – ident: e_1_2_6_50_1 doi: 10.1016/0962-8924(93)90213-K – ident: e_1_2_6_16_1 doi: 10.1006/mcne.2002.1102 – ident: e_1_2_6_47_1 doi: 10.1007/BF01190834 – ident: e_1_2_6_3_1 doi: 10.1002/glia.20121 – ident: e_1_2_6_63_1 doi: 10.1016/j.brainresrev.2009.12.006 – ident: e_1_2_6_69_1 doi: 10.1242/dev.004895 – ident: e_1_2_6_13_1 doi: 10.1073/pnas.0506535102 – ident: e_1_2_6_33_1 doi: 10.1002/dvg.20440 – ident: e_1_2_6_2_1 doi: 10.1523/JNEUROSCI.3572-04.2004 – ident: e_1_2_6_9_1 doi: 10.1083/jcb.200210110 – ident: e_1_2_6_24_1 doi: 10.1111/j.1750-3639.2009.00295.x – ident: e_1_2_6_55_1 doi: 10.1038/nn.2220 – ident: e_1_2_6_5_1 doi: 10.1101/lm.43402 – ident: e_1_2_6_60_1 doi: 10.1016/j.brainresrev.2006.08.002 – ident: e_1_2_6_28_1 doi: 10.1002/jnr.20039 – ident: e_1_2_6_4_1 doi: 10.1523/JNEUROSCI.2500-09.2009 – ident: e_1_2_6_14_1 doi: 10.1002/(SICI)1098-1136(199903)26:1<84::AID-GLIA9>3.0.CO;2-L – ident: e_1_2_6_31_1 doi: 10.1016/j.neuron.2010.09.009 – ident: e_1_2_6_11_1 doi: 10.1038/35012083 – ident: e_1_2_6_45_1 doi: 10.1085/jgp.200910194 – ident: e_1_2_6_34_1 doi: 10.1002/(SICI)1098-1136(199802)22:2<161::AID-GLIA7>3.0.CO;2-A – ident: e_1_2_6_44_1 doi: 10.1523/JNEUROSCI.21-10-03392.2001 – ident: e_1_2_6_38_1 doi: 10.1006/exnr.1999.7224 – ident: e_1_2_6_18_1 doi: 10.1523/JNEUROSCI.2831-08.2008 – ident: e_1_2_6_23_1 doi: 10.1523/JNEUROSCI.23-27-09240.2003 – ident: e_1_2_6_65_1 doi: 10.1002/jnr.10338 – ident: e_1_2_6_36_1 doi: 10.3109/00207450903222741 – ident: e_1_2_6_25_1 doi: 10.1002/neu.1043 – ident: e_1_2_6_64_1 doi: 10.1038/6368 – ident: e_1_2_6_6_1 doi: 10.1016/j.stem.2010.07.014 – ident: e_1_2_6_54_1 doi: 10.1016/j.neuroscience.2006.01.055 – ident: e_1_2_6_57_1 doi: 10.1523/JNEUROSCI.18-12-04627.1998 – ident: e_1_2_6_39_1 doi: 10.1002/glia.440070406 – ident: e_1_2_6_35_1 doi: 10.1016/j.expneurol.2009.07.010 – ident: e_1_2_6_62_1 doi: 10.1002/cne.21787 – ident: e_1_2_6_19_1 doi: 10.1093/cercor/13.8.845 – ident: e_1_2_6_53_1 doi: 10.1016/S0306-4522(03)00285-9 – ident: e_1_2_6_66_1 doi: 10.1242/dev.105.2.387 – ident: e_1_2_6_52_1 doi: 10.1002/(SICI)1097-4695(19981115)37:3<413::AID-NEU7>3.0.CO;2-8 – ident: e_1_2_6_43_1 doi: 10.1111/j.1471-4159.2008.05570.x – ident: e_1_2_6_51_1 doi: 10.1017/S1740925X09990354 – ident: e_1_2_6_67_1 doi: 10.1242/dev.125.15.2901 – ident: e_1_2_6_41_1 doi: 10.1006/mcne.2002.1114 – ident: e_1_2_6_58_1 doi: 10.1016/S0896-6273(02)01067-X – ident: e_1_2_6_12_1 doi: 10.1073/pnas.0709002105 – ident: e_1_2_6_7_1 doi: 10.1016/0896-6273(94)90305-0 – ident: e_1_2_6_10_1 doi: 10.1038/nn1516 |
| SSID | ssj0011497 |
| Score | 2.4826243 |
| Snippet | The adult brain parenchyma contains a widespread population of progenitors generating different cells of the oligodendrocyte lineage such as NG2+ cells and... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 869 |
| SubjectTerms | Animals Brain injury Cell cycle cell cycle regulation Cell Differentiation - physiology Cell Lineage - physiology Cell Proliferation Cerebral Cortex - cytology Cerebral Cortex - physiology Cortex cortical injury Data processing Differentiation Disease Models, Animal Environmental effects G1 phase Mice microglia Oligodendrocytes Oligodendroglia - physiology Parenchyma Physical training Progeny reactive astrocytes running wheel Stem cells Stem Cells - cytology Stem Cells - physiology Wounds |
| Title | Progenitors in the adult cerebral cortex: Cell cycle properties and regulation by physiological stimuli and injury |
| URI | https://api.istex.fr/ark:/67375/WNG-X506M700-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fglia.21156 https://www.ncbi.nlm.nih.gov/pubmed/21446038 https://www.proquest.com/docview/1017961720 https://www.proquest.com/docview/1323803032 https://www.proquest.com/docview/862280119 |
| Volume | 59 |
| WOSCitedRecordID | wos000289674400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1098-1136 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011497 issn: 0894-1491 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_aZA97Wbd1H95H0dgobOBW_pRd-hK6pR1koYyV5U3IsjS8ZU5w2tL897uTE5dCVxh7k-EkZN2H7k7S7wDe4a6nUxFipFoaDFBKrvxM6dKnh9eFSIRQxqHrj8R4nE0m-ekGHK7fwrT4EF3CjTTD2WtScFUs9q9BQ39MK7WH4UuSbkI_RMGNe9D_-HV4NupOEdD7b5E-89jHdtDBk4b7171vbEh9Wtur27zNm86r232GW_8374fwYOV1skErJo9gw9SPYXtQY8T9e8l2mbsH6hLs29CcNjOUqorK8LCqZughMofSwbRp6Jh5yjTd0L06YEdmih9LHJLNKanfEDorU3XJmrbEPTKdFUs2Xw9PEsHQqNCdLEdX1T-RqU_gbPjp29GJv6rM4Os4z1I_jlJVhNoGubWhsjws0sQKndsoNhY9QKG5CazB6FEkmgBQ48jmgeGaXuKWgYmeQq-e1eY5MJuVaW7QlEQmjhPFVRFwhX2syoVOdeTB-zV7pF7BllP1jKlsAZdDSQsq3YJ68LajnbdgHbdS7ToudySq-UXX20Qiv4-P5STh6RfBuTzx4M1aDCQqHZ2kqNrMLhbS2THy_fgdNBF6Q2hCo9AD9hcaDCfDjFD3PHjWilk3KQdlx6PMgw9Omu74IXk8-jxwrRf_QvwS7rcJckopvYLeeXNhXsM9fXleLZod2BSTbGelUX8AusQjIA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9swED-2ZLB92at7eE-NjcIKXuWn7H0L3dKUuaGMluWbUGSppMuc4Laj-e93Jzsuha4w9k2Gk5B1p9Pd6fQ7gA946ulUhOiplgYdlJIrP1O69Onh9VQkQijj0PULMR5nk0l-0Obm0FuYBh-iC7jRznD6mjY4BaS3L1FDj-cz9Qn9lyS9Df0Y5SjpQf_L9-FR0V0joPnfQH3msY_toMMnDbcve185kfq0uBfXmZtXrVd3_Awf_OfEH8L91u5kg0ZQHsEtUz2GjUGFPvevFdtkLhPUhdg3oD6oFyhXMyrEw2YVQxuROZwOpk1NF81zpilH9-Iz2zFz_FjhkGxJYf2a8FmZqkpWN0Xuke1sumLL9fAkEwzVCmVlObpZdYJsfQJHw6-HOyO_rc3g6zjPUj-OUjUNtQ1ya0NleThNEyt0bqPYWLQBheYmsAb9R5FogkCNI5sHhmt6i1sGJnoKvWpRmefAbFamuUFlEpk4ThRX04Ar7GNVLnSqIw8-rvkjdQtcTvUz5rKBXA4lLah0C-rB-4522cB1XEu16djckaj6JyW4iUT-GO_KScLTfcG5HHnwbi0HErcd3aWoyizOT6XTZGT98RtoIrSHUIlGoQfsLzToUIYZ4e558KyRs25SDsyOR5kHW06cbvghuVvsDVzrxb8Qv4W7o8P9QhZ7428v4V4TLqcA0yvondXn5jXc0b_PZqf1m3Zj_QE-liYo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3raxQxEB-0J9IvvupjfUaUgsLa7DO7fjtary2exyEW71vIZpOyeu4d21Z6_70z2b0thVoQv2VhErKZR2Ymk18A3uKup1MRYqRaGgxQSq78TOnSp4vXhUiEUMah64_FZJLNZvm0q82huzAtPkSfcCPNcPaaFNwsS7tzgRp6PK_UB4xfkvQmDOIkT1EvB3tfR0fj_hgB3f8W6jOPfWwHPT5puHPR-9KONKDFPb_K3bzsvbrtZ3T3Pyd-D-50ficbtoJyH26Y-gFsDWuMuX-t2DZzlaAuxb4FzbRZoFxV9BAPq2qGPiJzOB1Mm4YOmudMU43u-Ue2a-b4scIh2ZLS-g3hszJVl6xpH7lHtrNixZbr4UkmGJoVqspydFX9A9n6EI5Gn77tHvjd2wy-jvMs9eMoVUWobZBbGyrLwyJNrNC5jWJj0QcUmpvAGowfRaIJAjWObB4YrukubhmY6BFs1IvaPAFmszLNDRqTyMRxorgqAq6wj1W50KmOPHi35o_UHXA5vZ8xly3kcihpQaVbUA_e9LTLFq7jSqptx-aeRDU_qcBNJPL7ZF_OEp5-EZzLAw9er-VAotrRWYqqzeLsRDpLRt4fv4YmQn8IjWgUesD-QoMBZZgR7p4Hj1s56yflwOx4lHnw3onTNT8k98eHQ9d6-i_Er-D2dG8kx4eTz89gs82WU37pOWycNmfmBdzSv0-rk-Zlp1d_AJJJJaM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progenitors+in+the+adult+cerebral+cortex%3A+Cell+cycle+properties+and+regulation+by+physiological+stimuli+and+injury&rft.jtitle=Glia&rft.au=Simon%2C+Christiane&rft.au=G%C3%B6tz%2C+Magdalena&rft.au=Dimou%2C+Leda&rft.date=2011-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0894-1491&rft.eissn=1098-1136&rft.volume=59&rft.issue=6&rft.spage=869&rft.epage=881&rft_id=info:doi/10.1002%2Fglia.21156&rft.externalDBID=10.1002%252Fglia.21156&rft.externalDocID=GLIA21156 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1491&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1491&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1491&client=summon |