Twenty‐First Century Drought Projections in the CMIP6 Forcing Scenarios

There is strong evidence climate change will increase drought risk and severity, but these conclusions depend on the regions, seasons, and drought metrics being considered. We analyze changes in drought across the hydrologic cycle (precipitation, soil moisture, and runoff) in projections from Phase...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Earth's future Ročník 8; číslo 6
Hlavní autoři: Cook, B. I., Mankin, J. S., Marvel, K., Williams, A. P., Smerdon, J. E., Anchukaitis, K. J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Goddard Space Flight Center Wiley Open Access and American Geophysical Union 01.06.2020
John Wiley & Sons, Inc
Wiley
Témata:
ISSN:2328-4277, 2328-4277
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract There is strong evidence climate change will increase drought risk and severity, but these conclusions depend on the regions, seasons, and drought metrics being considered. We analyze changes in drought across the hydrologic cycle (precipitation, soil moisture, and runoff) in projections from Phase Six of the Coupled Model Intercomparison Project (CMIP6). The multi‐model ensemble shows robust drying in the mean state across many regions and metrics by the end of the 21st century, even following the more aggressive mitigation pathways (SSP1‐2.6 and SSP2‐4.5). Regional hotspots with strong drying include western North America, Central America, Europe and the Mediterranean, the Amazon, southern Africa, China, Southeast Asia, and Australia. Compared to SSP3‐7.0 and SSP5‐8.5, however, the severity of drying in the lower warming scenarios is substantially reduced and further precipitation declines in many regions are avoided. Along with drying in the mean state, the risk of the historically most extreme drought events also increases with warming, by 200–300% in some regions. Soil moisture and runoff drying in CMIP6 is more robust, spatially extensive, and severe than precipitation, indicating an important role for other temperature‐sensitive drought processes, including evapotranspiration and snow. Given the similarity in drought responses between CMIP5 and CMIP6, we speculate both generations of models are subject to similar uncertainties, including vegetation processes, model representations of precipitation, and the degree to which model responses to warming are consistent with observations. These topics should be further explored to evaluate whether CMIP6 models offer reasons to have increased confidence in drought projections.
AbstractList There is strong evidence climate change will increase drought risk and severity, but these conclusions depend on the regions, seasons, and drought metrics being considered. We analyze changes in drought across the hydrologic cycle (precipitation, soil moisture, and runoff) in projections from Phase Six of the Coupled Model Intercomparison Project (CMIP6). The multi‐model ensemble shows robust drying in the mean state across many regions and metrics by the end of the 21st century, even following the more aggressive mitigation pathways (SSP1‐2.6 and SSP2‐4.5). Regional hotspots with strong drying include western North America, Central America, Europe and the Mediterranean, the Amazon, southern Africa, China, Southeast Asia, and Australia. Compared to SSP3‐7.0 and SSP5‐8.5, however, the severity of drying in the lower warming scenarios is substantially reduced and further precipitation declines in many regions are avoided. Along with drying in the mean state, the risk of the historically most extreme drought events also increases with warming, by 200–300% in some regions. Soil moisture and runoff drying in CMIP6 is more robust, spatially extensive, and severe than precipitation, indicating an important role for other temperature‐sensitive drought processes, including evapotranspiration and snow. Given the similarity in drought responses between CMIP5 and CMIP6, we speculate both generations of models are subject to similar uncertainties, including vegetation processes, model representations of precipitation, and the degree to which model responses to warming are consistent with observations. These topics should be further explored to evaluate whether CMIP6 models offer reasons to have increased confidence in drought projections.
There is strong evidence that climate change will increase drought risk and severity, but these conclusions depend on the regions, seasons, and drought metrics being considered. We analyze changes in drought across the hydrologic cycle (precipitation, soil moisture, and runoff) in projections from Phase Six of the Coupled Model Intercomparison Project (CMIP6). The multimodel ensemble shows robust drying in the mean state across many regions and metrics by the end of the 21st century, even following the more aggressive mitigation pathways (SSP1‐2.6 and SSP2‐4.5). Regional hotspots with strong drying include western North America, Central America, Europe and the Mediterranean, the Amazon, southern Africa, China, Southeast Asia, and Australia. Compared to SSP3‐7.0 and SSP5‐8.5, however, the severity of drying in the lower warming scenarios is substantially reduced and further precipitation declines in many regions are avoided. Along with drying in the mean state, the risk of the historically most extreme drought events also increases with warming, by 200–300% in some regions. Soil moisture and runoff drying in CMIP6 is more robust, spatially extensive, and severe than precipitation, indicating an important role for other temperature‐sensitive drought processes, including evapotranspiration and snow. Given the similarity in drought responses between CMIP5 and CMIP6, we speculate that both generations of models are subject to similar uncertainties, including vegetation processes, model representations of precipitation, and the degree to which model responses to warming are consistent with observations. These topics should be further explored to evaluate whether CMIP6 models offer reasons to have increased confidence in drought projections. Plain Language Summary Drought is an important natural hazard in many regions around the world, and there are significant concerns that climate change will increase the frequency or severity of drought events in the future. Compared to a world before anthropogenic climate change, the latest state‐of‐the‐art climate model projections from CMIP6 show robust drying and increases in extreme drought occurrence across many regions by the end of the 21st century, including western North America, Central America, Europe and the Mediterranean, the Amazon, southern Africa, China, Southeast Asia, and Australia. While these changes occur even under the most aggressive climate mitigation pathways, the models show substantial increases in the extent and severity of this drying under higher warming levels, highlighting the value of mitigation for reducing drought‐based climate change impacts. Given the significant response to even modest warming, however, and evidence that climate change has already increased drought risk and severity in some regions, adaptation to a new, drier baseline will likely be required even under the most optimistic scenarios. Key Points The sign and magnitude of drought responses in the CMIP6 projections depend on the region, season, and drought metric being analyzed Soil moisture and runoff drying is more widespread and robust than precipitation, with the severity increasing strongly with warming The sign of CMIP6 responses aligns with previous results from CMIP5, suggesting similar physical processes and underlying uncertainties
There is strong evidence that climate change will increase drought risk and severity, but these conclusions depend on the regions, seasons, and drought metrics being considered. We analyze changes in drought across the hydrologic cycle (precipitation, soil moisture, and runoff) in projections from Phase Six of the Coupled Model Intercomparison Project (CMIP6). The multimodel ensemble shows robust drying in the mean state across many regions and metrics by the end of the 21st century, even following the more aggressive mitigation pathways (SSP1‐2.6 and SSP2‐4.5). Regional hotspots with strong drying include western North America, Central America, Europe and the Mediterranean, the Amazon, southern Africa, China, Southeast Asia, and Australia. Compared to SSP3‐7.0 and SSP5‐8.5, however, the severity of drying in the lower warming scenarios is substantially reduced and further precipitation declines in many regions are avoided. Along with drying in the mean state, the risk of the historically most extreme drought events also increases with warming, by 200–300% in some regions. Soil moisture and runoff drying in CMIP6 is more robust, spatially extensive, and severe than precipitation, indicating an important role for other temperature‐sensitive drought processes, including evapotranspiration and snow. Given the similarity in drought responses between CMIP5 and CMIP6, we speculate that both generations of models are subject to similar uncertainties, including vegetation processes, model representations of precipitation, and the degree to which model responses to warming are consistent with observations. These topics should be further explored to evaluate whether CMIP6 models offer reasons to have increased confidence in drought projections. Drought is an important natural hazard in many regions around the world, and there are significant concerns that climate change will increase the frequency or severity of drought events in the future. Compared to a world before anthropogenic climate change, the latest state‐of‐the‐art climate model projections from CMIP6 show robust drying and increases in extreme drought occurrence across many regions by the end of the 21st century, including western North America, Central America, Europe and the Mediterranean, the Amazon, southern Africa, China, Southeast Asia, and Australia. While these changes occur even under the most aggressive climate mitigation pathways, the models show substantial increases in the extent and severity of this drying under higher warming levels, highlighting the value of mitigation for reducing drought‐based climate change impacts. Given the significant response to even modest warming, however, and evidence that climate change has already increased drought risk and severity in some regions, adaptation to a new, drier baseline will likely be required even under the most optimistic scenarios. The sign and magnitude of drought responses in the CMIP6 projections depend on the region, season, and drought metric being analyzed Soil moisture and runoff drying is more widespread and robust than precipitation, with the severity increasing strongly with warming The sign of CMIP6 responses aligns with previous results from CMIP5, suggesting similar physical processes and underlying uncertainties
Abstract There is strong evidence that climate change will increase drought risk and severity, but these conclusions depend on the regions, seasons, and drought metrics being considered. We analyze changes in drought across the hydrologic cycle (precipitation, soil moisture, and runoff) in projections from Phase Six of the Coupled Model Intercomparison Project (CMIP6). The multimodel ensemble shows robust drying in the mean state across many regions and metrics by the end of the 21st century, even following the more aggressive mitigation pathways (SSP1‐2.6 and SSP2‐4.5). Regional hotspots with strong drying include western North America, Central America, Europe and the Mediterranean, the Amazon, southern Africa, China, Southeast Asia, and Australia. Compared to SSP3‐7.0 and SSP5‐8.5, however, the severity of drying in the lower warming scenarios is substantially reduced and further precipitation declines in many regions are avoided. Along with drying in the mean state, the risk of the historically most extreme drought events also increases with warming, by 200–300% in some regions. Soil moisture and runoff drying in CMIP6 is more robust, spatially extensive, and severe than precipitation, indicating an important role for other temperature‐sensitive drought processes, including evapotranspiration and snow. Given the similarity in drought responses between CMIP5 and CMIP6, we speculate that both generations of models are subject to similar uncertainties, including vegetation processes, model representations of precipitation, and the degree to which model responses to warming are consistent with observations. These topics should be further explored to evaluate whether CMIP6 models offer reasons to have increased confidence in drought projections.
There is strong evidence that climate change will increase drought risk and severity, but these conclusions depend on the regions, seasons, and drought metrics being considered. We analyze changes in drought across the hydrologic cycle (precipitation, soil moisture, and runoff) in projections from Phase Six of the Coupled Model Intercomparison Project (CMIP6). The multimodel ensemble shows robust drying in the mean state across many regions and metrics by the end of the 21st century, even following the more aggressive mitigation pathways (SSP1‐2.6 and SSP2‐4.5). Regional hotspots with strong drying include western North America, Central America, Europe and the Mediterranean, the Amazon, southern Africa, China, Southeast Asia, and Australia. Compared to SSP3‐7.0 and SSP5‐8.5, however, the severity of drying in the lower warming scenarios is substantially reduced and further precipitation declines in many regions are avoided. Along with drying in the mean state, the risk of the historically most extreme drought events also increases with warming, by 200–300% in some regions. Soil moisture and runoff drying in CMIP6 is more robust, spatially extensive, and severe than precipitation, indicating an important role for other temperature‐sensitive drought processes, including evapotranspiration and snow. Given the similarity in drought responses between CMIP5 and CMIP6, we speculate that both generations of models are subject to similar uncertainties, including vegetation processes, model representations of precipitation, and the degree to which model responses to warming are consistent with observations. These topics should be further explored to evaluate whether CMIP6 models offer reasons to have increased confidence in drought projections.
Audience PUBLIC
Author Mankin, J. S.
Anchukaitis, K. J.
Cook, B. I.
Marvel, K.
Smerdon, J. E.
Williams, A. P.
Author_xml – sequence: 1
  givenname: B. I.
  orcidid: 0000-0002-4501-9229
  surname: Cook
  fullname: Cook, B. I.
  organization: Goddard Institute for Space Studies
– sequence: 2
  givenname: J. S.
  orcidid: 0000-0003-2520-4555
  surname: Mankin
  fullname: Mankin, J. S.
  organization: Lamont-Doherty Earth Observatory
– sequence: 3
  givenname: K.
  orcidid: 0000-0002-9771-6720
  surname: Marvel
  fullname: Marvel, K.
  organization: Columbia University
– sequence: 4
  givenname: A. P.
  orcidid: 0000-0001-8176-8166
  surname: Williams
  fullname: Williams, A. P.
  organization: Lamont-Doherty Earth Observatory
– sequence: 5
  givenname: J. E.
  orcidid: 0000-0001-6276-0249
  surname: Smerdon
  fullname: Smerdon, J. E.
  organization: Lamont-Doherty Earth Observatory
– sequence: 6
  givenname: K. J.
  orcidid: 0000-0002-8509-8080
  surname: Anchukaitis
  fullname: Anchukaitis, K. J.
  organization: Lamont-Doherty Earth Observatory
BookMark eNp9kE9rVDEUxYO0YJ1259LFA7dOvfmft5Rxnh2oWHBchzQvmWYYk5pkKLPrR_Az-kma9okUQbPJTTi_cw_nFTqKKTqEXmM4x0D69wRwvxwAMBP4BTohlKg5I1IePZtforNSttBOL4FyeYJW6zsX6-HX_c8h5FK7RXvt86H7mNN-c1O7q5y2ztaQYulC7OqN6xafV1eiG1K2IW66r9ZFk0Mqp-jYm11xZ7_vGfo2LNeLi_nll0-rxYfLuWW9YHOlRj9i7kcpCPfECgPOWWqJl1ICA8W4o3b0TCnMKTOsdwDX3MlRtsETOkOryXdMZqtvc_hu8kEnE_TTR8obbXINduc0Ic73imArHGGYESOuBfeC0pGBbyU0r7eT121OP_auVL1N-xxbfN0AiUHRFmKG3k0qm1Mp2fk_WzHox-718-6bnPwlt6GaxwprNmH3LwhP0F3YucN_F-jlsCaCs8a8mZhoitHNvaUGArzJQPX0AQE1nLE
CitedBy_id crossref_primary_10_1016_j_agrformet_2021_108448
crossref_primary_10_1016_j_jhydrol_2024_130968
crossref_primary_10_1038_s41467_022_28853_0
crossref_primary_10_5814_j_issn_1674_764x_2025_04_006
crossref_primary_10_1038_s41612_023_00496_y
crossref_primary_10_1093_biosci_biae050
crossref_primary_10_1038_s41612_025_01123_8
crossref_primary_10_1007_s11600_025_01623_4
crossref_primary_10_1029_2022EF002814
crossref_primary_10_3390_agriculture15080826
crossref_primary_10_1038_s41612_021_00218_2
crossref_primary_10_1016_j_dendro_2023_126116
crossref_primary_10_1016_j_jhydrol_2021_126503
crossref_primary_10_1093_ornithapp_duaf044
crossref_primary_10_3390_su15129651
crossref_primary_10_3390_atmos15050601
crossref_primary_10_1016_j_envres_2023_116618
crossref_primary_10_3103_S1068373922050016
crossref_primary_10_1175_JCLI_D_21_0303_1
crossref_primary_10_1002_joc_7773
crossref_primary_10_1038_s41612_023_00461_9
crossref_primary_10_3389_frwa_2025_1672070
crossref_primary_10_3390_plants14131942
crossref_primary_10_1007_s00550_024_00546_w
crossref_primary_10_1007_s00704_022_04097_2
crossref_primary_10_1016_j_jhydrol_2023_129321
crossref_primary_10_1007_s10980_024_01877_1
crossref_primary_10_1007_s00382_024_07310_2
crossref_primary_10_1002_joc_7657
crossref_primary_10_5194_cp_17_869_2021
crossref_primary_10_1146_annurev_environ_030323_075629
crossref_primary_10_1111_1365_2745_14300
crossref_primary_10_5194_esd_15_91_2024
crossref_primary_10_1016_j_agwat_2025_109468
crossref_primary_10_1029_2020GL087820
crossref_primary_10_1029_2020GL092293
crossref_primary_10_1038_s41558_022_01546_8
crossref_primary_10_1007_s41748_021_00233_6
crossref_primary_10_1038_s41586_025_08907_1
crossref_primary_10_1016_j_jhydrol_2024_130702
crossref_primary_10_2166_wcc_2021_015
crossref_primary_10_1007_s00704_025_05552_6
crossref_primary_10_1007_s41748_024_00463_4
crossref_primary_10_1016_j_atmosres_2024_107376
crossref_primary_10_3390_rs14205084
crossref_primary_10_1088_1748_9326_adb869
crossref_primary_10_1002_joc_7302
crossref_primary_10_5194_acp_23_5835_2023
crossref_primary_10_1016_j_atmosres_2025_108302
crossref_primary_10_1038_s44221_025_00487_8
crossref_primary_10_1002_joc_70075
crossref_primary_10_1038_s44221_023_00030_7
crossref_primary_10_3389_feart_2022_925358
crossref_primary_10_1029_2025GL115814
crossref_primary_10_1038_s41612_023_00419_x
crossref_primary_10_1029_2022EF002833
crossref_primary_10_1016_j_jhydrol_2021_126643
crossref_primary_10_5194_esd_13_935_2022
crossref_primary_10_1016_j_ecolind_2024_111549
crossref_primary_10_1007_s00024_025_03800_4
crossref_primary_10_1007_s10668_024_04503_x
crossref_primary_10_1002_joc_7551
crossref_primary_10_1016_j_agwat_2024_109073
crossref_primary_10_1007_s00704_022_04348_2
crossref_primary_10_1002_joc_7559
crossref_primary_10_1007_s00376_025_4476_8
crossref_primary_10_1016_j_cliser_2025_100540
crossref_primary_10_3390_agriculture14060790
crossref_primary_10_3390_w14233848
crossref_primary_10_3390_su17104662
crossref_primary_10_1007_s00468_023_02450_0
crossref_primary_10_1038_s43247_024_01352_4
crossref_primary_10_1088_2752_5295_ad9f8f
crossref_primary_10_3390_jmse11020458
crossref_primary_10_1016_j_agrformet_2024_110371
crossref_primary_10_1038_s41558_025_02325_x
crossref_primary_10_1016_j_ecolind_2024_112649
crossref_primary_10_1038_s41598_023_48861_4
crossref_primary_10_5194_gmd_18_4643_2025
crossref_primary_10_1016_j_agrformet_2025_110555
crossref_primary_10_1016_j_foreco_2025_123069
crossref_primary_10_1002_aepp_13264
crossref_primary_10_1007_s00382_023_06833_4
crossref_primary_10_1038_s44221_023_00173_7
crossref_primary_10_1016_j_jclepro_2025_145936
crossref_primary_10_1007_s10265_022_01383_y
crossref_primary_10_1002_joc_70058
crossref_primary_10_1016_j_oneear_2022_07_008
crossref_primary_10_1029_2023EF003856
crossref_primary_10_1002_joc_7965
crossref_primary_10_1038_s43017_023_00456_3
crossref_primary_10_1007_s00376_023_2366_5
crossref_primary_10_1088_1748_9326_ac2348
crossref_primary_10_1111_gcb_70032
crossref_primary_10_1016_j_gloplacha_2022_103773
crossref_primary_10_3390_w17050660
crossref_primary_10_1029_2021JD036163
crossref_primary_10_1029_2022EF002859
crossref_primary_10_1016_j_scitotenv_2020_143971
crossref_primary_10_1088_1748_9326_ac3795
crossref_primary_10_1038_s41612_024_00689_z
crossref_primary_10_1111_jac_12627
crossref_primary_10_1016_j_scitotenv_2022_158318
crossref_primary_10_1038_s41598_023_29378_2
crossref_primary_10_1038_s43247_023_00840_3
crossref_primary_10_1029_2021EF002150
crossref_primary_10_1088_1748_9326_abc5e2
crossref_primary_10_1088_2515_7620_ae05f6
crossref_primary_10_1029_2023EF003987
crossref_primary_10_1016_j_clwas_2025_100320
crossref_primary_10_1029_2024AV001508
crossref_primary_10_1007_s10021_023_00898_2
crossref_primary_10_1016_j_envsoft_2025_106463
crossref_primary_10_3390_land11050721
crossref_primary_10_1029_2023EF003629
crossref_primary_10_1016_j_scitotenv_2024_177596
crossref_primary_10_1002_joc_7977
crossref_primary_10_1038_s41598_024_55176_5
crossref_primary_10_1007_s00382_021_06064_5
crossref_primary_10_1016_j_catena_2025_109008
crossref_primary_10_1016_j_jhydrol_2025_134033
crossref_primary_10_5194_acp_25_2147_2025
crossref_primary_10_1016_j_scitotenv_2022_156021
crossref_primary_10_1088_1748_9326_ac681a
crossref_primary_10_3390_atmos12010006
crossref_primary_10_1016_j_pecon_2021_07_001
crossref_primary_10_1029_2024GL108304
crossref_primary_10_1088_1748_9326_adccdb
crossref_primary_10_1029_2021MS002818
crossref_primary_10_1088_1748_9326_ac2f63
crossref_primary_10_3390_plants11091160
crossref_primary_10_1002_joc_7749
crossref_primary_10_1029_2024EF004661
crossref_primary_10_1007_s11069_024_06779_8
crossref_primary_10_3390_land14040788
crossref_primary_10_1088_1748_9326_abeb35
crossref_primary_10_1002_joc_8715
crossref_primary_10_1038_s41467_024_45957_x
crossref_primary_10_1016_j_accre_2024_08_006
crossref_primary_10_1080_00103624_2023_2295278
crossref_primary_10_1016_j_scib_2021_01_020
crossref_primary_10_1029_2021EF002014
crossref_primary_10_1029_2021EF002019
crossref_primary_10_1073_pnas_2300395120
crossref_primary_10_1038_s41558_024_01933_3
crossref_primary_10_1002_joc_7631
crossref_primary_10_1002_wat2_1698
crossref_primary_10_1007_s00704_024_05188_y
crossref_primary_10_1002_wat2_1576
crossref_primary_10_1038_s41558_021_01276_3
crossref_primary_10_3389_fpls_2021_778270
crossref_primary_10_1029_2024EF004553
crossref_primary_10_1029_2024EF005521
crossref_primary_10_1080_01650424_2024_2311638
crossref_primary_10_1029_2024EF004798
crossref_primary_10_3390_land12091689
crossref_primary_10_1002_joc_7756
crossref_primary_10_1029_2023JD039988
crossref_primary_10_1016_j_foreco_2023_121424
crossref_primary_10_3390_rs15204976
crossref_primary_10_3390_agronomy11040759
crossref_primary_10_1016_j_jclepro_2023_135898
crossref_primary_10_1029_2021EF002487
crossref_primary_10_1016_j_gfs_2025_100874
crossref_primary_10_1038_s44221_024_00193_x
crossref_primary_10_1007_s00382_023_07072_3
crossref_primary_10_1126_sciadv_ady3575
crossref_primary_10_1038_s41467_022_30729_2
crossref_primary_10_1016_j_jenvman_2022_117038
crossref_primary_10_1016_j_jia_2024_08_001
crossref_primary_10_1016_j_jenvman_2023_119612
crossref_primary_10_1080_19475705_2025_2455491
crossref_primary_10_1016_j_atmosres_2020_105375
crossref_primary_10_1002_joc_70019
crossref_primary_10_1016_j_ejrh_2025_102263
crossref_primary_10_1007_s00382_021_05977_5
crossref_primary_10_1007_s00704_021_03698_7
crossref_primary_10_1029_2022JD038046
crossref_primary_10_1029_2022JD037072
crossref_primary_10_1038_s41612_022_00303_0
crossref_primary_10_1029_2022JG007258
crossref_primary_10_1007_s11600_022_00793_9
crossref_primary_10_1016_j_atmosres_2025_108119
crossref_primary_10_1029_2022EF003183
crossref_primary_10_1016_j_jhydrol_2024_131663
crossref_primary_10_2166_wcc_2021_308
crossref_primary_10_1038_s41467_024_51305_w
crossref_primary_10_18261_naturen_148_5_6_5
crossref_primary_10_1088_2752_664X_ac6e4a
crossref_primary_10_1002_joc_8229
crossref_primary_10_1007_s00704_024_04863_4
crossref_primary_10_1088_1748_9326_acfb26
crossref_primary_10_1016_j_atmosres_2023_106727
crossref_primary_10_1088_1748_9326_ad560b
crossref_primary_10_1016_j_scitotenv_2023_164101
crossref_primary_10_3390_rs17173078
crossref_primary_10_1038_s41597_025_05790_3
crossref_primary_10_1016_j_jhydrol_2025_134194
crossref_primary_10_1002_joc_7386
crossref_primary_10_3390_atmos12060742
crossref_primary_10_5194_nhess_21_1685_2021
crossref_primary_10_1038_s44221_023_00073_w
crossref_primary_10_1002_jqs_3394
crossref_primary_10_1016_j_jhydrol_2023_129273
crossref_primary_10_1016_j_jhydrol_2023_129155
crossref_primary_10_1016_j_atmosres_2020_105111
crossref_primary_10_1007_s00382_025_07632_9
crossref_primary_10_1007_s40641_025_00203_4
crossref_primary_10_1016_j_jhydrol_2024_130666
crossref_primary_10_1016_j_scitotenv_2023_167717
crossref_primary_10_1088_1748_9326_ad3e18
crossref_primary_10_1029_2024AV001187
crossref_primary_10_1038_s41612_024_00571_y
crossref_primary_10_1007_s00484_022_02392_1
crossref_primary_10_3390_atmos16060668
crossref_primary_10_1029_2021JG006525
crossref_primary_10_5194_hess_25_5623_2021
crossref_primary_10_1016_j_oneear_2023_11_013
crossref_primary_10_1061_JWRMD5_WRENG_6575
crossref_primary_10_1111_1462_2920_15799
crossref_primary_10_1016_j_ecss_2022_107838
crossref_primary_10_3390_ijerph19116398
crossref_primary_10_1029_2021JD034740
crossref_primary_10_1007_s10584_021_03268_w
crossref_primary_10_1111_gcb_17406
crossref_primary_10_1002_joc_70101
crossref_primary_10_1007_s41748_021_00199_5
crossref_primary_10_1016_j_jhydrol_2023_129143
crossref_primary_10_1038_s41586_025_09047_2
crossref_primary_10_1111_nph_19692
crossref_primary_10_5194_gmd_18_2005_2025
crossref_primary_10_3390_land14030441
crossref_primary_10_1007_s00442_020_04771_0
crossref_primary_10_1029_2025GL116731
crossref_primary_10_1111_gcb_15583
crossref_primary_10_1111_nph_19169
crossref_primary_10_1088_1748_9326_aca3b9
crossref_primary_10_1146_annurev_publhealth_071421_051636
crossref_primary_10_1007_s11430_022_1055_5
crossref_primary_10_5194_hess_29_1895_2025
crossref_primary_10_3390_d15111155
crossref_primary_10_5194_hess_28_1383_2024
crossref_primary_10_1016_j_jhydrol_2025_133912
crossref_primary_10_1007_s00704_024_05048_9
crossref_primary_10_1029_2020GL089991
crossref_primary_10_1111_1752_1688_70020
crossref_primary_10_3390_hydrology9050079
crossref_primary_10_1088_1748_9326_abe782
crossref_primary_10_1007_s00382_024_07151_z
crossref_primary_10_1080_04353676_2020_1841410
crossref_primary_10_1016_j_jhydrol_2022_127914
crossref_primary_10_3389_fpls_2025_1577623
crossref_primary_10_3390_cli13030047
crossref_primary_10_5194_acp_25_1449_2025
crossref_primary_10_1002_lol2_10356
crossref_primary_10_3390_rs15102601
crossref_primary_10_1002_joc_7450
crossref_primary_10_2166_nh_2023_108
crossref_primary_10_1088_1748_9326_adfe82
crossref_primary_10_1088_1748_9326_adda63
crossref_primary_10_1111_nyas_14910
crossref_primary_10_1021_acs_estlett_5c00505
crossref_primary_10_1038_s43247_022_00528_0
crossref_primary_10_1029_2023EF003906
crossref_primary_10_1038_s41561_022_01046_6
crossref_primary_10_3389_frwa_2021_640544
crossref_primary_10_1016_j_atmosres_2023_106812
crossref_primary_10_1016_j_ecolind_2021_108349
crossref_primary_10_1016_j_jhydrol_2024_132315
crossref_primary_10_3390_agriculture14101781
crossref_primary_10_1038_s43247_024_01937_z
crossref_primary_10_1029_2023JD038954
crossref_primary_10_3390_land12091708
crossref_primary_10_1007_s11269_024_03821_z
crossref_primary_10_1111_1752_1688_70031
crossref_primary_10_1016_j_jhydrol_2024_132552
crossref_primary_10_1038_s41559_022_01685_3
crossref_primary_10_1002_ird_2694
crossref_primary_10_1080_02626667_2024_2317269
crossref_primary_10_1038_s41559_023_02272_w
crossref_primary_10_1016_j_ecolind_2021_108499
crossref_primary_10_1029_2023WR036629
crossref_primary_10_1038_s41893_023_01100_0
crossref_primary_10_1016_j_jhydrol_2024_131791
crossref_primary_10_1029_2021JG006327
crossref_primary_10_1016_j_jenvman_2025_124599
crossref_primary_10_1175_JCLI_D_20_0746_1
crossref_primary_10_26848_rbgf_v17_2_p804_823
crossref_primary_10_1016_j_jhydrol_2023_130062
crossref_primary_10_1038_s44221_023_00128_y
crossref_primary_10_1016_j_jhydrol_2022_127937
crossref_primary_10_1038_s41561_023_01351_8
crossref_primary_10_1016_j_jhydrol_2022_127815
crossref_primary_10_1111_ddi_13470
crossref_primary_10_1016_j_jhydrol_2022_127941
crossref_primary_10_3390_atmos15010050
crossref_primary_10_1038_s41467_022_34071_5
crossref_primary_10_1111_ddi_13367
crossref_primary_10_1111_gcb_16998
crossref_primary_10_1177_0309133320960670
crossref_primary_10_1038_s43017_022_00368_8
crossref_primary_10_1038_s41586_021_03325_5
crossref_primary_10_3390_rs16030522
crossref_primary_10_1002_agj2_21311
crossref_primary_10_1007_s00704_020_03437_4
crossref_primary_10_2166_wcc_2025_038
crossref_primary_10_1016_j_scitotenv_2022_158860
crossref_primary_10_1007_s00484_024_02684_8
crossref_primary_10_1038_s41467_021_22314_w
crossref_primary_10_1016_j_rse_2024_114544
crossref_primary_10_3390_atmos14081203
crossref_primary_10_1038_s41558_022_01507_1
crossref_primary_10_1093_biosci_biab139
crossref_primary_10_1111_gcb_70102
crossref_primary_10_1016_j_jhydrol_2022_128641
crossref_primary_10_1093_jxb_erad147
crossref_primary_10_5194_acp_25_2311_2025
crossref_primary_10_3389_frwa_2021_801265
crossref_primary_10_1007_s00704_024_05321_x
crossref_primary_10_1016_j_jenvman_2022_115378
crossref_primary_10_1038_s41598_025_98651_3
crossref_primary_10_1080_02626667_2024_2364712
crossref_primary_10_2166_wcc_2024_246
crossref_primary_10_1016_j_ynexs_2024_100045
crossref_primary_10_1016_j_scitotenv_2023_162335
crossref_primary_10_1007_s13351_023_2169_8
crossref_primary_10_1088_1748_9326_add029
crossref_primary_10_1016_j_jafrearsci_2024_105347
crossref_primary_10_1002_joc_8064
crossref_primary_10_1111_gcb_17474
crossref_primary_10_1007_s00382_024_07199_x
crossref_primary_10_59717_j_xinn_geo_2025_100139
crossref_primary_10_1002_ece3_9652
crossref_primary_10_1016_j_scienta_2023_112711
crossref_primary_10_5194_npg_30_167_2023
crossref_primary_10_1016_j_agrformet_2023_109666
crossref_primary_10_3390_su151914214
crossref_primary_10_1007_s12040_023_02143_9
crossref_primary_10_1016_j_palaeo_2024_112529
crossref_primary_10_1007_s10584_025_03978_5
crossref_primary_10_3389_fclim_2022_948499
crossref_primary_10_1111_nph_20182
crossref_primary_10_1080_10106049_2023_2252787
crossref_primary_10_1007_s11629_022_7872_x
crossref_primary_10_3389_fclim_2020_587126
crossref_primary_10_3390_w16071045
crossref_primary_10_3390_land13071079
crossref_primary_10_1002_asl_1180
crossref_primary_10_1016_j_gloplacha_2025_104725
crossref_primary_10_1029_2020EF001941
crossref_primary_10_2166_hydro_2024_229
crossref_primary_10_1029_2022WR034310
crossref_primary_10_1007_s41651_025_00234_3
crossref_primary_10_1109_ACCESS_2025_3567257
crossref_primary_10_1016_j_wace_2024_100692
crossref_primary_10_1016_j_fmre_2025_08_010
crossref_primary_10_1016_j_jhydrol_2022_128550
crossref_primary_10_5194_hess_29_613_2025
crossref_primary_10_1088_1748_9326_ac2bce
crossref_primary_10_3390_w15223912
crossref_primary_10_3390_w14192996
crossref_primary_10_1016_j_jhydrol_2025_132755
crossref_primary_10_5194_hess_27_3999_2023
crossref_primary_10_1038_s43247_024_01530_4
crossref_primary_10_3390_agronomy14010181
crossref_primary_10_2151_jmsj_2025_028
crossref_primary_10_1016_j_scitotenv_2022_158940
crossref_primary_10_1002_eco_70028
crossref_primary_10_3389_fcomm_2023_1226432
crossref_primary_10_2166_wcc_2023_521
crossref_primary_10_1029_2021EF001995
crossref_primary_10_1038_s44221_024_00361_z
crossref_primary_10_5194_bg_20_383_2023
crossref_primary_10_1080_02827581_2025_2500482
crossref_primary_10_3390_rs15112914
crossref_primary_10_3390_rs16234367
crossref_primary_10_3390_w17070940
crossref_primary_10_1175_JCLI_D_21_0080_1
crossref_primary_10_1038_s41598_021_97601_z
crossref_primary_10_5194_esd_16_215_2025
crossref_primary_10_1038_s43017_023_00397_x
crossref_primary_10_3390_atmos15040439
crossref_primary_10_1007_s40502_024_00799_z
crossref_primary_10_1016_j_uclim_2023_101512
crossref_primary_10_3390_rs16183410
crossref_primary_10_1073_pnas_2111372119
crossref_primary_10_3390_rs13214409
crossref_primary_10_1038_s44221_023_00147_9
crossref_primary_10_1016_j_jhydrol_2022_128971
crossref_primary_10_3390_rs14102330
crossref_primary_10_7554_eLife_80489
crossref_primary_10_1038_s43247_024_01787_9
crossref_primary_10_1029_2023EF004399
crossref_primary_10_1016_j_rse_2020_112108
crossref_primary_10_3390_w16071012
crossref_primary_10_1007_s10584_022_03332_z
crossref_primary_10_1007_s11069_022_05341_8
crossref_primary_10_1088_2752_664X_ad7d94
crossref_primary_10_1029_2022EF003015
crossref_primary_10_1177_20530196231186962
crossref_primary_10_1029_2025JD044163
crossref_primary_10_3390_agronomy15051024
crossref_primary_10_1002_ecs2_3839
crossref_primary_10_1038_s41597_023_02290_0
crossref_primary_10_1002_eco_2390
crossref_primary_10_1088_1748_9326_ac8e1a
crossref_primary_10_1016_j_rsase_2024_101208
crossref_primary_10_2478_johh_2023_0033
crossref_primary_10_1175_JCLI_D_21_0442_1
crossref_primary_10_1038_s41612_023_00458_4
crossref_primary_10_1016_j_scitotenv_2023_165618
crossref_primary_10_1029_2021WR031817
crossref_primary_10_1029_2021JF006073
crossref_primary_10_1016_j_ecoinf_2023_102422
crossref_primary_10_1029_2023EF004174
crossref_primary_10_3390_cli10060078
crossref_primary_10_5194_nhess_25_2939_2025
crossref_primary_10_1080_17538947_2023_2301434
crossref_primary_10_1016_j_jenvman_2024_122292
crossref_primary_10_1029_2023JD039297
crossref_primary_10_1111_gcb_16121
crossref_primary_10_1080_10106049_2023_2247377
crossref_primary_10_1007_s00382_023_07034_9
crossref_primary_10_1029_2023EF004058
crossref_primary_10_1038_s41612_023_00401_7
crossref_primary_10_1038_s41612_024_00614_4
crossref_primary_10_5194_cp_19_2511_2023
crossref_primary_10_5194_nhess_23_623_2023
crossref_primary_10_1029_2024WR038124
crossref_primary_10_1029_2021GL093777
crossref_primary_10_1073_pnas_2120777119
crossref_primary_10_1016_j_jclepro_2025_145374
crossref_primary_10_1002_eco_70108
crossref_primary_10_1029_2024GL110294
crossref_primary_10_1007_s00382_021_05684_1
crossref_primary_10_1002_eco_70104
crossref_primary_10_1002_joc_8174
crossref_primary_10_1111_gcb_16599
crossref_primary_10_1002_cli2_17
crossref_primary_10_3390_f16081230
crossref_primary_10_1016_j_ecolind_2023_110764
crossref_primary_10_1029_2024EF005091
crossref_primary_10_1029_2022GL099443
crossref_primary_10_1080_1943815X_2022_2103570
crossref_primary_10_1029_2020JD033587
crossref_primary_10_1016_j_ejrh_2025_102702
crossref_primary_10_1016_j_scitotenv_2023_168038
crossref_primary_10_1088_1748_9326_ac58ac
crossref_primary_10_1029_2024EF005064
crossref_primary_10_1029_2023WR036297
crossref_primary_10_1088_1748_9326_ac14ec
crossref_primary_10_3389_fpls_2024_1371998
crossref_primary_10_1016_j_jhydrol_2025_133551
crossref_primary_10_1080_23311916_2024_2345506
crossref_primary_10_1016_j_ecolmodel_2023_110564
crossref_primary_10_3390_su17167391
crossref_primary_10_1007_s00376_023_2278_4
crossref_primary_10_1029_2023EF004117
crossref_primary_10_1016_j_gloplacha_2024_104380
crossref_primary_10_1016_j_aeolia_2023_100889
crossref_primary_10_1016_j_atmosres_2025_107946
crossref_primary_10_1007_s40641_024_00198_4
crossref_primary_10_3390_land14010085
crossref_primary_10_1007_s10584_022_03454_4
crossref_primary_10_1080_02723646_2021_1890894
crossref_primary_10_1080_10962247_2021_1942319
crossref_primary_10_3390_cli11080166
crossref_primary_10_3390_su142214912
crossref_primary_10_1007_s00382_023_07018_9
crossref_primary_10_1007_s00477_023_02406_3
crossref_primary_10_1016_j_jhydrol_2025_133781
crossref_primary_10_1016_j_ecolind_2025_113172
crossref_primary_10_5194_hess_27_2725_2023
crossref_primary_10_1029_2023EF004008
crossref_primary_10_1007_s41748_024_00505_x
crossref_primary_10_1038_s41561_021_00819_9
crossref_primary_10_1038_s41598_023_48650_z
crossref_primary_10_1016_j_aosl_2021_100143
crossref_primary_10_5194_esd_14_1333_2023
crossref_primary_10_3390_w15122272
crossref_primary_10_1029_2021GL095127
crossref_primary_10_3390_w17071099
crossref_primary_10_1016_j_tplants_2023_03_024
crossref_primary_10_1007_s40899_023_01017_8
crossref_primary_10_1016_j_agwat_2025_109519
crossref_primary_10_1038_s41612_024_00578_5
crossref_primary_10_1002_hyp_14960
crossref_primary_10_1007_s11069_024_06516_1
crossref_primary_10_1038_s43247_023_00826_1
crossref_primary_10_1016_j_marenvres_2025_107392
crossref_primary_10_1016_j_wace_2023_100573
crossref_primary_10_3390_w15203595
crossref_primary_10_1016_j_cej_2023_148475
crossref_primary_10_1175_EI_D_22_0003_1
crossref_primary_10_1016_j_envsoft_2024_106220
crossref_primary_10_1002_joc_8925
crossref_primary_10_1007_s00704_025_05621_w
crossref_primary_10_1029_2023AV001070
crossref_primary_10_1038_s41598_021_84807_4
crossref_primary_10_3389_frwa_2021_716621
crossref_primary_10_1088_2515_7620_acde37
crossref_primary_10_1007_s00704_023_04715_7
crossref_primary_10_34133_olar_0093
crossref_primary_10_1029_2022PA004528
crossref_primary_10_5194_bg_22_1907_2025
crossref_primary_10_1080_03736245_2025_2490599
crossref_primary_10_1088_1748_9326_abd2f0
crossref_primary_10_3390_atmos14101497
crossref_primary_10_1007_s00382_024_07166_6
crossref_primary_10_1016_j_agee_2024_109312
crossref_primary_10_1029_2024JD042781
crossref_primary_10_1002_wcc_70005
crossref_primary_10_1007_s10021_024_00900_5
crossref_primary_10_1038_s43247_021_00326_0
crossref_primary_10_1007_s40808_023_01881_5
crossref_primary_10_1007_s11056_023_10000_2
crossref_primary_10_1080_07055900_2025_2453678
crossref_primary_10_1007_s12517_024_12162_5
crossref_primary_10_1007_s00704_023_04727_3
crossref_primary_10_1016_j_oneear_2023_09_007
crossref_primary_10_3390_su15010271
crossref_primary_10_1029_2020EF001608
crossref_primary_10_1029_2020GL091271
crossref_primary_10_1029_2022EF003303
crossref_primary_10_1029_2022EF003301
crossref_primary_10_1029_2022EF003420
crossref_primary_10_1088_1748_9326_ac48b6
crossref_primary_10_1111_nph_17412
crossref_primary_10_3832_ifor3989_015
crossref_primary_10_1029_2023EF004311
crossref_primary_10_1038_s43017_022_00329_1
crossref_primary_10_3390_environments11040082
crossref_primary_10_1111_nph_70361
crossref_primary_10_3390_land13081146
crossref_primary_10_5194_bg_20_2237_2023
crossref_primary_10_1029_2021GL096868
crossref_primary_10_1007_s10668_025_06371_5
crossref_primary_10_1073_pnas_2108124119
crossref_primary_10_1016_j_wace_2023_100620
crossref_primary_10_1016_j_scitotenv_2024_173828
crossref_primary_10_1088_1748_9326_acc95d
crossref_primary_10_1029_2020EF001718
crossref_primary_10_1029_2021EF002542
crossref_primary_10_1038_s43017_021_00144_0
crossref_primary_10_3390_buildings14072165
crossref_primary_10_1029_2025JD043378
crossref_primary_10_5194_bg_19_2523_2022
crossref_primary_10_1111_gcb_16297
crossref_primary_10_1007_s00468_023_02441_1
crossref_primary_10_1126_science_ado2030
crossref_primary_10_1029_2021JD035367
crossref_primary_10_1111_nph_17522
crossref_primary_10_1007_s00477_022_02230_1
crossref_primary_10_1038_s41558_021_01076_9
crossref_primary_10_1016_j_atmosres_2022_106049
crossref_primary_10_1111_1365_2745_13446
crossref_primary_10_1029_2022GL101667
crossref_primary_10_1177_03091333231169443
crossref_primary_10_1007_s10584_025_03989_2
crossref_primary_10_1111_jbi_14452
crossref_primary_10_1111_gcb_17291
crossref_primary_10_1111_rec_14231
crossref_primary_10_1007_s41748_024_00502_0
crossref_primary_10_3390_su16146188
crossref_primary_10_1016_j_scitotenv_2023_169261
crossref_primary_10_1177_03091333251378932
crossref_primary_10_1186_s13021_024_00282_0
crossref_primary_10_3390_su162411264
crossref_primary_10_1007_s00024_025_03757_4
crossref_primary_10_1016_j_gsf_2024_101815
crossref_primary_10_1139_er_2021_0102
crossref_primary_10_1029_2025EF006040
crossref_primary_10_1029_2021GL096409
crossref_primary_10_1029_2024EF005495
crossref_primary_10_3389_fmars_2021_628454
crossref_primary_10_1029_2021EF002522
crossref_primary_10_1073_pnas_2203200119
Cites_doi 10.5194/hess-17-1765-2013
10.1073/pnas.1604581113
10.1126/sciadv.1500682
10.1038/nclimate3046
10.1038/s41612-018-0012-1
10.1038/s41586-019-1149-8
10.1038/s41586-018-0424-4
10.3389/ffgc.2018.00004
10.1175/JCLI-D-17-0213.1
10.1029/2018GL078312
10.1007/s40641-018-0093-2
10.1126/sciadv.1600873
10.1002/2016GL072104
10.1175/JCLI-D-12-00726.1
10.1175/BAMS-D-11-00094.1
10.1007/s00382-012-1564-0
10.1007/s00382-014-2075-y
10.1002/2015GL064924
10.1002/grl.50938
10.1126/sciadv.1400082
10.1002/2014GL062433
10.1175/EI-D-17-0007.1
10.1038/s41586-018-0848-x
10.1088/1748-9326/aa5efc
10.1073/pnas.1720712115
10.1007/s40641-018-0101-6
10.1175/JCLI-D-11-00296.1
10.1175/JCLI-D-17-0574.1
10.1038/s41561-019-0480-x
10.1126/science.1152538
10.1088/1748-9326/11/4/044005
10.1175/JCLI-D-14-00616.1
10.1007/s10584-013-0853-x
10.1038/nclimate3029
10.1002/2016GB005480
10.1038/s41558-019-0639-x
10.1029/2018GL078131
10.1038/s41612-018-0032-x
10.1029/2018GL080768
10.1038/nclimate1716
10.1038/ngeo2201
10.1002/2014WR016318
10.1175/JCLI-D-15-0369.1
10.1002/2014GL060382
10.1126/sciadv.1701832
10.1175/JCLI-D-14-00860.1
10.5194/gmd-9-3461-2016
10.5194/tc-9-1943-2015
10.1038/s41558-018-0207-9
10.1029/2011JD017187
10.1002/2016GL069965
10.1002/2016GL070445
10.1175/JCLI-D-18-0472.1
10.1088/1748-9326/aae9f9
10.1029/2019GL083926
10.1002/joc.6219
10.1029/2018GL080521
10.1002/2016GL071921
10.5194/gmd-9-1937-2016
10.1175/JCLI3990.1
10.1007/s13351-019-9016-y
10.1175/JHM-D-17-0099.1
10.1002/joc.4557
10.1175/JCLI-D-12-00832.1
10.1073/pnas.1904955116
10.1016/j.earscirev.2019.102953
10.1002/2017GL074117
10.1007/s40641-018-0097-y
10.1088/1748-9326/11/10/104012
10.1088/1748-9326/ab5023
10.1038/nclimate1633
10.1029/2018GL079408
10.1175/BAMS-D-18-0127.1
10.1002/2017GL072759
10.1038/ngeo2247
10.1038/nclimate2831
10.1029/2018WR023153
10.1073/pnas.1421533112
10.1038/s41598-017-17966-y
10.1038/srep19124
ContentType Journal Article
Copyright Copyright Determination: PUBLIC_USE_PERMITTED
2020. The Authors.
2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright Determination: PUBLIC_USE_PERMITTED
– notice: 2020. The Authors.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID CYE
CYI
24P
AAYXX
CITATION
7ST
7TG
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
KL.
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
DOA
DOI 10.1029/2019EF001461
DatabaseName NASA Scientific and Technical Information
NASA Technical Reports Server
Wiley Online Library Open Access
CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Science Database (subscripiton)
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2328-4277
EndPage n/a
ExternalDocumentID oai_doaj_org_article_22ef9821c6e24142a6b65f633d40f000
10_1029_2019EF001461
EFT2654
20205001089
Genre article
GrantInformation AGS‐1805490
OISE‐1743738
509496.02.08.11.76
AGS‐1602581
GrantInformation_xml – fundername: National Science Foundation
  funderid: AGS-1602581; OISE-1743738; AGS-1805490
GroupedDBID 0R~
1OC
24P
5VS
7XC
8-1
8FE
8FH
AAHBH
AAMMB
AAZKR
ACCMX
ACQOY
ACXQS
ADBBV
ADKYN
ADZMN
AEFGJ
AENEX
AEUYN
AFFHD
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BANNL
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CYE
CYI
EBS
EDH
GICCO
GROUPED_DOAJ
HCIFZ
LK5
M7R
M~E
OK1
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
WIN
~OA
8GL
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
EJD
GODZA
IEP
ISN
ITC
SUPJJ
AAYXX
CITATION
IAO
7ST
7TG
ABUWG
AZQEC
C1K
DWQXO
GNUQQ
KL.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
ID FETCH-LOGICAL-c4964-88dfd15fd7625f2c6a0eec3c2f777040845e3cdf4881534a49e00b5e7d7e00f23
IEDL.DBID 24P
ISICitedReferencesCount 722
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000545702400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2328-4277
IngestDate Fri Oct 03 12:42:22 EDT 2025
Sun Nov 09 06:00:40 EST 2025
Sat Nov 29 04:06:25 EST 2025
Tue Nov 18 22:20:50 EST 2025
Wed Jan 22 16:34:17 EST 2025
Fri Nov 21 15:49:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Drought
Cmip6
Language English
License Creative Commons License: CCBYND
Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4964-88dfd15fd7625f2c6a0eec3c2f777040845e3cdf4881534a49e00b5e7d7e00f23
Notes GSFC
Goddard Space Flight Center
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2520-4555
0000-0001-8176-8166
0000-0002-8509-8080
0000-0002-9771-6720
0000-0002-4501-9229
0000-0001-6276-0249
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019EF001461
PQID 2417108315
PQPubID 2034575
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_22ef9821c6e24142a6b65f633d40f000
proquest_journals_2417108315
crossref_primary_10_1029_2019EF001461
crossref_citationtrail_10_1029_2019EF001461
wiley_primary_10_1029_2019EF001461_EFT2654
nasa_ntrs_20205001089
PublicationCentury 2000
PublicationDate June 2020
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace Goddard Space Flight Center
PublicationPlace_xml – name: Goddard Space Flight Center
– name: Bognor Regis
PublicationTitle Earth's future
PublicationYear 2020
Publisher Wiley Open Access and American Geophysical Union
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Wiley Open Access and American Geophysical Union
– name: John Wiley & Sons, Inc
– name: Wiley
References 2018; 560
2017; 7
2013; 3
2013; 26
2017; 44
2019; 12
2019; 14
2016; 30
2019; 201
2019; 565
2019; 569
2018; 45
2016; 36
2018; 8
2017; 30
2013; 17
2018; 4
2018; 1
2015; 42
2008; 319
2016; 43
2016; 113
2019; 116
2012; 25
2014; 7
2018; 31
2015; 1
2019; 9
2020; 40
2019; 33
2015; 51
2019; 32
2013; 40
2017; 21
2006; 19
2014; 41
2015; 9
2019; 100
2014; 43
2016; 11
2014; 42
2012; 93
2018; 19
2016; 6
2015; 28
2016; 2
2019; 46
2015; 112
2018; 115
2017; 12
2019
2016; 134
2018
2013
2018; 54
2012; 117
2016; 8
2016; 9
2018; 13
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_96_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_94_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_92_1
e_1_2_6_90_1
IPCC (e_1_2_6_40_1) 2013
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_80_1
e_1_2_6_61_1
e_1_2_6_82_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 134
  start-page: 371
  issue: 3
  year: 2016
  end-page: 385
  article-title: A global assessment of the impact of climate change on water scarcity
  publication-title: Climatic Change
– volume: 569
  start-page: 59
  issue: 7754
  year: 2019
  end-page: 65
  article-title: Twentieth‐century hydroclimate changes consistent with human influence
  publication-title: Nature
– volume: 41
  start-page: 5492
  year: 2014
  end-page: 5498
  article-title: Runoff sensitivity to global mean temperature change in the CMIP5 Models
  publication-title: Geophysical Research Letters
– volume: 40
  start-page: 4927
  year: 2013
  end-page: 4932
  article-title: Stationarity of the tropical pacific teleconnection to North America in CMIP5/PMIP3 model simulations
  publication-title: Geophysical Research Letters
– volume: 4
  start-page: 164
  issue: 2
  year: 2018
  end-page: 179
  article-title: Climate change and drought: From past to future
  publication-title: Current Climate Change Reports
– volume: 46
  start-page: 10,522
  year: 2019
  end-page: 10,531
  article-title: Constraining climate model projections of regional precipitation change
  publication-title: Geophysical Research Letters
– volume: 40
  start-page: 421
  issue: 1
  year: 2020
  end-page: 439
  article-title: The central Chile mega drought (2010–2018): A climate dynamics perspective
  publication-title: International Journal of Climatology
– volume: 3
  start-page: 52
  issue: 1
  year: 2013
  end-page: 58
  article-title: Increasing drought under global warming in observations and models
  publication-title: Nature Climate Change
– volume: 26
  start-page: 7328
  issue: 19
  year: 2013
  end-page: 7351
  article-title: CMIP5 projected changes in the annual cycle of precipitation in monsoon regions
  publication-title: Journal of Climate
– volume: 31
  start-page: 4265
  issue: 11
  year: 2018
  end-page: 4279
  article-title: Mechanism of future spring drying in the southwestern United States in CMIP5 models
  publication-title: Journal of Climate
– volume: 28
  start-page: 3834
  issue: 9
  year: 2015
  end-page: 3845
  article-title: A link between the hiatus in global warming and North American drought
  publication-title: Journal of Climate
– volume: 11
  issue: 4
  year: 2016
  article-title: Anthropogenic climate change affects meteorological drought risk in Europe
  publication-title: Environmental Research Letters
– volume: 44
  start-page: 236
  issue: 1
  year: 2017
  end-page: 244
  article-title: Divergent surface and total soil moisture projections under global warming
  publication-title: Geophysical Research Letters
– volume: 100
  start-page: S19
  issue: 1
  year: 2019
  end-page: S24
  article-title: Anthropogenic contributions to the intensity of the 2017 United States northern Great Plains drought
  publication-title: Bulletin of the American Meteorological Society
– volume: 1
  issue: 9
  year: 2015
  article-title: Past and future rainfall in the Horn of Africa
  publication-title: Science Advances
– volume: 7
  issue: 1
  year: 2017
  article-title: Precipitation variability increases in a warmer climate
  publication-title: Scientific Reports
– volume: 51
  start-page: 2847
  year: 2015
  end-page: 2864
  article-title: How well do CMIP5 climate simulations replicate historical trends and patterns of meteorological droughts?
  publication-title: Water Resources Research
– year: 2018
– volume: 12
  start-page: 983
  year: 2019
  end-page: 988
  article-title: Mid‐latitude freshwater availability reduced by projected vegetation responses to climate change
  publication-title: Nature Geoscience
– volume: 46
  start-page: 736
  year: 2019
  end-page: 744
  article-title: Observational constraints reduce likelihood of extreme changes in multidecadal land water availability
  publication-title: Geophysical Research Letters
– volume: 36
  start-page: 3314
  issue: 9
  year: 2016
  end-page: 3333
  article-title: Long‐term trends in precipitation and temperature across the Caribbean
  publication-title: International Journal of Climatology
– volume: 6
  start-page: 946
  issue: 10
  year: 2016
  end-page: 949
  article-title: Potential evapotranspiration and continental drying
  publication-title: Nature Climate Change
– volume: 32
  start-page: 2887
  issue: 10
  year: 2019
  end-page: 2915
  article-title: Climate variability and change of mediterranean‐type climates
  publication-title: Journal of Climate
– volume: 46
  start-page: 2573
  year: 2019
  end-page: 2582
  article-title: Attribution of global soil moisture drying to human activities: A quantitative viewpoint
  publication-title: Geophysical Research Letters
– volume: 1
  issue: 1
  year: 2015
  article-title: Unprecedented 21st century drought risk in the American Southwest and Central Plains
  publication-title: Science Advances
– volume: 41
  start-page: 9017
  year: 2014
  end-page: 9023
  article-title: How unusual is the 2012–2014 California drought?
  publication-title: Geophysical Research Letters
– volume: 115
  start-page: 4093
  issue: 16
  year: 2018
  article-title: Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO
  publication-title: Proceedings of the National Academy of Sciences
– volume: 112
  start-page: 3241
  issue: 11
  year: 2015
  end-page: 3246
  article-title: Climate change in the Fertile Crescent and implications of the recent Syrian drought
  publication-title: Proceedings of the National Academy of Sciences
– volume: 201
  year: 2019
  article-title: A review of environmental droughts: Increased risk under global warming?
  publication-title: Earth‐Science Reviews
– volume: 28
  start-page: 8078
  issue: 20
  year: 2015
  end-page: 8092
  article-title: The response of precipitation minus evapotranspiration to climate warming: Why the “Wet‐Get‐Wetter, Dry‐Get‐Drier” scaling does not hold over land
  publication-title: Journal of Climate
– volume: 12
  issue: 4
  year: 2017
  article-title: Influence of internal variability on population exposure to hydroclimatic changes
  publication-title: Environmental Research Letters
– volume: 28
  start-page: 6997
  year: 2015
  end-page: 7024
  article-title: Causes of the 2011 to 2014 California drought
  publication-title: Journal of Climate
– volume: 4
  start-page: 192
  issue: 2
  year: 2018
  end-page: 201
  article-title: Plants and drought in a changing climate
  publication-title: Current Climate Change Reports
– volume: 7
  start-page: 583
  issue: 8
  year: 2014
  end-page: 587
  article-title: Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels
  publication-title: Nature Geoscience
– volume: 21
  start-page: 1
  year: 2017
  end-page: 14
  article-title: Evidence that recent Warming is reducing upper Colorado River flows
  publication-title: Earth Interactions
– volume: 42
  start-page: 6819
  year: 2015
  end-page: 6828
  article-title: Contribution of anthropogenic warming to the 2012–2014 California drought
  publication-title: Geophysical Research Letters
– volume: 4
  issue: 3
  year: 2018
  article-title: Past and future drought in Mongolia
  publication-title: Science Advances
– volume: 6
  start-page: 75
  issue: 1
  year: 2016
  end-page: 78
  article-title: Reduced streamflow in water‐stressed climates consistent with CO effects on vegetation
  publication-title: Nature Climate Change
– volume: 44
  start-page: 7419
  year: 2017
  end-page: 7428
  article-title: Projected drought risk in 1.5 °C and 2 ° C warmer climates
  publication-title: Geophysical Research Letters
– volume: 13
  issue: 12
  year: 2018
  article-title: Anthropogenic influence on the drivers of the Western Cape drought 2015–2017
  publication-title: Environmental Research Letters
– volume: 43
  start-page: 9225
  year: 2016
  end-page: 9233
  article-title: The challenge of accurately quantifying future megadrought risk in the American Southwest
  publication-title: Geophysical Research Letters
– volume: 14
  start-page: 124,016
  issue: 12
  year: 2019
  article-title: Multiscale trends and precipitation extremes in the Central American midsummer drought
  publication-title: Environmental Research Letters
– volume: 1
  issue: 1
  year: 2018
  article-title: Dramatic declines in snowpack in the western US
  publication-title: npj Climate and Atmospheric Science
– volume: 9
  start-page: 3461
  issue: 9
  year: 2016
  end-page: 3482
  article-title: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6
  publication-title: Geoscientific Model Development
– volume: 1
  start-page: 21
  issue: 1
  year: 2018
  article-title: 21st century California drought risk linked to model fidelity of the El Niño teleconnection
  publication-title: npj Climate and Atmospheric Science
– year: 2019
– volume: 8
  start-page: 640
  issue: 7
  year: 2018
  end-page: 646
  article-title: Partitioning global land evapotranspiration using CMIP5 models constrained by observations
  publication-title: Nature Climate Change
– volume: 6
  start-page: 869
  issue: 9
  year: 2016
  end-page: 874
  article-title: Land‐atmosphere feedbacks amplify aridity increase over land under global warming
  publication-title: Nature Climate Change
– volume: 7
  start-page: 716
  year: 2014
  end-page: 721
  article-title: Global assessment of trends in wetting and drying over land
  publication-title: Nature Geoscience
– volume: 565
  start-page: 476
  issue: 7740
  year: 2019
  end-page: 479
  article-title: Large influence of soil moisture on long‐term terrestrial carbon uptake
  publication-title: Nature
– volume: 30
  start-page: 1827
  year: 2016
  end-page: 1846
  article-title: Evaluating the drought response of CMIP5 models using global gross primary productivity, leaf area, precipitation, and soil moisture data
  publication-title: Global Biogeochemical Cycles
– volume: 560
  start-page: 628
  issue: 7720
  year: 2018
  end-page: 631
  article-title: Sensitivity of atmospheric CO growth rate to observed changes in terrestrial water storage
  publication-title: Nature
– volume: 6
  issue: 1
  year: 2016
  article-title: Multi‐decadal trends in global terrestrial evapotranspiration and its components
  publication-title: Scientific Reports
– volume: 4
  start-page: 301
  issue: 3
  year: 2018
  end-page: 312
  article-title: Climate change and drought: A precipitation and evaporation perspective
  publication-title: Current Climate Change Reports
– volume: 11
  issue: 10
  year: 2016
  article-title: Land surface models systematically overestimate the intensity, duration and magnitude of seasonal‐scale evaporative droughts
  publication-title: Environmental Research Letters
– volume: 43
  start-page: 2607
  issue: 9‐10
  year: 2014
  end-page: 2627
  article-title: Global warming and 21st century drying
  publication-title: Climate Dynamics
– volume: 42
  start-page: 101
  issue: 1
  year: 2014
  end-page: 119
  article-title: Future change of global monsoon in the CMIP5
  publication-title: Climate Dynamics
– volume: 45
  start-page: 10,619
  year: 2018
  end-page: 10,626
  article-title: Exacerbation of the 2013–2016 Pan‐Caribbean drought by anthropogenic warming
  publication-title: Geophysical Research Letters
– volume: 19
  start-page: 969
  issue: 6
  year: 2018
  end-page: 988
  article-title: Evaluating CMIP5 model agreement for multiple drought metrics
  publication-title: Journal of Hydrometeorology
– volume: 1
  start-page: 4
  year: 2018
  article-title: A dirty dozen ways to die: Metrics and modifiers of mortality driven by drought and warming for a Tree species
  publication-title: Frontiers in Forests and Global Change
– volume: 25
  start-page: 2146
  issue: 6
  year: 2012
  end-page: 2161
  article-title: On the increased frequency of mediterranean drought
  publication-title: Journal of Climate
– volume: 54
  start-page: 6739
  issue: 9
  year: 2018
  end-page: 6756
  article-title: On the causes of declining Colorado River streamflows
  publication-title: Water Resources Research
– volume: 26
  start-page: 7813
  issue: 20
  year: 2013
  end-page: 7828
  article-title: Future changes in Northern Hemisphere snowfall
  publication-title: Journal of Climate
– volume: 8
  start-page: 1937
  year: 2016
  end-page: 1958
  article-title: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organisation
  publication-title: Geoscientific Model Development Discussions
– volume: 9
  start-page: 1943
  issue: 5
  year: 2015
  end-page: 1953
  article-title: Projected 21st century changes in snow water equivalent over Northern Hemisphere landmasses from the CMIP5 model ensemble
  publication-title: The Cryosphere
– volume: 117
  year: 2012
  article-title: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set
  publication-title: Journal of Geophysical Research
– volume: 30
  start-page: 8689
  issue: 21
  year: 2017
  end-page: 8710
  article-title: The curious case of projected twenty‐first‐century drying but greening in the American West
  publication-title: Journal of Climate
– volume: 43
  start-page: 10,980
  year: 2016
  end-page: 10,988
  article-title: Perspectives on the causes of exceptionally low 2015 snowpack in the western United States
  publication-title: Geophysical Research Letters
– volume: 3
  start-page: 369
  issue: 4
  year: 2013
  end-page: 373
  article-title: Robustness and uncertainties in the new CMIP5 climate model projections
  publication-title: Nature Climate Change
– volume: 33
  start-page: 851
  issue: 5
  year: 2019
  end-page: 869
  article-title: Development of land surface model BCC_AVIM2.0 and its preliminary performance in LS3MIP/CMIP6
  publication-title: Journal of Meteorological Research
– volume: 9
  start-page: 926
  issue: 12
  year: 2019
  end-page: 933
  article-title: The potential to reduce uncertainty in regional runoff projections from climate models
  publication-title: Nature Climate Change
– volume: 17
  start-page: 1765
  issue: 5
  year: 2013
  end-page: 1781
  article-title: Elusive drought: Uncertainty in observed trends and short‐ and long‐term CMIP5 projections
  publication-title: Hydrology and Earth System Sciences
– volume: 44
  start-page: 2511
  year: 2017
  end-page: 2518
  article-title: Anthropogenic warming impacts on California snowpack during drought
  publication-title: Geophysical Research Letters
– volume: 45
  start-page: 6495
  year: 2018
  end-page: 6503
  article-title: Soil moisture stress as a major driver of carbon cycle uncertainty
  publication-title: Geophysical Research Letters
– volume: 44
  start-page: 2310
  year: 2017
  end-page: 2318
  article-title: CO ‐vegetation feedbacks and other climate changes implicated in reducing base flow
  publication-title: Geophysical Research Letters
– volume: 2
  issue: 10
  year: 2016
  article-title: Relative impacts of mitigation, temperature, and precipitation on 21st‐century megadrought risk in the American Southwest
  publication-title: Science Advances
– volume: 116
  issue: 38
  year: 2019
  article-title: Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity
  publication-title: Proceedings of the National Academy of Sciences
– volume: 319
  start-page: 1080
  issue: 5866
  year: 2008
  end-page: 1083
  article-title: Human‐induced changes in the hydrology of the western United States
  publication-title: Science
– volume: 19
  start-page: 5686
  issue: 21
  year: 2006
  end-page: 5699
  article-title: Robust responses of the hydrological cycle to global warming
  publication-title: Journal of Climate
– volume: 45
  start-page: 6251
  year: 2018
  end-page: 6261
  article-title: Attributing the U.S. Southwest's recent shift into drier conditions
  publication-title: Geophysical Research Letters
– volume: 113
  start-page: 10,019
  issue: 36
  year: 2016
  end-page: 10,024
  article-title: Plant responses to increasing CO reduce estimates of climate impacts on drought severity
  publication-title: Proceedings of the National Academy of Sciences
– year: 2013
– volume: 93
  start-page: 485
  issue: 4
  year: 2012
  end-page: 498
  article-title: An overview of CMIP5 and the experiment design
  publication-title: Bulletin of the American Meteorological Society
– ident: e_1_2_6_64_1
  doi: 10.5194/hess-17-1765-2013
– ident: e_1_2_6_75_1
  doi: 10.1073/pnas.1604581113
– ident: e_1_2_6_80_1
  doi: 10.1126/sciadv.1500682
– ident: e_1_2_6_58_1
  doi: 10.1038/nclimate3046
– ident: e_1_2_6_60_1
  doi: 10.1038/s41612-018-0012-1
– ident: e_1_2_6_76_1
– ident: e_1_2_6_56_1
  doi: 10.1038/s41586-019-1149-8
– ident: e_1_2_6_39_1
  doi: 10.1038/s41586-018-0424-4
– ident: e_1_2_6_10_1
  doi: 10.3389/ffgc.2018.00004
– ident: e_1_2_6_54_1
  doi: 10.1175/JCLI-D-17-0213.1
– ident: e_1_2_6_48_1
  doi: 10.1029/2018GL078312
– ident: e_1_2_6_15_1
  doi: 10.1007/s40641-018-0093-2
– ident: e_1_2_6_45_1
– ident: e_1_2_6_4_1
  doi: 10.1126/sciadv.1600873
– ident: e_1_2_6_7_1
  doi: 10.1002/2016GL072104
– ident: e_1_2_6_71_1
– ident: e_1_2_6_72_1
  doi: 10.1175/JCLI-D-12-00726.1
– ident: e_1_2_6_79_1
  doi: 10.1175/BAMS-D-11-00094.1
– ident: e_1_2_6_46_1
  doi: 10.1007/s00382-012-1564-0
– ident: e_1_2_6_16_1
  doi: 10.1007/s00382-014-2075-y
– ident: e_1_2_6_67_1
– ident: e_1_2_6_89_1
  doi: 10.1002/2015GL064924
– ident: e_1_2_6_13_1
  doi: 10.1002/grl.50938
– ident: e_1_2_6_14_1
  doi: 10.1126/sciadv.1400082
– ident: e_1_2_6_29_1
  doi: 10.1002/2014GL062433
– ident: e_1_2_6_57_1
  doi: 10.1175/EI-D-17-0007.1
– ident: e_1_2_6_27_1
  doi: 10.1038/s41586-018-0848-x
– ident: e_1_2_6_55_1
  doi: 10.1088/1748-9326/aa5efc
– ident: e_1_2_6_50_1
  doi: 10.1073/pnas.1720712115
– ident: e_1_2_6_18_1
  doi: 10.1007/s40641-018-0101-6
– ident: e_1_2_6_37_1
  doi: 10.1175/JCLI-D-11-00296.1
– ident: e_1_2_6_81_1
  doi: 10.1175/JCLI-D-17-0574.1
– ident: e_1_2_6_53_1
  doi: 10.1038/s41561-019-0480-x
– ident: e_1_2_6_5_1
  doi: 10.1126/science.1152538
– ident: e_1_2_6_31_1
  doi: 10.1088/1748-9326/11/4/044005
– ident: e_1_2_6_22_1
  doi: 10.1175/JCLI-D-14-00616.1
– ident: e_1_2_6_26_1
  doi: 10.1007/s10584-013-0853-x
– ident: e_1_2_6_6_1
  doi: 10.1038/nclimate3029
– ident: e_1_2_6_38_1
  doi: 10.1002/2016GB005480
– ident: e_1_2_6_49_1
  doi: 10.1038/s41558-019-0639-x
– ident: e_1_2_6_77_1
– ident: e_1_2_6_83_1
  doi: 10.1029/2018GL078131
– ident: e_1_2_6_9_1
– ident: e_1_2_6_2_1
  doi: 10.1038/s41612-018-0032-x
– ident: e_1_2_6_30_1
  doi: 10.1029/2018GL080768
– ident: e_1_2_6_43_1
  doi: 10.1038/nclimate1716
– ident: e_1_2_6_88_1
– ident: e_1_2_6_21_1
  doi: 10.1038/ngeo2201
– ident: e_1_2_6_62_1
  doi: 10.1002/2014WR016318
– ident: e_1_2_6_11_1
  doi: 10.1175/JCLI-D-15-0369.1
– volume-title: Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change
  year: 2013
  ident: e_1_2_6_40_1
– ident: e_1_2_6_95_1
  doi: 10.1002/2014GL060382
– ident: e_1_2_6_35_1
  doi: 10.1126/sciadv.1701832
– ident: e_1_2_6_69_1
  doi: 10.1175/JCLI-D-14-00860.1
– ident: e_1_2_6_63_1
  doi: 10.5194/gmd-9-3461-2016
– ident: e_1_2_6_20_1
– ident: e_1_2_6_73_1
  doi: 10.5194/tc-9-1943-2015
– ident: e_1_2_6_52_1
  doi: 10.1038/s41558-018-0207-9
– ident: e_1_2_6_59_1
  doi: 10.1029/2011JD017187
– ident: e_1_2_6_61_1
  doi: 10.1002/2016GL069965
– ident: e_1_2_6_12_1
  doi: 10.1002/2016GL070445
– ident: e_1_2_6_90_1
– ident: e_1_2_6_70_1
  doi: 10.1175/JCLI-D-18-0472.1
– ident: e_1_2_6_65_1
  doi: 10.1088/1748-9326/aae9f9
– ident: e_1_2_6_94_1
  doi: 10.1029/2019GL083926
– ident: e_1_2_6_24_1
  doi: 10.1002/joc.6219
– ident: e_1_2_6_66_1
  doi: 10.1029/2018GL080521
– ident: e_1_2_6_78_1
– ident: e_1_2_6_8_1
  doi: 10.1002/2016GL071921
– ident: e_1_2_6_23_1
  doi: 10.5194/gmd-9-1937-2016
– ident: e_1_2_6_25_1
– ident: e_1_2_6_33_1
  doi: 10.1175/JCLI3990.1
– ident: e_1_2_6_19_1
– ident: e_1_2_6_51_1
  doi: 10.1007/s13351-019-9016-y
– ident: e_1_2_6_85_1
  doi: 10.1175/JHM-D-17-0099.1
– ident: e_1_2_6_41_1
  doi: 10.1002/joc.4557
– ident: e_1_2_6_44_1
  doi: 10.1175/JCLI-D-12-00832.1
– ident: e_1_2_6_96_1
  doi: 10.1073/pnas.1904955116
– ident: e_1_2_6_87_1
  doi: 10.1016/j.earscirev.2019.102953
– ident: e_1_2_6_47_1
  doi: 10.1002/2017GL074117
– ident: e_1_2_6_74_1
  doi: 10.1007/s40641-018-0097-y
– ident: e_1_2_6_32_1
– ident: e_1_2_6_84_1
  doi: 10.1088/1748-9326/11/10/104012
– ident: e_1_2_6_92_1
– ident: e_1_2_6_3_1
  doi: 10.1088/1748-9326/ab5023
– ident: e_1_2_6_17_1
  doi: 10.1038/nclimate1633
– ident: e_1_2_6_34_1
  doi: 10.1029/2018GL079408
– ident: e_1_2_6_36_1
  doi: 10.1175/BAMS-D-18-0127.1
– ident: e_1_2_6_82_1
  doi: 10.1002/2017GL072759
– ident: e_1_2_6_28_1
  doi: 10.1038/ngeo2247
– ident: e_1_2_6_86_1
  doi: 10.1038/nclimate2831
– ident: e_1_2_6_91_1
  doi: 10.1029/2018WR023153
– ident: e_1_2_6_42_1
  doi: 10.1073/pnas.1421533112
– ident: e_1_2_6_68_1
  doi: 10.1038/s41598-017-17966-y
– ident: e_1_2_6_93_1
  doi: 10.1038/srep19124
SSID ssj0000970357
Score 2.6380012
Snippet There is strong evidence climate change will increase drought risk and severity, but these conclusions depend on the regions, seasons, and drought metrics...
There is strong evidence that climate change will increase drought risk and severity, but these conclusions depend on the regions, seasons, and drought metrics...
Abstract There is strong evidence that climate change will increase drought risk and severity, but these conclusions depend on the regions, seasons, and...
SourceID doaj
proquest
crossref
wiley
nasa
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 21st century
Climate change
Climate models
CMIP6
Drought
Drying
Environmental risk
Evapotranspiration
Evapotranspiration processes
Extreme drought
Extreme weather
Greenhouse effect
Greenhouse gases
Hydrologic cycle
Hydrologic drought
Hydrology
Meteorology And Climatology
Mitigation
Moisture content
open climate campaign
Precipitation
Robustness
Runoff
Simulation
Soil moisture
Soils
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PS8MwFA8iHryIfzasTslBL8owTZM0OepcUdCxw4TdSpYmMJBO1ql48yP4Gf0kvrTd3A7qRSi0JCG85v37vTR9D6ETGjpKjYZIdWRYmzlmQKWI9ECOAzrllFcp8-_iXk8Oh6q_VOrLnwmr0gNXC3dBqXVK0tAIC86GUS1GgjsRRRkjDvTZW18Sq6VgqrTBCiSZx_VJd0IVBPmh6iY-IhDhig8qU_XDLdeFXoGZy2C19DbJNtqqYSK-rMjbQWs230XN7vdfadBZq2Wxh24Hr9D09vn-kYwBzeFO5UnwdVmDZ4b71XaLlzA8zjFgPty5v-0LnEymBnwXTGVzCJonRQM9JN1B56Zd10hoG6YEa0uZuSzkLgOjxh01QhNrTWSoi-MYFFQybiOTOdBTsG1MM2UJGXEbZzE8OBo14c0nud1H2MoMLq4zbYh3WZJrQD8jFrmQCilNgM7nq5aaOoG4r2PxmJYfsqlKl9c4QKeL0U9V4owfxl15BizG-HTXZQMIQVoLQfqXEASo4dmXAj0FzE4J97GuVAFqzfmZ1roJ_SwEWCWjkAforOTxrwSm3WRABWcH_0HoIdr05FVnzVpofTZ9tkdow7zMxsX0uJThL7mb7TE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZp00Mv6SuhTtKiQ3tpMZVlSZZOIdnaNJAuS9lCbkarR1godrLeJOSWn5Df2F_Ska3dJofmUjDYyEIWmtc3I3kGoQ8085QaDZ7qzLCUeWZApIgMQI4DOuWUDynzT4rxWJ6eqkkMuHXxWOVKJ_aK2rYmxMi_gKUBYyjzjB-cX6ShalTYXY0lNJ6gzZCpDPh886gcT36soyxEAUfzIp54J1SBs5-psgqegcge2KI-ZT_cGt3pB3DzPmjtrU714n_n-xJtRbyJDwcGeYU2XPMa7ZR_f2-Dl1G-uzfoeHoNTTe_b--qOcBCPBpMEv7aF_NZ4skQtwmsiucNBvCIR9-PJwJX7cKAEYShXAPed9tto59VOR19S2OxhdQwJVgqpfU2496CduSeGqGJcyY31BdFAZIuGXe5sR4EHpQk00w5QmbcFbaAB0_zHVi6tnFvEXbSwsW11YYE2ye5Bhg1Y7nPqJDSJOjzatlrEzORh4IYv-p-R5yq-j6REvRx3ft8yMDxj35HgYLrPiFvdt_QLs7qKIY1pc4rSTMjHBCIUS1mgnuR55YRD-ySoO1A_xrm08HolPDgNEuVoP0Vleso5PB-TeIEfeqZ5NEJ1mU1pYKz3cfH2kPPw4eH42j76OlyceneoWfmajnvFu8jg_8BG9D9mg
  priority: 102
  providerName: ProQuest
Title Twenty‐First Century Drought Projections in the CMIP6 Forcing Scenarios
URI https://ntrs.nasa.gov/citations/20205001089
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019EF001461
https://www.proquest.com/docview/2417108315
https://doaj.org/article/22ef9821c6e24142a6b65f633d40f000
Volume 8
WOSCitedRecordID wos000545702400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2328-4277
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970357
  issn: 2328-4277
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2328-4277
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970357
  issn: 2328-4277
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2328-4277
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970357
  issn: 2328-4277
  databaseCode: PCBAR
  dateStart: 20131201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 2328-4277
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970357
  issn: 2328-4277
  databaseCode: PATMY
  dateStart: 20131201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2328-4277
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970357
  issn: 2328-4277
  databaseCode: BENPR
  dateStart: 20131201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2328-4277
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970357
  issn: 2328-4277
  databaseCode: PIMPY
  dateStart: 20131201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2328-4277
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970357
  issn: 2328-4277
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2328-4277
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000970357
  issn: 2328-4277
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBah6aGXJm0T6iRddGguDaa2rD8fk61NF5rFlC1JT0aWpbBQvGW9Seitj5BnzJN0JCvbzaGFUjDY-mEQ0ozm01j6hNBbklpCtIKVaqNpTC3VYFKJdECOATplhA2U-Z_EdCovL_MqBNzcWZiBH2IdcHOW4edrZ-Cq6QPZgOPIBM-VF6WD-G71s52mmXBaTWi1jrEkOeizJ_sE3CBjSoQIe99BxPtNAY-8kifvh1enevUIeG7CV-9_yp3_bfkueh6QJz4dVOUF2jLdS7Rf_D7oBoXB0vtXaDK7hawf9z_vyjkARDwenBP-4K_1WeFqiOA4pcXzDgOMxOPzScVxuVhqcIcgynSwDl_0e-hLWczGH-Nw7UKsac5pLGVr25TZFuZJZonmKjFGZ5pYIQTYvKTMZLq1YPowXVJFc5MkDTOiFfBhSbYPXbfozGuEjWzhYapVOnFeUDIFgKqhmU0Jl1JH6OSh22sdOMnd1Rjfav9vnOT1Zl9F6Hhd-_vAxfGHemduBNd1HIO2z1gsr-pgkDUhxuaSpJobADGUKN5wZnmWtTSxoDoR2nPjX0N7epBOEuaWzzKP0NGDQtTB3KGcpoDUZJayCL3zQ__XBtZFOSOc0YN_qXyInrlmDNvUjtCT1fLavEFP9c1q3i9HXvFHaPusmFafRz6yAKlqcl59hdTFZPoLUMkAzw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VLRJc-G1FoIAP9AKKmji24xwQgu1Gjbq7ymGRyil4HRuthLIlWah64xF4Eh6KJ2Gcn6U90FsPSJESOZblxN_MfB7bMwAvaWgp1QpnqgvNfGaZRpEKpCNyHNkpp7wLmT-JZzN5eprkW_BrOAvjtlUOOrFV1OVKOx_5IVoaNIYyCvnbs6--yxrlVleHFBodLE7MxTlO2Zo32RGO7wGl6Xg-Ovb7rAK-ZolgvpSlLUNuS1QD3FItVGCMjjS1cRwjpCXjJtKlRWSjNmCKJSYIFtzEZYwP1gU6QJW_wxzYt2Enz6b5x41XJ0hQgnjc77APaHKIBjYZp24mIsIrtq9NEYC3SjXqCr29TJJbK5fe-9_-z3242_Np8q4TgAewZaqHsDf-e3wPX_b6q3kE2fwciy5-__iZLpH2klFncslRm6xoTfLOL-VEkSwrguSYjKZZLki6qjUaeWzKVKperppd-HAjn7WHQ7WqzGMgRpZ4cVUqHTjbLrlCmrhgkQ2pkFJ78HoY5kL3kdZdwo8vRbviT5PiMig8ONjUPusijPyj3nuHmE0dFxe8LVjVn4tezRSUGptIGmphEBCMKrEQ3IooKllgEZ4e7Dq8FdifBlunAXdOAZl4sD-gquiVGL7fQMqDVy0or-1gMU7nVHD25Pq2XsDt4_l0Ukyy2clTuOM60W2924ftdf3NPINb-vt62dTPe-Ei8Omm8foHM_RZ5Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VLUJc-G1FoIAP9AKK1nFsxzkgVHY3YtV2lcMilVPIOjZaCSUlWah64xF4Hh6HJ2Gcn6U90FsPSJES2ZblxN_MfHbGMwAvWWAZ0zmuVJea-9xyjSJFlSNyAtmpYKILmX8czefq9DROt-DXcBbGuVUOOrFV1EWl3R75CC0NGkMVBmJke7eIdJK8PfvquwxS7k_rkE6jg8iRuTjH5VvzZjbBuT5gLJkuxu_9PsOAr3ksua9UYYtA2AJVgrBMy5wao0PNbBRFCG_FhQl1YRHlqBl4zmND6VKYqIjwwbqgB6j-d5SMqNqGnfRwcfJxs8NDY5QmEfXe9pTFIzS28TRxqxIZXLGDbboAvJV5k1-hupcJc2vxknv_87e6D3d7nk0OO8F4AFumfAh707_H-rCy12vNI5gtzrHo4vePn8kK6TAZd6aYTNokRmuSdvtVTkTJqiRImsn4ZJZKklS1RuOPXZkyr1dVswsfbuS19nDaqtI8BmJUgZfIi1xTZ_OVyJE-LnloAyaV0h68HqY8030EdpcI5EvWegKwOLsMEA8ONq3Pusgj_2j3zqFn08bFC28Lqvpz1qufjDFjY8UCLQ2Cg7NcLqWwMgwLTi1C1YNdh70Mx9Ng74wKt1mgYg_2B4RlvXLD-g28PHjVAvTaAWbTZMGk4E-u7-sF3EaQZsez-dFTuOPG0Hnk7cP2uv5mnsEt_X29aurnvZwR-HTTcP0Drs5iog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Twenty%E2%80%90First+Century+Drought+Projections+in+the+CMIP6+Forcing+Scenarios&rft.jtitle=Earth%27s+future&rft.au=Cook%2C+B.+I.&rft.au=Mankin%2C+J.+S.&rft.au=Marvel%2C+K.&rft.au=Williams%2C+A.+P.&rft.date=2020-06-01&rft.issn=2328-4277&rft.eissn=2328-4277&rft.volume=8&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2019EF001461&rft.externalDBID=10.1029%252F2019EF001461&rft.externalDocID=EFT2654
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-4277&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-4277&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-4277&client=summon