Credit portfolio optimization: A multi-objective genetic algorithm approach
The algorithm for optimization of a credit portfolio has not been fully demonstrated. This paper fills the gap in the literature by presenting a general approach for optimizing a credit portfolio by minimizing the default risk of the entire portfolio. Default risk is measured with quadratic weightin...
Uloženo v:
| Vydáno v: | Borsa Istanbul Review Ročník 22; číslo 1; s. 69 - 76 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.01.2022
Elsevier |
| Témata: | |
| ISSN: | 2214-8450 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The algorithm for optimization of a credit portfolio has not been fully demonstrated. This paper fills the gap in the literature by presenting a general approach for optimizing a credit portfolio by minimizing the default risk of the entire portfolio. Default risk is measured with quadratic weighting and a matrix containing information about the default intensity of two stocks and the correlation in default between them. The default correlation and the default intensity are represented with a novel bivariate intensity model. A multi-objective genetic algorithm is introduced to optimize a credit portfolio with the purpose of overcoming limitations in the analytical method and improving the efficiency of optimization. The algorithm can be applied to a portfolio's credit risk management, which is particularly crucial for investors and regulars in emerging markets. |
|---|---|
| ISSN: | 2214-8450 |
| DOI: | 10.1016/j.bir.2021.01.004 |