Sample-Based Manifold Filtering for Interactive Global Illumination and Depth of Field

We present a fast reconstruction filtering method for images generated with Monte Carlo–based rendering techniques. Our approach specializes in reducing global illumination noise in the presence of depth‐of‐field effects at very low sampling rates and interactive frame rates. We employ edge‐aware fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum Jg. 34; H. 1; S. 265 - 276
Hauptverfasser: Bauszat, P., Eisemann, M., John, S., Magnor, M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Blackwell Publishing Ltd 01.02.2015
Schlagworte:
ISSN:0167-7055, 1467-8659
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a fast reconstruction filtering method for images generated with Monte Carlo–based rendering techniques. Our approach specializes in reducing global illumination noise in the presence of depth‐of‐field effects at very low sampling rates and interactive frame rates. We employ edge‐aware filtering in the sample space to locally improve outgoing radiance of each sample. The improved samples are then distributed in the image plane using a fast, linear manifold‐based approach supporting very large circles of confusion. We evaluate our filter by applying it to several images containing noise caused by Monte Carlo–simulated global illumination, area light sources and depth of field. We show that our filter can efficiently denoise such images at interactive frame rates on current GPUs and with as few as 4–16 samples per pixel. Our method operates only on the colour and geometric sample information output of the initial rendering process. It does not make any assumptions on the underlying rendering technique and sampling strategy and can therefore be implemented completely as a post‐process filter. We present a fast reconstruction filtering method for images generated with Monte Carlo–based rendering techniques. Our approach specializes in reducing global illumination noise in the presence of depth‐of‐field effects at very low sampling rates and interactive frame rates. We employ edge‐aware filtering in the sample space to locally improve outgoing radiance of each sample. The improved samples are then distributed in the image plane using a fast, linear manifold‐based approach supporting very large circles of confusion. We evaluate our filter by applying it to several images containing noise caused by Monte Carlo–simulated global illumination, area light sources and depth of field. We show that our filter can efficiently denoise such images at interactive frame rates on current GPUs and with as few as 4–16 spp.
Bibliographie:ark:/67375/WNG-8NS3CZ18-N
Video S1
istex:96DCA4D26BE0144EBFEBAE18CB734754FB7BCEDA
ArticleID:CGF12511
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.12511