Adversarial Attacks on Medical Segmentation Model via Transformation of Feature Statistics

Deep learning-based segmentation models have made a profound impact on medical procedures, with U-Net based computed tomography (CT) segmentation models exhibiting remarkable performance. Yet, even with these advances, these models are found to be vulnerable to adversarial attacks, a problem that eq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences Jg. 14; H. 6; S. 2576
Hauptverfasser: Lee, Woonghee, Ju, Mingeon, Sim, Yura, Jung, Young Kul, Kim, Tae Hyung, Kim, Younghoon
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.03.2024
Schlagworte:
ISSN:2076-3417, 2076-3417
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!