Twenty‐First Century Drought Projections in the CMIP6 Forcing Scenarios
There is strong evidence climate change will increase drought risk and severity, but these conclusions depend on the regions, seasons, and drought metrics being considered. We analyze changes in drought across the hydrologic cycle (precipitation, soil moisture, and runoff) in projections from Phase...
Uloženo v:
| Vydáno v: | Earth's future Ročník 8; číslo 6 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Goddard Space Flight Center
Wiley Open Access and American Geophysical Union
01.06.2020
John Wiley & Sons, Inc Wiley |
| Témata: | |
| ISSN: | 2328-4277, 2328-4277 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | There is strong evidence climate change will increase drought risk and severity, but these conclusions depend on the regions, seasons, and drought metrics being considered. We analyze changes in drought across the hydrologic cycle (precipitation, soil moisture, and runoff) in projections from Phase Six of the Coupled Model Intercomparison Project (CMIP6). The multi‐model ensemble shows robust drying in the mean state across many regions and metrics by the end of the 21st century, even following the more aggressive mitigation pathways (SSP1‐2.6 and SSP2‐4.5). Regional hotspots with strong drying include western North America, Central America, Europe and the Mediterranean, the Amazon, southern Africa, China, Southeast Asia, and Australia. Compared to SSP3‐7.0 and SSP5‐8.5, however, the severity of drying in the lower warming scenarios is substantially reduced and further precipitation declines in many regions are avoided. Along with drying in the mean state, the risk of the historically most extreme drought events also increases with warming, by 200–300% in some regions. Soil moisture and runoff drying in CMIP6 is more robust, spatially extensive, and severe than precipitation, indicating an important role for other temperature‐sensitive drought processes, including evapotranspiration and snow. Given the similarity in drought responses between CMIP5 and CMIP6, we speculate both generations of models are subject to similar uncertainties, including vegetation processes, model representations of precipitation, and the degree to which model responses to warming are consistent with observations. These topics should be further explored to evaluate whether CMIP6 models offer reasons to have increased confidence in drought projections. |
|---|---|
| AbstractList | There is strong evidence climate change will increase drought risk and severity, but these conclusions depend on the regions, seasons, and drought metrics being considered. We analyze changes in drought across the hydrologic cycle (precipitation, soil moisture, and runoff) in projections from Phase Six of the Coupled Model Intercomparison Project (CMIP6). The multi‐model ensemble shows robust drying in the mean state across many regions and metrics by the end of the 21st century, even following the more aggressive mitigation pathways (SSP1‐2.6 and SSP2‐4.5). Regional hotspots with strong drying include western North America, Central America, Europe and the Mediterranean, the Amazon, southern Africa, China, Southeast Asia, and Australia. Compared to SSP3‐7.0 and SSP5‐8.5, however, the severity of drying in the lower warming scenarios is substantially reduced and further precipitation declines in many regions are avoided. Along with drying in the mean state, the risk of the historically most extreme drought events also increases with warming, by 200–300% in some regions. Soil moisture and runoff drying in CMIP6 is more robust, spatially extensive, and severe than precipitation, indicating an important role for other temperature‐sensitive drought processes, including evapotranspiration and snow. Given the similarity in drought responses between CMIP5 and CMIP6, we speculate both generations of models are subject to similar uncertainties, including vegetation processes, model representations of precipitation, and the degree to which model responses to warming are consistent with observations. These topics should be further explored to evaluate whether CMIP6 models offer reasons to have increased confidence in drought projections. There is strong evidence that climate change will increase drought risk and severity, but these conclusions depend on the regions, seasons, and drought metrics being considered. We analyze changes in drought across the hydrologic cycle (precipitation, soil moisture, and runoff) in projections from Phase Six of the Coupled Model Intercomparison Project (CMIP6). The multimodel ensemble shows robust drying in the mean state across many regions and metrics by the end of the 21st century, even following the more aggressive mitigation pathways (SSP1‐2.6 and SSP2‐4.5). Regional hotspots with strong drying include western North America, Central America, Europe and the Mediterranean, the Amazon, southern Africa, China, Southeast Asia, and Australia. Compared to SSP3‐7.0 and SSP5‐8.5, however, the severity of drying in the lower warming scenarios is substantially reduced and further precipitation declines in many regions are avoided. Along with drying in the mean state, the risk of the historically most extreme drought events also increases with warming, by 200–300% in some regions. Soil moisture and runoff drying in CMIP6 is more robust, spatially extensive, and severe than precipitation, indicating an important role for other temperature‐sensitive drought processes, including evapotranspiration and snow. Given the similarity in drought responses between CMIP5 and CMIP6, we speculate that both generations of models are subject to similar uncertainties, including vegetation processes, model representations of precipitation, and the degree to which model responses to warming are consistent with observations. These topics should be further explored to evaluate whether CMIP6 models offer reasons to have increased confidence in drought projections. Plain Language Summary Drought is an important natural hazard in many regions around the world, and there are significant concerns that climate change will increase the frequency or severity of drought events in the future. Compared to a world before anthropogenic climate change, the latest state‐of‐the‐art climate model projections from CMIP6 show robust drying and increases in extreme drought occurrence across many regions by the end of the 21st century, including western North America, Central America, Europe and the Mediterranean, the Amazon, southern Africa, China, Southeast Asia, and Australia. While these changes occur even under the most aggressive climate mitigation pathways, the models show substantial increases in the extent and severity of this drying under higher warming levels, highlighting the value of mitigation for reducing drought‐based climate change impacts. Given the significant response to even modest warming, however, and evidence that climate change has already increased drought risk and severity in some regions, adaptation to a new, drier baseline will likely be required even under the most optimistic scenarios. Key Points The sign and magnitude of drought responses in the CMIP6 projections depend on the region, season, and drought metric being analyzed Soil moisture and runoff drying is more widespread and robust than precipitation, with the severity increasing strongly with warming The sign of CMIP6 responses aligns with previous results from CMIP5, suggesting similar physical processes and underlying uncertainties There is strong evidence that climate change will increase drought risk and severity, but these conclusions depend on the regions, seasons, and drought metrics being considered. We analyze changes in drought across the hydrologic cycle (precipitation, soil moisture, and runoff) in projections from Phase Six of the Coupled Model Intercomparison Project (CMIP6). The multimodel ensemble shows robust drying in the mean state across many regions and metrics by the end of the 21st century, even following the more aggressive mitigation pathways (SSP1‐2.6 and SSP2‐4.5). Regional hotspots with strong drying include western North America, Central America, Europe and the Mediterranean, the Amazon, southern Africa, China, Southeast Asia, and Australia. Compared to SSP3‐7.0 and SSP5‐8.5, however, the severity of drying in the lower warming scenarios is substantially reduced and further precipitation declines in many regions are avoided. Along with drying in the mean state, the risk of the historically most extreme drought events also increases with warming, by 200–300% in some regions. Soil moisture and runoff drying in CMIP6 is more robust, spatially extensive, and severe than precipitation, indicating an important role for other temperature‐sensitive drought processes, including evapotranspiration and snow. Given the similarity in drought responses between CMIP5 and CMIP6, we speculate that both generations of models are subject to similar uncertainties, including vegetation processes, model representations of precipitation, and the degree to which model responses to warming are consistent with observations. These topics should be further explored to evaluate whether CMIP6 models offer reasons to have increased confidence in drought projections. Drought is an important natural hazard in many regions around the world, and there are significant concerns that climate change will increase the frequency or severity of drought events in the future. Compared to a world before anthropogenic climate change, the latest state‐of‐the‐art climate model projections from CMIP6 show robust drying and increases in extreme drought occurrence across many regions by the end of the 21st century, including western North America, Central America, Europe and the Mediterranean, the Amazon, southern Africa, China, Southeast Asia, and Australia. While these changes occur even under the most aggressive climate mitigation pathways, the models show substantial increases in the extent and severity of this drying under higher warming levels, highlighting the value of mitigation for reducing drought‐based climate change impacts. Given the significant response to even modest warming, however, and evidence that climate change has already increased drought risk and severity in some regions, adaptation to a new, drier baseline will likely be required even under the most optimistic scenarios. The sign and magnitude of drought responses in the CMIP6 projections depend on the region, season, and drought metric being analyzed Soil moisture and runoff drying is more widespread and robust than precipitation, with the severity increasing strongly with warming The sign of CMIP6 responses aligns with previous results from CMIP5, suggesting similar physical processes and underlying uncertainties Abstract There is strong evidence that climate change will increase drought risk and severity, but these conclusions depend on the regions, seasons, and drought metrics being considered. We analyze changes in drought across the hydrologic cycle (precipitation, soil moisture, and runoff) in projections from Phase Six of the Coupled Model Intercomparison Project (CMIP6). The multimodel ensemble shows robust drying in the mean state across many regions and metrics by the end of the 21st century, even following the more aggressive mitigation pathways (SSP1‐2.6 and SSP2‐4.5). Regional hotspots with strong drying include western North America, Central America, Europe and the Mediterranean, the Amazon, southern Africa, China, Southeast Asia, and Australia. Compared to SSP3‐7.0 and SSP5‐8.5, however, the severity of drying in the lower warming scenarios is substantially reduced and further precipitation declines in many regions are avoided. Along with drying in the mean state, the risk of the historically most extreme drought events also increases with warming, by 200–300% in some regions. Soil moisture and runoff drying in CMIP6 is more robust, spatially extensive, and severe than precipitation, indicating an important role for other temperature‐sensitive drought processes, including evapotranspiration and snow. Given the similarity in drought responses between CMIP5 and CMIP6, we speculate that both generations of models are subject to similar uncertainties, including vegetation processes, model representations of precipitation, and the degree to which model responses to warming are consistent with observations. These topics should be further explored to evaluate whether CMIP6 models offer reasons to have increased confidence in drought projections. There is strong evidence that climate change will increase drought risk and severity, but these conclusions depend on the regions, seasons, and drought metrics being considered. We analyze changes in drought across the hydrologic cycle (precipitation, soil moisture, and runoff) in projections from Phase Six of the Coupled Model Intercomparison Project (CMIP6). The multimodel ensemble shows robust drying in the mean state across many regions and metrics by the end of the 21st century, even following the more aggressive mitigation pathways (SSP1‐2.6 and SSP2‐4.5). Regional hotspots with strong drying include western North America, Central America, Europe and the Mediterranean, the Amazon, southern Africa, China, Southeast Asia, and Australia. Compared to SSP3‐7.0 and SSP5‐8.5, however, the severity of drying in the lower warming scenarios is substantially reduced and further precipitation declines in many regions are avoided. Along with drying in the mean state, the risk of the historically most extreme drought events also increases with warming, by 200–300% in some regions. Soil moisture and runoff drying in CMIP6 is more robust, spatially extensive, and severe than precipitation, indicating an important role for other temperature‐sensitive drought processes, including evapotranspiration and snow. Given the similarity in drought responses between CMIP5 and CMIP6, we speculate that both generations of models are subject to similar uncertainties, including vegetation processes, model representations of precipitation, and the degree to which model responses to warming are consistent with observations. These topics should be further explored to evaluate whether CMIP6 models offer reasons to have increased confidence in drought projections. |
| Audience | PUBLIC |
| Author | Mankin, J. S. Anchukaitis, K. J. Cook, B. I. Marvel, K. Smerdon, J. E. Williams, A. P. |
| Author_xml | – sequence: 1 givenname: B. I. orcidid: 0000-0002-4501-9229 surname: Cook fullname: Cook, B. I. organization: Goddard Institute for Space Studies – sequence: 2 givenname: J. S. orcidid: 0000-0003-2520-4555 surname: Mankin fullname: Mankin, J. S. organization: Lamont-Doherty Earth Observatory – sequence: 3 givenname: K. orcidid: 0000-0002-9771-6720 surname: Marvel fullname: Marvel, K. organization: Columbia University – sequence: 4 givenname: A. P. orcidid: 0000-0001-8176-8166 surname: Williams fullname: Williams, A. P. organization: Lamont-Doherty Earth Observatory – sequence: 5 givenname: J. E. orcidid: 0000-0001-6276-0249 surname: Smerdon fullname: Smerdon, J. E. organization: Lamont-Doherty Earth Observatory – sequence: 6 givenname: K. J. orcidid: 0000-0002-8509-8080 surname: Anchukaitis fullname: Anchukaitis, K. J. organization: Lamont-Doherty Earth Observatory |
| BookMark | eNp9kE9rVDEUxYO0YJ1259LFA7dOvfmft5Rxnh2oWHBchzQvmWYYk5pkKLPrR_Az-kma9okUQbPJTTi_cw_nFTqKKTqEXmM4x0D69wRwvxwAMBP4BTohlKg5I1IePZtforNSttBOL4FyeYJW6zsX6-HX_c8h5FK7RXvt86H7mNN-c1O7q5y2ztaQYulC7OqN6xafV1eiG1K2IW66r9ZFk0Mqp-jYm11xZ7_vGfo2LNeLi_nll0-rxYfLuWW9YHOlRj9i7kcpCPfECgPOWWqJl1ICA8W4o3b0TCnMKTOsdwDX3MlRtsETOkOryXdMZqtvc_hu8kEnE_TTR8obbXINduc0Ic73imArHGGYESOuBfeC0pGBbyU0r7eT121OP_auVL1N-xxbfN0AiUHRFmKG3k0qm1Mp2fk_WzHox-718-6bnPwlt6GaxwprNmH3LwhP0F3YucN_F-jlsCaCs8a8mZhoitHNvaUGArzJQPX0AQE1nLE |
| CitedBy_id | crossref_primary_10_1016_j_agrformet_2021_108448 crossref_primary_10_1016_j_jhydrol_2024_130968 crossref_primary_10_1038_s41467_022_28853_0 crossref_primary_10_5814_j_issn_1674_764x_2025_04_006 crossref_primary_10_1038_s41612_023_00496_y crossref_primary_10_1093_biosci_biae050 crossref_primary_10_1038_s41612_025_01123_8 crossref_primary_10_1007_s11600_025_01623_4 crossref_primary_10_1029_2022EF002814 crossref_primary_10_3390_agriculture15080826 crossref_primary_10_1038_s41612_021_00218_2 crossref_primary_10_1016_j_dendro_2023_126116 crossref_primary_10_1016_j_jhydrol_2021_126503 crossref_primary_10_1093_ornithapp_duaf044 crossref_primary_10_3390_su15129651 crossref_primary_10_3390_atmos15050601 crossref_primary_10_1016_j_envres_2023_116618 crossref_primary_10_3103_S1068373922050016 crossref_primary_10_1175_JCLI_D_21_0303_1 crossref_primary_10_1002_joc_7773 crossref_primary_10_1038_s41612_023_00461_9 crossref_primary_10_3389_frwa_2025_1672070 crossref_primary_10_3390_plants14131942 crossref_primary_10_1007_s00550_024_00546_w crossref_primary_10_1007_s00704_022_04097_2 crossref_primary_10_1016_j_jhydrol_2023_129321 crossref_primary_10_1007_s10980_024_01877_1 crossref_primary_10_1007_s00382_024_07310_2 crossref_primary_10_1002_joc_7657 crossref_primary_10_5194_cp_17_869_2021 crossref_primary_10_1146_annurev_environ_030323_075629 crossref_primary_10_1111_1365_2745_14300 crossref_primary_10_5194_esd_15_91_2024 crossref_primary_10_1016_j_agwat_2025_109468 crossref_primary_10_1029_2020GL087820 crossref_primary_10_1029_2020GL092293 crossref_primary_10_1038_s41558_022_01546_8 crossref_primary_10_1007_s41748_021_00233_6 crossref_primary_10_1038_s41586_025_08907_1 crossref_primary_10_1016_j_jhydrol_2024_130702 crossref_primary_10_2166_wcc_2021_015 crossref_primary_10_1007_s00704_025_05552_6 crossref_primary_10_1007_s41748_024_00463_4 crossref_primary_10_1016_j_atmosres_2024_107376 crossref_primary_10_3390_rs14205084 crossref_primary_10_1088_1748_9326_adb869 crossref_primary_10_1002_joc_7302 crossref_primary_10_5194_acp_23_5835_2023 crossref_primary_10_1016_j_atmosres_2025_108302 crossref_primary_10_1038_s44221_025_00487_8 crossref_primary_10_1002_joc_70075 crossref_primary_10_1038_s44221_023_00030_7 crossref_primary_10_3389_feart_2022_925358 crossref_primary_10_1029_2025GL115814 crossref_primary_10_1038_s41612_023_00419_x crossref_primary_10_1029_2022EF002833 crossref_primary_10_1016_j_jhydrol_2021_126643 crossref_primary_10_5194_esd_13_935_2022 crossref_primary_10_1016_j_ecolind_2024_111549 crossref_primary_10_1007_s00024_025_03800_4 crossref_primary_10_1007_s10668_024_04503_x crossref_primary_10_1002_joc_7551 crossref_primary_10_1016_j_agwat_2024_109073 crossref_primary_10_1007_s00704_022_04348_2 crossref_primary_10_1002_joc_7559 crossref_primary_10_1007_s00376_025_4476_8 crossref_primary_10_1016_j_cliser_2025_100540 crossref_primary_10_3390_agriculture14060790 crossref_primary_10_3390_w14233848 crossref_primary_10_3390_su17104662 crossref_primary_10_1007_s00468_023_02450_0 crossref_primary_10_1038_s43247_024_01352_4 crossref_primary_10_1088_2752_5295_ad9f8f crossref_primary_10_3390_jmse11020458 crossref_primary_10_1016_j_agrformet_2024_110371 crossref_primary_10_1038_s41558_025_02325_x crossref_primary_10_1016_j_ecolind_2024_112649 crossref_primary_10_1038_s41598_023_48861_4 crossref_primary_10_5194_gmd_18_4643_2025 crossref_primary_10_1016_j_agrformet_2025_110555 crossref_primary_10_1016_j_foreco_2025_123069 crossref_primary_10_1002_aepp_13264 crossref_primary_10_1007_s00382_023_06833_4 crossref_primary_10_1038_s44221_023_00173_7 crossref_primary_10_1016_j_jclepro_2025_145936 crossref_primary_10_1007_s10265_022_01383_y crossref_primary_10_1002_joc_70058 crossref_primary_10_1016_j_oneear_2022_07_008 crossref_primary_10_1029_2023EF003856 crossref_primary_10_1002_joc_7965 crossref_primary_10_1038_s43017_023_00456_3 crossref_primary_10_1007_s00376_023_2366_5 crossref_primary_10_1088_1748_9326_ac2348 crossref_primary_10_1111_gcb_70032 crossref_primary_10_1016_j_gloplacha_2022_103773 crossref_primary_10_3390_w17050660 crossref_primary_10_1029_2021JD036163 crossref_primary_10_1029_2022EF002859 crossref_primary_10_1016_j_scitotenv_2020_143971 crossref_primary_10_1088_1748_9326_ac3795 crossref_primary_10_1038_s41612_024_00689_z crossref_primary_10_1111_jac_12627 crossref_primary_10_1016_j_scitotenv_2022_158318 crossref_primary_10_1038_s41598_023_29378_2 crossref_primary_10_1038_s43247_023_00840_3 crossref_primary_10_1029_2021EF002150 crossref_primary_10_1088_1748_9326_abc5e2 crossref_primary_10_1088_2515_7620_ae05f6 crossref_primary_10_1029_2023EF003987 crossref_primary_10_1016_j_clwas_2025_100320 crossref_primary_10_1029_2024AV001508 crossref_primary_10_1007_s10021_023_00898_2 crossref_primary_10_1016_j_envsoft_2025_106463 crossref_primary_10_3390_land11050721 crossref_primary_10_1029_2023EF003629 crossref_primary_10_1016_j_scitotenv_2024_177596 crossref_primary_10_1002_joc_7977 crossref_primary_10_1038_s41598_024_55176_5 crossref_primary_10_1007_s00382_021_06064_5 crossref_primary_10_1016_j_catena_2025_109008 crossref_primary_10_1016_j_jhydrol_2025_134033 crossref_primary_10_5194_acp_25_2147_2025 crossref_primary_10_1016_j_scitotenv_2022_156021 crossref_primary_10_1088_1748_9326_ac681a crossref_primary_10_3390_atmos12010006 crossref_primary_10_1016_j_pecon_2021_07_001 crossref_primary_10_1029_2024GL108304 crossref_primary_10_1088_1748_9326_adccdb crossref_primary_10_1029_2021MS002818 crossref_primary_10_1088_1748_9326_ac2f63 crossref_primary_10_3390_plants11091160 crossref_primary_10_1002_joc_7749 crossref_primary_10_1029_2024EF004661 crossref_primary_10_1007_s11069_024_06779_8 crossref_primary_10_3390_land14040788 crossref_primary_10_1088_1748_9326_abeb35 crossref_primary_10_1002_joc_8715 crossref_primary_10_1038_s41467_024_45957_x crossref_primary_10_1016_j_accre_2024_08_006 crossref_primary_10_1080_00103624_2023_2295278 crossref_primary_10_1016_j_scib_2021_01_020 crossref_primary_10_1029_2021EF002014 crossref_primary_10_1029_2021EF002019 crossref_primary_10_1073_pnas_2300395120 crossref_primary_10_1038_s41558_024_01933_3 crossref_primary_10_1002_joc_7631 crossref_primary_10_1002_wat2_1698 crossref_primary_10_1007_s00704_024_05188_y crossref_primary_10_1002_wat2_1576 crossref_primary_10_1038_s41558_021_01276_3 crossref_primary_10_3389_fpls_2021_778270 crossref_primary_10_1029_2024EF004553 crossref_primary_10_1029_2024EF005521 crossref_primary_10_1080_01650424_2024_2311638 crossref_primary_10_1029_2024EF004798 crossref_primary_10_3390_land12091689 crossref_primary_10_1002_joc_7756 crossref_primary_10_1029_2023JD039988 crossref_primary_10_1016_j_foreco_2023_121424 crossref_primary_10_3390_rs15204976 crossref_primary_10_3390_agronomy11040759 crossref_primary_10_1016_j_jclepro_2023_135898 crossref_primary_10_1029_2021EF002487 crossref_primary_10_1016_j_gfs_2025_100874 crossref_primary_10_1038_s44221_024_00193_x crossref_primary_10_1007_s00382_023_07072_3 crossref_primary_10_1126_sciadv_ady3575 crossref_primary_10_1038_s41467_022_30729_2 crossref_primary_10_1016_j_jenvman_2022_117038 crossref_primary_10_1016_j_jia_2024_08_001 crossref_primary_10_1016_j_jenvman_2023_119612 crossref_primary_10_1080_19475705_2025_2455491 crossref_primary_10_1016_j_atmosres_2020_105375 crossref_primary_10_1002_joc_70019 crossref_primary_10_1016_j_ejrh_2025_102263 crossref_primary_10_1007_s00382_021_05977_5 crossref_primary_10_1007_s00704_021_03698_7 crossref_primary_10_1029_2022JD038046 crossref_primary_10_1029_2022JD037072 crossref_primary_10_1038_s41612_022_00303_0 crossref_primary_10_1029_2022JG007258 crossref_primary_10_1007_s11600_022_00793_9 crossref_primary_10_1016_j_atmosres_2025_108119 crossref_primary_10_1029_2022EF003183 crossref_primary_10_1016_j_jhydrol_2024_131663 crossref_primary_10_2166_wcc_2021_308 crossref_primary_10_1038_s41467_024_51305_w crossref_primary_10_18261_naturen_148_5_6_5 crossref_primary_10_1088_2752_664X_ac6e4a crossref_primary_10_1002_joc_8229 crossref_primary_10_1007_s00704_024_04863_4 crossref_primary_10_1088_1748_9326_acfb26 crossref_primary_10_1016_j_atmosres_2023_106727 crossref_primary_10_1088_1748_9326_ad560b crossref_primary_10_1016_j_scitotenv_2023_164101 crossref_primary_10_3390_rs17173078 crossref_primary_10_1038_s41597_025_05790_3 crossref_primary_10_1016_j_jhydrol_2025_134194 crossref_primary_10_1002_joc_7386 crossref_primary_10_3390_atmos12060742 crossref_primary_10_5194_nhess_21_1685_2021 crossref_primary_10_1038_s44221_023_00073_w crossref_primary_10_1002_jqs_3394 crossref_primary_10_1016_j_jhydrol_2023_129273 crossref_primary_10_1016_j_jhydrol_2023_129155 crossref_primary_10_1016_j_atmosres_2020_105111 crossref_primary_10_1007_s00382_025_07632_9 crossref_primary_10_1007_s40641_025_00203_4 crossref_primary_10_1016_j_jhydrol_2024_130666 crossref_primary_10_1016_j_scitotenv_2023_167717 crossref_primary_10_1088_1748_9326_ad3e18 crossref_primary_10_1029_2024AV001187 crossref_primary_10_1038_s41612_024_00571_y crossref_primary_10_1007_s00484_022_02392_1 crossref_primary_10_3390_atmos16060668 crossref_primary_10_1029_2021JG006525 crossref_primary_10_5194_hess_25_5623_2021 crossref_primary_10_1016_j_oneear_2023_11_013 crossref_primary_10_1061_JWRMD5_WRENG_6575 crossref_primary_10_1111_1462_2920_15799 crossref_primary_10_1016_j_ecss_2022_107838 crossref_primary_10_3390_ijerph19116398 crossref_primary_10_1029_2021JD034740 crossref_primary_10_1007_s10584_021_03268_w crossref_primary_10_1111_gcb_17406 crossref_primary_10_1002_joc_70101 crossref_primary_10_1007_s41748_021_00199_5 crossref_primary_10_1016_j_jhydrol_2023_129143 crossref_primary_10_1038_s41586_025_09047_2 crossref_primary_10_1111_nph_19692 crossref_primary_10_5194_gmd_18_2005_2025 crossref_primary_10_3390_land14030441 crossref_primary_10_1007_s00442_020_04771_0 crossref_primary_10_1029_2025GL116731 crossref_primary_10_1111_gcb_15583 crossref_primary_10_1111_nph_19169 crossref_primary_10_1088_1748_9326_aca3b9 crossref_primary_10_1146_annurev_publhealth_071421_051636 crossref_primary_10_1007_s11430_022_1055_5 crossref_primary_10_5194_hess_29_1895_2025 crossref_primary_10_3390_d15111155 crossref_primary_10_5194_hess_28_1383_2024 crossref_primary_10_1016_j_jhydrol_2025_133912 crossref_primary_10_1007_s00704_024_05048_9 crossref_primary_10_1029_2020GL089991 crossref_primary_10_1111_1752_1688_70020 crossref_primary_10_3390_hydrology9050079 crossref_primary_10_1088_1748_9326_abe782 crossref_primary_10_1007_s00382_024_07151_z crossref_primary_10_1080_04353676_2020_1841410 crossref_primary_10_1016_j_jhydrol_2022_127914 crossref_primary_10_3389_fpls_2025_1577623 crossref_primary_10_3390_cli13030047 crossref_primary_10_5194_acp_25_1449_2025 crossref_primary_10_1002_lol2_10356 crossref_primary_10_3390_rs15102601 crossref_primary_10_1002_joc_7450 crossref_primary_10_2166_nh_2023_108 crossref_primary_10_1088_1748_9326_adfe82 crossref_primary_10_1088_1748_9326_adda63 crossref_primary_10_1111_nyas_14910 crossref_primary_10_1021_acs_estlett_5c00505 crossref_primary_10_1038_s43247_022_00528_0 crossref_primary_10_1029_2023EF003906 crossref_primary_10_1038_s41561_022_01046_6 crossref_primary_10_3389_frwa_2021_640544 crossref_primary_10_1016_j_atmosres_2023_106812 crossref_primary_10_1016_j_ecolind_2021_108349 crossref_primary_10_1016_j_jhydrol_2024_132315 crossref_primary_10_3390_agriculture14101781 crossref_primary_10_1038_s43247_024_01937_z crossref_primary_10_1029_2023JD038954 crossref_primary_10_3390_land12091708 crossref_primary_10_1007_s11269_024_03821_z crossref_primary_10_1111_1752_1688_70031 crossref_primary_10_1016_j_jhydrol_2024_132552 crossref_primary_10_1038_s41559_022_01685_3 crossref_primary_10_1002_ird_2694 crossref_primary_10_1080_02626667_2024_2317269 crossref_primary_10_1038_s41559_023_02272_w crossref_primary_10_1016_j_ecolind_2021_108499 crossref_primary_10_1029_2023WR036629 crossref_primary_10_1038_s41893_023_01100_0 crossref_primary_10_1016_j_jhydrol_2024_131791 crossref_primary_10_1029_2021JG006327 crossref_primary_10_1016_j_jenvman_2025_124599 crossref_primary_10_1175_JCLI_D_20_0746_1 crossref_primary_10_26848_rbgf_v17_2_p804_823 crossref_primary_10_1016_j_jhydrol_2023_130062 crossref_primary_10_1038_s44221_023_00128_y crossref_primary_10_1016_j_jhydrol_2022_127937 crossref_primary_10_1038_s41561_023_01351_8 crossref_primary_10_1016_j_jhydrol_2022_127815 crossref_primary_10_1111_ddi_13470 crossref_primary_10_1016_j_jhydrol_2022_127941 crossref_primary_10_3390_atmos15010050 crossref_primary_10_1038_s41467_022_34071_5 crossref_primary_10_1111_ddi_13367 crossref_primary_10_1111_gcb_16998 crossref_primary_10_1177_0309133320960670 crossref_primary_10_1038_s43017_022_00368_8 crossref_primary_10_1038_s41586_021_03325_5 crossref_primary_10_3390_rs16030522 crossref_primary_10_1002_agj2_21311 crossref_primary_10_1007_s00704_020_03437_4 crossref_primary_10_2166_wcc_2025_038 crossref_primary_10_1016_j_scitotenv_2022_158860 crossref_primary_10_1007_s00484_024_02684_8 crossref_primary_10_1038_s41467_021_22314_w crossref_primary_10_1016_j_rse_2024_114544 crossref_primary_10_3390_atmos14081203 crossref_primary_10_1038_s41558_022_01507_1 crossref_primary_10_1093_biosci_biab139 crossref_primary_10_1111_gcb_70102 crossref_primary_10_1016_j_jhydrol_2022_128641 crossref_primary_10_1093_jxb_erad147 crossref_primary_10_5194_acp_25_2311_2025 crossref_primary_10_3389_frwa_2021_801265 crossref_primary_10_1007_s00704_024_05321_x crossref_primary_10_1016_j_jenvman_2022_115378 crossref_primary_10_1038_s41598_025_98651_3 crossref_primary_10_1080_02626667_2024_2364712 crossref_primary_10_2166_wcc_2024_246 crossref_primary_10_1016_j_ynexs_2024_100045 crossref_primary_10_1016_j_scitotenv_2023_162335 crossref_primary_10_1007_s13351_023_2169_8 crossref_primary_10_1088_1748_9326_add029 crossref_primary_10_1016_j_jafrearsci_2024_105347 crossref_primary_10_1002_joc_8064 crossref_primary_10_1111_gcb_17474 crossref_primary_10_1007_s00382_024_07199_x crossref_primary_10_59717_j_xinn_geo_2025_100139 crossref_primary_10_1002_ece3_9652 crossref_primary_10_1016_j_scienta_2023_112711 crossref_primary_10_5194_npg_30_167_2023 crossref_primary_10_1016_j_agrformet_2023_109666 crossref_primary_10_3390_su151914214 crossref_primary_10_1007_s12040_023_02143_9 crossref_primary_10_1016_j_palaeo_2024_112529 crossref_primary_10_1007_s10584_025_03978_5 crossref_primary_10_3389_fclim_2022_948499 crossref_primary_10_1111_nph_20182 crossref_primary_10_1080_10106049_2023_2252787 crossref_primary_10_1007_s11629_022_7872_x crossref_primary_10_3389_fclim_2020_587126 crossref_primary_10_3390_w16071045 crossref_primary_10_3390_land13071079 crossref_primary_10_1002_asl_1180 crossref_primary_10_1016_j_gloplacha_2025_104725 crossref_primary_10_1029_2020EF001941 crossref_primary_10_2166_hydro_2024_229 crossref_primary_10_1029_2022WR034310 crossref_primary_10_1007_s41651_025_00234_3 crossref_primary_10_1109_ACCESS_2025_3567257 crossref_primary_10_1016_j_wace_2024_100692 crossref_primary_10_1016_j_fmre_2025_08_010 crossref_primary_10_1016_j_jhydrol_2022_128550 crossref_primary_10_5194_hess_29_613_2025 crossref_primary_10_1088_1748_9326_ac2bce crossref_primary_10_3390_w15223912 crossref_primary_10_3390_w14192996 crossref_primary_10_1016_j_jhydrol_2025_132755 crossref_primary_10_5194_hess_27_3999_2023 crossref_primary_10_1038_s43247_024_01530_4 crossref_primary_10_3390_agronomy14010181 crossref_primary_10_2151_jmsj_2025_028 crossref_primary_10_1016_j_scitotenv_2022_158940 crossref_primary_10_1002_eco_70028 crossref_primary_10_3389_fcomm_2023_1226432 crossref_primary_10_2166_wcc_2023_521 crossref_primary_10_1029_2021EF001995 crossref_primary_10_1038_s44221_024_00361_z crossref_primary_10_5194_bg_20_383_2023 crossref_primary_10_1080_02827581_2025_2500482 crossref_primary_10_3390_rs15112914 crossref_primary_10_3390_rs16234367 crossref_primary_10_3390_w17070940 crossref_primary_10_1175_JCLI_D_21_0080_1 crossref_primary_10_1038_s41598_021_97601_z crossref_primary_10_5194_esd_16_215_2025 crossref_primary_10_1038_s43017_023_00397_x crossref_primary_10_3390_atmos15040439 crossref_primary_10_1007_s40502_024_00799_z crossref_primary_10_1016_j_uclim_2023_101512 crossref_primary_10_3390_rs16183410 crossref_primary_10_1073_pnas_2111372119 crossref_primary_10_3390_rs13214409 crossref_primary_10_1038_s44221_023_00147_9 crossref_primary_10_1016_j_jhydrol_2022_128971 crossref_primary_10_3390_rs14102330 crossref_primary_10_7554_eLife_80489 crossref_primary_10_1038_s43247_024_01787_9 crossref_primary_10_1029_2023EF004399 crossref_primary_10_1016_j_rse_2020_112108 crossref_primary_10_3390_w16071012 crossref_primary_10_1007_s10584_022_03332_z crossref_primary_10_1007_s11069_022_05341_8 crossref_primary_10_1088_2752_664X_ad7d94 crossref_primary_10_1029_2022EF003015 crossref_primary_10_1177_20530196231186962 crossref_primary_10_1029_2025JD044163 crossref_primary_10_3390_agronomy15051024 crossref_primary_10_1002_ecs2_3839 crossref_primary_10_1038_s41597_023_02290_0 crossref_primary_10_1002_eco_2390 crossref_primary_10_1088_1748_9326_ac8e1a crossref_primary_10_1016_j_rsase_2024_101208 crossref_primary_10_2478_johh_2023_0033 crossref_primary_10_1175_JCLI_D_21_0442_1 crossref_primary_10_1038_s41612_023_00458_4 crossref_primary_10_1016_j_scitotenv_2023_165618 crossref_primary_10_1029_2021WR031817 crossref_primary_10_1029_2021JF006073 crossref_primary_10_1016_j_ecoinf_2023_102422 crossref_primary_10_1029_2023EF004174 crossref_primary_10_3390_cli10060078 crossref_primary_10_5194_nhess_25_2939_2025 crossref_primary_10_1080_17538947_2023_2301434 crossref_primary_10_1016_j_jenvman_2024_122292 crossref_primary_10_1029_2023JD039297 crossref_primary_10_1111_gcb_16121 crossref_primary_10_1080_10106049_2023_2247377 crossref_primary_10_1007_s00382_023_07034_9 crossref_primary_10_1029_2023EF004058 crossref_primary_10_1038_s41612_023_00401_7 crossref_primary_10_1038_s41612_024_00614_4 crossref_primary_10_5194_cp_19_2511_2023 crossref_primary_10_5194_nhess_23_623_2023 crossref_primary_10_1029_2024WR038124 crossref_primary_10_1029_2021GL093777 crossref_primary_10_1073_pnas_2120777119 crossref_primary_10_1016_j_jclepro_2025_145374 crossref_primary_10_1002_eco_70108 crossref_primary_10_1029_2024GL110294 crossref_primary_10_1007_s00382_021_05684_1 crossref_primary_10_1002_eco_70104 crossref_primary_10_1002_joc_8174 crossref_primary_10_1111_gcb_16599 crossref_primary_10_1002_cli2_17 crossref_primary_10_3390_f16081230 crossref_primary_10_1016_j_ecolind_2023_110764 crossref_primary_10_1029_2024EF005091 crossref_primary_10_1029_2022GL099443 crossref_primary_10_1080_1943815X_2022_2103570 crossref_primary_10_1029_2020JD033587 crossref_primary_10_1016_j_ejrh_2025_102702 crossref_primary_10_1016_j_scitotenv_2023_168038 crossref_primary_10_1088_1748_9326_ac58ac crossref_primary_10_1029_2024EF005064 crossref_primary_10_1029_2023WR036297 crossref_primary_10_1088_1748_9326_ac14ec crossref_primary_10_3389_fpls_2024_1371998 crossref_primary_10_1016_j_jhydrol_2025_133551 crossref_primary_10_1080_23311916_2024_2345506 crossref_primary_10_1016_j_ecolmodel_2023_110564 crossref_primary_10_3390_su17167391 crossref_primary_10_1007_s00376_023_2278_4 crossref_primary_10_1029_2023EF004117 crossref_primary_10_1016_j_gloplacha_2024_104380 crossref_primary_10_1016_j_aeolia_2023_100889 crossref_primary_10_1016_j_atmosres_2025_107946 crossref_primary_10_1007_s40641_024_00198_4 crossref_primary_10_3390_land14010085 crossref_primary_10_1007_s10584_022_03454_4 crossref_primary_10_1080_02723646_2021_1890894 crossref_primary_10_1080_10962247_2021_1942319 crossref_primary_10_3390_cli11080166 crossref_primary_10_3390_su142214912 crossref_primary_10_1007_s00382_023_07018_9 crossref_primary_10_1007_s00477_023_02406_3 crossref_primary_10_1016_j_jhydrol_2025_133781 crossref_primary_10_1016_j_ecolind_2025_113172 crossref_primary_10_5194_hess_27_2725_2023 crossref_primary_10_1029_2023EF004008 crossref_primary_10_1007_s41748_024_00505_x crossref_primary_10_1038_s41561_021_00819_9 crossref_primary_10_1038_s41598_023_48650_z crossref_primary_10_1016_j_aosl_2021_100143 crossref_primary_10_5194_esd_14_1333_2023 crossref_primary_10_3390_w15122272 crossref_primary_10_1029_2021GL095127 crossref_primary_10_3390_w17071099 crossref_primary_10_1016_j_tplants_2023_03_024 crossref_primary_10_1007_s40899_023_01017_8 crossref_primary_10_1016_j_agwat_2025_109519 crossref_primary_10_1038_s41612_024_00578_5 crossref_primary_10_1002_hyp_14960 crossref_primary_10_1007_s11069_024_06516_1 crossref_primary_10_1038_s43247_023_00826_1 crossref_primary_10_1016_j_marenvres_2025_107392 crossref_primary_10_1016_j_wace_2023_100573 crossref_primary_10_3390_w15203595 crossref_primary_10_1016_j_cej_2023_148475 crossref_primary_10_1175_EI_D_22_0003_1 crossref_primary_10_1016_j_envsoft_2024_106220 crossref_primary_10_1002_joc_8925 crossref_primary_10_1007_s00704_025_05621_w crossref_primary_10_1029_2023AV001070 crossref_primary_10_1038_s41598_021_84807_4 crossref_primary_10_3389_frwa_2021_716621 crossref_primary_10_1088_2515_7620_acde37 crossref_primary_10_1007_s00704_023_04715_7 crossref_primary_10_34133_olar_0093 crossref_primary_10_1029_2022PA004528 crossref_primary_10_5194_bg_22_1907_2025 crossref_primary_10_1080_03736245_2025_2490599 crossref_primary_10_1088_1748_9326_abd2f0 crossref_primary_10_3390_atmos14101497 crossref_primary_10_1007_s00382_024_07166_6 crossref_primary_10_1016_j_agee_2024_109312 crossref_primary_10_1029_2024JD042781 crossref_primary_10_1002_wcc_70005 crossref_primary_10_1007_s10021_024_00900_5 crossref_primary_10_1038_s43247_021_00326_0 crossref_primary_10_1007_s40808_023_01881_5 crossref_primary_10_1007_s11056_023_10000_2 crossref_primary_10_1080_07055900_2025_2453678 crossref_primary_10_1007_s12517_024_12162_5 crossref_primary_10_1007_s00704_023_04727_3 crossref_primary_10_1016_j_oneear_2023_09_007 crossref_primary_10_3390_su15010271 crossref_primary_10_1029_2020EF001608 crossref_primary_10_1029_2020GL091271 crossref_primary_10_1029_2022EF003303 crossref_primary_10_1029_2022EF003301 crossref_primary_10_1029_2022EF003420 crossref_primary_10_1088_1748_9326_ac48b6 crossref_primary_10_1111_nph_17412 crossref_primary_10_3832_ifor3989_015 crossref_primary_10_1029_2023EF004311 crossref_primary_10_1038_s43017_022_00329_1 crossref_primary_10_3390_environments11040082 crossref_primary_10_1111_nph_70361 crossref_primary_10_3390_land13081146 crossref_primary_10_5194_bg_20_2237_2023 crossref_primary_10_1029_2021GL096868 crossref_primary_10_1007_s10668_025_06371_5 crossref_primary_10_1073_pnas_2108124119 crossref_primary_10_1016_j_wace_2023_100620 crossref_primary_10_1016_j_scitotenv_2024_173828 crossref_primary_10_1088_1748_9326_acc95d crossref_primary_10_1029_2020EF001718 crossref_primary_10_1029_2021EF002542 crossref_primary_10_1038_s43017_021_00144_0 crossref_primary_10_3390_buildings14072165 crossref_primary_10_1029_2025JD043378 crossref_primary_10_5194_bg_19_2523_2022 crossref_primary_10_1111_gcb_16297 crossref_primary_10_1007_s00468_023_02441_1 crossref_primary_10_1126_science_ado2030 crossref_primary_10_1029_2021JD035367 crossref_primary_10_1111_nph_17522 crossref_primary_10_1007_s00477_022_02230_1 crossref_primary_10_1038_s41558_021_01076_9 crossref_primary_10_1016_j_atmosres_2022_106049 crossref_primary_10_1111_1365_2745_13446 crossref_primary_10_1029_2022GL101667 crossref_primary_10_1177_03091333231169443 crossref_primary_10_1007_s10584_025_03989_2 crossref_primary_10_1111_jbi_14452 crossref_primary_10_1111_gcb_17291 crossref_primary_10_1111_rec_14231 crossref_primary_10_1007_s41748_024_00502_0 crossref_primary_10_3390_su16146188 crossref_primary_10_1016_j_scitotenv_2023_169261 crossref_primary_10_1177_03091333251378932 crossref_primary_10_1186_s13021_024_00282_0 crossref_primary_10_3390_su162411264 crossref_primary_10_1007_s00024_025_03757_4 crossref_primary_10_1016_j_gsf_2024_101815 crossref_primary_10_1139_er_2021_0102 crossref_primary_10_1029_2025EF006040 crossref_primary_10_1029_2021GL096409 crossref_primary_10_1029_2024EF005495 crossref_primary_10_3389_fmars_2021_628454 crossref_primary_10_1029_2021EF002522 crossref_primary_10_1073_pnas_2203200119 |
| Cites_doi | 10.5194/hess-17-1765-2013 10.1073/pnas.1604581113 10.1126/sciadv.1500682 10.1038/nclimate3046 10.1038/s41612-018-0012-1 10.1038/s41586-019-1149-8 10.1038/s41586-018-0424-4 10.3389/ffgc.2018.00004 10.1175/JCLI-D-17-0213.1 10.1029/2018GL078312 10.1007/s40641-018-0093-2 10.1126/sciadv.1600873 10.1002/2016GL072104 10.1175/JCLI-D-12-00726.1 10.1175/BAMS-D-11-00094.1 10.1007/s00382-012-1564-0 10.1007/s00382-014-2075-y 10.1002/2015GL064924 10.1002/grl.50938 10.1126/sciadv.1400082 10.1002/2014GL062433 10.1175/EI-D-17-0007.1 10.1038/s41586-018-0848-x 10.1088/1748-9326/aa5efc 10.1073/pnas.1720712115 10.1007/s40641-018-0101-6 10.1175/JCLI-D-11-00296.1 10.1175/JCLI-D-17-0574.1 10.1038/s41561-019-0480-x 10.1126/science.1152538 10.1088/1748-9326/11/4/044005 10.1175/JCLI-D-14-00616.1 10.1007/s10584-013-0853-x 10.1038/nclimate3029 10.1002/2016GB005480 10.1038/s41558-019-0639-x 10.1029/2018GL078131 10.1038/s41612-018-0032-x 10.1029/2018GL080768 10.1038/nclimate1716 10.1038/ngeo2201 10.1002/2014WR016318 10.1175/JCLI-D-15-0369.1 10.1002/2014GL060382 10.1126/sciadv.1701832 10.1175/JCLI-D-14-00860.1 10.5194/gmd-9-3461-2016 10.5194/tc-9-1943-2015 10.1038/s41558-018-0207-9 10.1029/2011JD017187 10.1002/2016GL069965 10.1002/2016GL070445 10.1175/JCLI-D-18-0472.1 10.1088/1748-9326/aae9f9 10.1029/2019GL083926 10.1002/joc.6219 10.1029/2018GL080521 10.1002/2016GL071921 10.5194/gmd-9-1937-2016 10.1175/JCLI3990.1 10.1007/s13351-019-9016-y 10.1175/JHM-D-17-0099.1 10.1002/joc.4557 10.1175/JCLI-D-12-00832.1 10.1073/pnas.1904955116 10.1016/j.earscirev.2019.102953 10.1002/2017GL074117 10.1007/s40641-018-0097-y 10.1088/1748-9326/11/10/104012 10.1088/1748-9326/ab5023 10.1038/nclimate1633 10.1029/2018GL079408 10.1175/BAMS-D-18-0127.1 10.1002/2017GL072759 10.1038/ngeo2247 10.1038/nclimate2831 10.1029/2018WR023153 10.1073/pnas.1421533112 10.1038/s41598-017-17966-y 10.1038/srep19124 |
| ContentType | Journal Article |
| Copyright | Copyright Determination: PUBLIC_USE_PERMITTED 2020. The Authors. 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright Determination: PUBLIC_USE_PERMITTED – notice: 2020. The Authors. – notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | CYE CYI 24P AAYXX CITATION 7ST 7TG ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO GNUQQ HCIFZ KL. PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY SOI DOA |
| DOI | 10.1029/2019EF001461 |
| DatabaseName | NASA Scientific and Technical Information NASA Technical Reports Server Wiley Online Library Open Access CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Environmental Science Database (subscripiton) Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences |
| EISSN | 2328-4277 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_22ef9821c6e24142a6b65f633d40f000 10_1029_2019EF001461 EFT2654 20205001089 |
| Genre | article |
| GrantInformation | AGS‐1805490 OISE‐1743738 509496.02.08.11.76 AGS‐1602581 |
| GrantInformation_xml | – fundername: National Science Foundation funderid: AGS-1602581; OISE-1743738; AGS-1805490 |
| GroupedDBID | 0R~ 1OC 24P 5VS 7XC 8-1 8FE 8FH AAHBH AAMMB AAZKR ACCMX ACQOY ACXQS ADBBV ADKYN ADZMN AEFGJ AENEX AEUYN AFFHD AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS AVUZU BANNL BCNDV BENPR BHPHI BKSAR CCPQU CYE CYI EBS EDH GICCO GROUPED_DOAJ HCIFZ LK5 M7R M~E OK1 PATMY PCBAR PHGZM PHGZT PIMPY PROAC PYCSY WIN ~OA 8GL AAHHS ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE EJD GODZA IEP ISN ITC SUPJJ AAYXX CITATION IAO 7ST 7TG ABUWG AZQEC C1K DWQXO GNUQQ KL. PKEHL PQEST PQQKQ PQUKI PRINS SOI |
| ID | FETCH-LOGICAL-c4964-88dfd15fd7625f2c6a0eec3c2f777040845e3cdf4881534a49e00b5e7d7e00f23 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 722 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000545702400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2328-4277 |
| IngestDate | Fri Oct 03 12:42:22 EDT 2025 Sun Nov 09 06:00:40 EST 2025 Sat Nov 29 04:06:25 EST 2025 Tue Nov 18 22:20:50 EST 2025 Wed Jan 22 16:34:17 EST 2025 Fri Nov 21 15:49:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Drought Cmip6 |
| Language | English |
| License | Creative Commons License: CCBYND Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4964-88dfd15fd7625f2c6a0eec3c2f777040845e3cdf4881534a49e00b5e7d7e00f23 |
| Notes | GSFC Goddard Space Flight Center ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2520-4555 0000-0001-8176-8166 0000-0002-8509-8080 0000-0002-9771-6720 0000-0002-4501-9229 0000-0001-6276-0249 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019EF001461 |
| PQID | 2417108315 |
| PQPubID | 2034575 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_22ef9821c6e24142a6b65f633d40f000 proquest_journals_2417108315 crossref_primary_10_1029_2019EF001461 crossref_citationtrail_10_1029_2019EF001461 wiley_primary_10_1029_2019EF001461_EFT2654 nasa_ntrs_20205001089 |
| PublicationCentury | 2000 |
| PublicationDate | June 2020 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Goddard Space Flight Center |
| PublicationPlace_xml | – name: Goddard Space Flight Center – name: Bognor Regis |
| PublicationTitle | Earth's future |
| PublicationYear | 2020 |
| Publisher | Wiley Open Access and American Geophysical Union John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: Wiley Open Access and American Geophysical Union – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2018; 560 2017; 7 2013; 3 2013; 26 2017; 44 2019; 12 2019; 14 2016; 30 2019; 201 2019; 565 2019; 569 2018; 45 2016; 36 2018; 8 2017; 30 2013; 17 2018; 4 2018; 1 2015; 42 2008; 319 2016; 43 2016; 113 2019; 116 2012; 25 2014; 7 2018; 31 2015; 1 2019; 9 2020; 40 2019; 33 2015; 51 2019; 32 2013; 40 2017; 21 2006; 19 2014; 41 2015; 9 2019; 100 2014; 43 2016; 11 2014; 42 2012; 93 2018; 19 2016; 6 2015; 28 2016; 2 2019; 46 2015; 112 2018; 115 2017; 12 2019 2016; 134 2018 2013 2018; 54 2012; 117 2016; 8 2016; 9 2018; 13 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_96_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_94_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_92_1 e_1_2_6_90_1 IPCC (e_1_2_6_40_1) 2013 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_80_1 e_1_2_6_61_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
| References_xml | – volume: 134 start-page: 371 issue: 3 year: 2016 end-page: 385 article-title: A global assessment of the impact of climate change on water scarcity publication-title: Climatic Change – volume: 569 start-page: 59 issue: 7754 year: 2019 end-page: 65 article-title: Twentieth‐century hydroclimate changes consistent with human influence publication-title: Nature – volume: 41 start-page: 5492 year: 2014 end-page: 5498 article-title: Runoff sensitivity to global mean temperature change in the CMIP5 Models publication-title: Geophysical Research Letters – volume: 40 start-page: 4927 year: 2013 end-page: 4932 article-title: Stationarity of the tropical pacific teleconnection to North America in CMIP5/PMIP3 model simulations publication-title: Geophysical Research Letters – volume: 4 start-page: 164 issue: 2 year: 2018 end-page: 179 article-title: Climate change and drought: From past to future publication-title: Current Climate Change Reports – volume: 46 start-page: 10,522 year: 2019 end-page: 10,531 article-title: Constraining climate model projections of regional precipitation change publication-title: Geophysical Research Letters – volume: 40 start-page: 421 issue: 1 year: 2020 end-page: 439 article-title: The central Chile mega drought (2010–2018): A climate dynamics perspective publication-title: International Journal of Climatology – volume: 3 start-page: 52 issue: 1 year: 2013 end-page: 58 article-title: Increasing drought under global warming in observations and models publication-title: Nature Climate Change – volume: 26 start-page: 7328 issue: 19 year: 2013 end-page: 7351 article-title: CMIP5 projected changes in the annual cycle of precipitation in monsoon regions publication-title: Journal of Climate – volume: 31 start-page: 4265 issue: 11 year: 2018 end-page: 4279 article-title: Mechanism of future spring drying in the southwestern United States in CMIP5 models publication-title: Journal of Climate – volume: 28 start-page: 3834 issue: 9 year: 2015 end-page: 3845 article-title: A link between the hiatus in global warming and North American drought publication-title: Journal of Climate – volume: 11 issue: 4 year: 2016 article-title: Anthropogenic climate change affects meteorological drought risk in Europe publication-title: Environmental Research Letters – volume: 44 start-page: 236 issue: 1 year: 2017 end-page: 244 article-title: Divergent surface and total soil moisture projections under global warming publication-title: Geophysical Research Letters – volume: 100 start-page: S19 issue: 1 year: 2019 end-page: S24 article-title: Anthropogenic contributions to the intensity of the 2017 United States northern Great Plains drought publication-title: Bulletin of the American Meteorological Society – volume: 1 issue: 9 year: 2015 article-title: Past and future rainfall in the Horn of Africa publication-title: Science Advances – volume: 7 issue: 1 year: 2017 article-title: Precipitation variability increases in a warmer climate publication-title: Scientific Reports – volume: 51 start-page: 2847 year: 2015 end-page: 2864 article-title: How well do CMIP5 climate simulations replicate historical trends and patterns of meteorological droughts? publication-title: Water Resources Research – year: 2018 – volume: 12 start-page: 983 year: 2019 end-page: 988 article-title: Mid‐latitude freshwater availability reduced by projected vegetation responses to climate change publication-title: Nature Geoscience – volume: 46 start-page: 736 year: 2019 end-page: 744 article-title: Observational constraints reduce likelihood of extreme changes in multidecadal land water availability publication-title: Geophysical Research Letters – volume: 36 start-page: 3314 issue: 9 year: 2016 end-page: 3333 article-title: Long‐term trends in precipitation and temperature across the Caribbean publication-title: International Journal of Climatology – volume: 6 start-page: 946 issue: 10 year: 2016 end-page: 949 article-title: Potential evapotranspiration and continental drying publication-title: Nature Climate Change – volume: 32 start-page: 2887 issue: 10 year: 2019 end-page: 2915 article-title: Climate variability and change of mediterranean‐type climates publication-title: Journal of Climate – volume: 46 start-page: 2573 year: 2019 end-page: 2582 article-title: Attribution of global soil moisture drying to human activities: A quantitative viewpoint publication-title: Geophysical Research Letters – volume: 1 issue: 1 year: 2015 article-title: Unprecedented 21st century drought risk in the American Southwest and Central Plains publication-title: Science Advances – volume: 41 start-page: 9017 year: 2014 end-page: 9023 article-title: How unusual is the 2012–2014 California drought? publication-title: Geophysical Research Letters – volume: 115 start-page: 4093 issue: 16 year: 2018 article-title: Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO publication-title: Proceedings of the National Academy of Sciences – volume: 112 start-page: 3241 issue: 11 year: 2015 end-page: 3246 article-title: Climate change in the Fertile Crescent and implications of the recent Syrian drought publication-title: Proceedings of the National Academy of Sciences – volume: 201 year: 2019 article-title: A review of environmental droughts: Increased risk under global warming? publication-title: Earth‐Science Reviews – volume: 28 start-page: 8078 issue: 20 year: 2015 end-page: 8092 article-title: The response of precipitation minus evapotranspiration to climate warming: Why the “Wet‐Get‐Wetter, Dry‐Get‐Drier” scaling does not hold over land publication-title: Journal of Climate – volume: 12 issue: 4 year: 2017 article-title: Influence of internal variability on population exposure to hydroclimatic changes publication-title: Environmental Research Letters – volume: 28 start-page: 6997 year: 2015 end-page: 7024 article-title: Causes of the 2011 to 2014 California drought publication-title: Journal of Climate – volume: 4 start-page: 192 issue: 2 year: 2018 end-page: 201 article-title: Plants and drought in a changing climate publication-title: Current Climate Change Reports – volume: 7 start-page: 583 issue: 8 year: 2014 end-page: 587 article-title: Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels publication-title: Nature Geoscience – volume: 21 start-page: 1 year: 2017 end-page: 14 article-title: Evidence that recent Warming is reducing upper Colorado River flows publication-title: Earth Interactions – volume: 42 start-page: 6819 year: 2015 end-page: 6828 article-title: Contribution of anthropogenic warming to the 2012–2014 California drought publication-title: Geophysical Research Letters – volume: 4 issue: 3 year: 2018 article-title: Past and future drought in Mongolia publication-title: Science Advances – volume: 6 start-page: 75 issue: 1 year: 2016 end-page: 78 article-title: Reduced streamflow in water‐stressed climates consistent with CO effects on vegetation publication-title: Nature Climate Change – volume: 44 start-page: 7419 year: 2017 end-page: 7428 article-title: Projected drought risk in 1.5 °C and 2 ° C warmer climates publication-title: Geophysical Research Letters – volume: 13 issue: 12 year: 2018 article-title: Anthropogenic influence on the drivers of the Western Cape drought 2015–2017 publication-title: Environmental Research Letters – volume: 43 start-page: 9225 year: 2016 end-page: 9233 article-title: The challenge of accurately quantifying future megadrought risk in the American Southwest publication-title: Geophysical Research Letters – volume: 14 start-page: 124,016 issue: 12 year: 2019 article-title: Multiscale trends and precipitation extremes in the Central American midsummer drought publication-title: Environmental Research Letters – volume: 1 issue: 1 year: 2018 article-title: Dramatic declines in snowpack in the western US publication-title: npj Climate and Atmospheric Science – volume: 9 start-page: 3461 issue: 9 year: 2016 end-page: 3482 article-title: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 publication-title: Geoscientific Model Development – volume: 1 start-page: 21 issue: 1 year: 2018 article-title: 21st century California drought risk linked to model fidelity of the El Niño teleconnection publication-title: npj Climate and Atmospheric Science – year: 2019 – volume: 8 start-page: 640 issue: 7 year: 2018 end-page: 646 article-title: Partitioning global land evapotranspiration using CMIP5 models constrained by observations publication-title: Nature Climate Change – volume: 6 start-page: 869 issue: 9 year: 2016 end-page: 874 article-title: Land‐atmosphere feedbacks amplify aridity increase over land under global warming publication-title: Nature Climate Change – volume: 7 start-page: 716 year: 2014 end-page: 721 article-title: Global assessment of trends in wetting and drying over land publication-title: Nature Geoscience – volume: 565 start-page: 476 issue: 7740 year: 2019 end-page: 479 article-title: Large influence of soil moisture on long‐term terrestrial carbon uptake publication-title: Nature – volume: 30 start-page: 1827 year: 2016 end-page: 1846 article-title: Evaluating the drought response of CMIP5 models using global gross primary productivity, leaf area, precipitation, and soil moisture data publication-title: Global Biogeochemical Cycles – volume: 560 start-page: 628 issue: 7720 year: 2018 end-page: 631 article-title: Sensitivity of atmospheric CO growth rate to observed changes in terrestrial water storage publication-title: Nature – volume: 6 issue: 1 year: 2016 article-title: Multi‐decadal trends in global terrestrial evapotranspiration and its components publication-title: Scientific Reports – volume: 4 start-page: 301 issue: 3 year: 2018 end-page: 312 article-title: Climate change and drought: A precipitation and evaporation perspective publication-title: Current Climate Change Reports – volume: 11 issue: 10 year: 2016 article-title: Land surface models systematically overestimate the intensity, duration and magnitude of seasonal‐scale evaporative droughts publication-title: Environmental Research Letters – volume: 43 start-page: 2607 issue: 9‐10 year: 2014 end-page: 2627 article-title: Global warming and 21st century drying publication-title: Climate Dynamics – volume: 42 start-page: 101 issue: 1 year: 2014 end-page: 119 article-title: Future change of global monsoon in the CMIP5 publication-title: Climate Dynamics – volume: 45 start-page: 10,619 year: 2018 end-page: 10,626 article-title: Exacerbation of the 2013–2016 Pan‐Caribbean drought by anthropogenic warming publication-title: Geophysical Research Letters – volume: 19 start-page: 969 issue: 6 year: 2018 end-page: 988 article-title: Evaluating CMIP5 model agreement for multiple drought metrics publication-title: Journal of Hydrometeorology – volume: 1 start-page: 4 year: 2018 article-title: A dirty dozen ways to die: Metrics and modifiers of mortality driven by drought and warming for a Tree species publication-title: Frontiers in Forests and Global Change – volume: 25 start-page: 2146 issue: 6 year: 2012 end-page: 2161 article-title: On the increased frequency of mediterranean drought publication-title: Journal of Climate – volume: 54 start-page: 6739 issue: 9 year: 2018 end-page: 6756 article-title: On the causes of declining Colorado River streamflows publication-title: Water Resources Research – volume: 26 start-page: 7813 issue: 20 year: 2013 end-page: 7828 article-title: Future changes in Northern Hemisphere snowfall publication-title: Journal of Climate – volume: 8 start-page: 1937 year: 2016 end-page: 1958 article-title: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organisation publication-title: Geoscientific Model Development Discussions – volume: 9 start-page: 1943 issue: 5 year: 2015 end-page: 1953 article-title: Projected 21st century changes in snow water equivalent over Northern Hemisphere landmasses from the CMIP5 model ensemble publication-title: The Cryosphere – volume: 117 year: 2012 article-title: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set publication-title: Journal of Geophysical Research – volume: 30 start-page: 8689 issue: 21 year: 2017 end-page: 8710 article-title: The curious case of projected twenty‐first‐century drying but greening in the American West publication-title: Journal of Climate – volume: 43 start-page: 10,980 year: 2016 end-page: 10,988 article-title: Perspectives on the causes of exceptionally low 2015 snowpack in the western United States publication-title: Geophysical Research Letters – volume: 3 start-page: 369 issue: 4 year: 2013 end-page: 373 article-title: Robustness and uncertainties in the new CMIP5 climate model projections publication-title: Nature Climate Change – volume: 33 start-page: 851 issue: 5 year: 2019 end-page: 869 article-title: Development of land surface model BCC_AVIM2.0 and its preliminary performance in LS3MIP/CMIP6 publication-title: Journal of Meteorological Research – volume: 9 start-page: 926 issue: 12 year: 2019 end-page: 933 article-title: The potential to reduce uncertainty in regional runoff projections from climate models publication-title: Nature Climate Change – volume: 17 start-page: 1765 issue: 5 year: 2013 end-page: 1781 article-title: Elusive drought: Uncertainty in observed trends and short‐ and long‐term CMIP5 projections publication-title: Hydrology and Earth System Sciences – volume: 44 start-page: 2511 year: 2017 end-page: 2518 article-title: Anthropogenic warming impacts on California snowpack during drought publication-title: Geophysical Research Letters – volume: 45 start-page: 6495 year: 2018 end-page: 6503 article-title: Soil moisture stress as a major driver of carbon cycle uncertainty publication-title: Geophysical Research Letters – volume: 44 start-page: 2310 year: 2017 end-page: 2318 article-title: CO ‐vegetation feedbacks and other climate changes implicated in reducing base flow publication-title: Geophysical Research Letters – volume: 2 issue: 10 year: 2016 article-title: Relative impacts of mitigation, temperature, and precipitation on 21st‐century megadrought risk in the American Southwest publication-title: Science Advances – volume: 116 issue: 38 year: 2019 article-title: Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity publication-title: Proceedings of the National Academy of Sciences – volume: 319 start-page: 1080 issue: 5866 year: 2008 end-page: 1083 article-title: Human‐induced changes in the hydrology of the western United States publication-title: Science – volume: 19 start-page: 5686 issue: 21 year: 2006 end-page: 5699 article-title: Robust responses of the hydrological cycle to global warming publication-title: Journal of Climate – volume: 45 start-page: 6251 year: 2018 end-page: 6261 article-title: Attributing the U.S. Southwest's recent shift into drier conditions publication-title: Geophysical Research Letters – volume: 113 start-page: 10,019 issue: 36 year: 2016 end-page: 10,024 article-title: Plant responses to increasing CO reduce estimates of climate impacts on drought severity publication-title: Proceedings of the National Academy of Sciences – year: 2013 – volume: 93 start-page: 485 issue: 4 year: 2012 end-page: 498 article-title: An overview of CMIP5 and the experiment design publication-title: Bulletin of the American Meteorological Society – ident: e_1_2_6_64_1 doi: 10.5194/hess-17-1765-2013 – ident: e_1_2_6_75_1 doi: 10.1073/pnas.1604581113 – ident: e_1_2_6_80_1 doi: 10.1126/sciadv.1500682 – ident: e_1_2_6_58_1 doi: 10.1038/nclimate3046 – ident: e_1_2_6_60_1 doi: 10.1038/s41612-018-0012-1 – ident: e_1_2_6_76_1 – ident: e_1_2_6_56_1 doi: 10.1038/s41586-019-1149-8 – ident: e_1_2_6_39_1 doi: 10.1038/s41586-018-0424-4 – ident: e_1_2_6_10_1 doi: 10.3389/ffgc.2018.00004 – ident: e_1_2_6_54_1 doi: 10.1175/JCLI-D-17-0213.1 – ident: e_1_2_6_48_1 doi: 10.1029/2018GL078312 – ident: e_1_2_6_15_1 doi: 10.1007/s40641-018-0093-2 – ident: e_1_2_6_45_1 – ident: e_1_2_6_4_1 doi: 10.1126/sciadv.1600873 – ident: e_1_2_6_7_1 doi: 10.1002/2016GL072104 – ident: e_1_2_6_71_1 – ident: e_1_2_6_72_1 doi: 10.1175/JCLI-D-12-00726.1 – ident: e_1_2_6_79_1 doi: 10.1175/BAMS-D-11-00094.1 – ident: e_1_2_6_46_1 doi: 10.1007/s00382-012-1564-0 – ident: e_1_2_6_16_1 doi: 10.1007/s00382-014-2075-y – ident: e_1_2_6_67_1 – ident: e_1_2_6_89_1 doi: 10.1002/2015GL064924 – ident: e_1_2_6_13_1 doi: 10.1002/grl.50938 – ident: e_1_2_6_14_1 doi: 10.1126/sciadv.1400082 – ident: e_1_2_6_29_1 doi: 10.1002/2014GL062433 – ident: e_1_2_6_57_1 doi: 10.1175/EI-D-17-0007.1 – ident: e_1_2_6_27_1 doi: 10.1038/s41586-018-0848-x – ident: e_1_2_6_55_1 doi: 10.1088/1748-9326/aa5efc – ident: e_1_2_6_50_1 doi: 10.1073/pnas.1720712115 – ident: e_1_2_6_18_1 doi: 10.1007/s40641-018-0101-6 – ident: e_1_2_6_37_1 doi: 10.1175/JCLI-D-11-00296.1 – ident: e_1_2_6_81_1 doi: 10.1175/JCLI-D-17-0574.1 – ident: e_1_2_6_53_1 doi: 10.1038/s41561-019-0480-x – ident: e_1_2_6_5_1 doi: 10.1126/science.1152538 – ident: e_1_2_6_31_1 doi: 10.1088/1748-9326/11/4/044005 – ident: e_1_2_6_22_1 doi: 10.1175/JCLI-D-14-00616.1 – ident: e_1_2_6_26_1 doi: 10.1007/s10584-013-0853-x – ident: e_1_2_6_6_1 doi: 10.1038/nclimate3029 – ident: e_1_2_6_38_1 doi: 10.1002/2016GB005480 – ident: e_1_2_6_49_1 doi: 10.1038/s41558-019-0639-x – ident: e_1_2_6_77_1 – ident: e_1_2_6_83_1 doi: 10.1029/2018GL078131 – ident: e_1_2_6_9_1 – ident: e_1_2_6_2_1 doi: 10.1038/s41612-018-0032-x – ident: e_1_2_6_30_1 doi: 10.1029/2018GL080768 – ident: e_1_2_6_43_1 doi: 10.1038/nclimate1716 – ident: e_1_2_6_88_1 – ident: e_1_2_6_21_1 doi: 10.1038/ngeo2201 – ident: e_1_2_6_62_1 doi: 10.1002/2014WR016318 – ident: e_1_2_6_11_1 doi: 10.1175/JCLI-D-15-0369.1 – volume-title: Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change year: 2013 ident: e_1_2_6_40_1 – ident: e_1_2_6_95_1 doi: 10.1002/2014GL060382 – ident: e_1_2_6_35_1 doi: 10.1126/sciadv.1701832 – ident: e_1_2_6_69_1 doi: 10.1175/JCLI-D-14-00860.1 – ident: e_1_2_6_63_1 doi: 10.5194/gmd-9-3461-2016 – ident: e_1_2_6_20_1 – ident: e_1_2_6_73_1 doi: 10.5194/tc-9-1943-2015 – ident: e_1_2_6_52_1 doi: 10.1038/s41558-018-0207-9 – ident: e_1_2_6_59_1 doi: 10.1029/2011JD017187 – ident: e_1_2_6_61_1 doi: 10.1002/2016GL069965 – ident: e_1_2_6_12_1 doi: 10.1002/2016GL070445 – ident: e_1_2_6_90_1 – ident: e_1_2_6_70_1 doi: 10.1175/JCLI-D-18-0472.1 – ident: e_1_2_6_65_1 doi: 10.1088/1748-9326/aae9f9 – ident: e_1_2_6_94_1 doi: 10.1029/2019GL083926 – ident: e_1_2_6_24_1 doi: 10.1002/joc.6219 – ident: e_1_2_6_66_1 doi: 10.1029/2018GL080521 – ident: e_1_2_6_78_1 – ident: e_1_2_6_8_1 doi: 10.1002/2016GL071921 – ident: e_1_2_6_23_1 doi: 10.5194/gmd-9-1937-2016 – ident: e_1_2_6_25_1 – ident: e_1_2_6_33_1 doi: 10.1175/JCLI3990.1 – ident: e_1_2_6_19_1 – ident: e_1_2_6_51_1 doi: 10.1007/s13351-019-9016-y – ident: e_1_2_6_85_1 doi: 10.1175/JHM-D-17-0099.1 – ident: e_1_2_6_41_1 doi: 10.1002/joc.4557 – ident: e_1_2_6_44_1 doi: 10.1175/JCLI-D-12-00832.1 – ident: e_1_2_6_96_1 doi: 10.1073/pnas.1904955116 – ident: e_1_2_6_87_1 doi: 10.1016/j.earscirev.2019.102953 – ident: e_1_2_6_47_1 doi: 10.1002/2017GL074117 – ident: e_1_2_6_74_1 doi: 10.1007/s40641-018-0097-y – ident: e_1_2_6_32_1 – ident: e_1_2_6_84_1 doi: 10.1088/1748-9326/11/10/104012 – ident: e_1_2_6_92_1 – ident: e_1_2_6_3_1 doi: 10.1088/1748-9326/ab5023 – ident: e_1_2_6_17_1 doi: 10.1038/nclimate1633 – ident: e_1_2_6_34_1 doi: 10.1029/2018GL079408 – ident: e_1_2_6_36_1 doi: 10.1175/BAMS-D-18-0127.1 – ident: e_1_2_6_82_1 doi: 10.1002/2017GL072759 – ident: e_1_2_6_28_1 doi: 10.1038/ngeo2247 – ident: e_1_2_6_86_1 doi: 10.1038/nclimate2831 – ident: e_1_2_6_91_1 doi: 10.1029/2018WR023153 – ident: e_1_2_6_42_1 doi: 10.1073/pnas.1421533112 – ident: e_1_2_6_68_1 doi: 10.1038/s41598-017-17966-y – ident: e_1_2_6_93_1 doi: 10.1038/srep19124 |
| SSID | ssj0000970357 |
| Score | 2.6380012 |
| Snippet | There is strong evidence climate change will increase drought risk and severity, but these conclusions depend on the regions, seasons, and drought metrics... There is strong evidence that climate change will increase drought risk and severity, but these conclusions depend on the regions, seasons, and drought metrics... Abstract There is strong evidence that climate change will increase drought risk and severity, but these conclusions depend on the regions, seasons, and... |
| SourceID | doaj proquest crossref wiley nasa |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | 21st century Climate change Climate models CMIP6 Drought Drying Environmental risk Evapotranspiration Evapotranspiration processes Extreme drought Extreme weather Greenhouse effect Greenhouse gases Hydrologic cycle Hydrologic drought Hydrology Meteorology And Climatology Mitigation Moisture content open climate campaign Precipitation Robustness Runoff Simulation Soil moisture Soils |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PS8MwFA8iHryIfzasTslBL8owTZM0OepcUdCxw4TdSpYmMJBO1ql48yP4Gf0kvrTd3A7qRSi0JCG85v37vTR9D6ETGjpKjYZIdWRYmzlmQKWI9ECOAzrllFcp8-_iXk8Oh6q_VOrLnwmr0gNXC3dBqXVK0tAIC86GUS1GgjsRRRkjDvTZW18Sq6VgqrTBCiSZx_VJd0IVBPmh6iY-IhDhig8qU_XDLdeFXoGZy2C19DbJNtqqYSK-rMjbQWs230XN7vdfadBZq2Wxh24Hr9D09vn-kYwBzeFO5UnwdVmDZ4b71XaLlzA8zjFgPty5v-0LnEymBnwXTGVzCJonRQM9JN1B56Zd10hoG6YEa0uZuSzkLgOjxh01QhNrTWSoi-MYFFQybiOTOdBTsG1MM2UJGXEbZzE8OBo14c0nud1H2MoMLq4zbYh3WZJrQD8jFrmQCilNgM7nq5aaOoG4r2PxmJYfsqlKl9c4QKeL0U9V4owfxl15BizG-HTXZQMIQVoLQfqXEASo4dmXAj0FzE4J97GuVAFqzfmZ1roJ_SwEWCWjkAforOTxrwSm3WRABWcH_0HoIdr05FVnzVpofTZ9tkdow7zMxsX0uJThL7mb7TE priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZp00Mv6SuhTtKiQ3tpMZVlSZZOIdnaNJAuS9lCbkarR1godrLeJOSWn5Df2F_Ska3dJofmUjDYyEIWmtc3I3kGoQ8085QaDZ7qzLCUeWZApIgMQI4DOuWUDynzT4rxWJ6eqkkMuHXxWOVKJ_aK2rYmxMi_gKUBYyjzjB-cX6ShalTYXY0lNJ6gzZCpDPh886gcT36soyxEAUfzIp54J1SBs5-psgqegcge2KI-ZT_cGt3pB3DzPmjtrU714n_n-xJtRbyJDwcGeYU2XPMa7ZR_f2-Dl1G-uzfoeHoNTTe_b--qOcBCPBpMEv7aF_NZ4skQtwmsiucNBvCIR9-PJwJX7cKAEYShXAPed9tto59VOR19S2OxhdQwJVgqpfU2496CduSeGqGJcyY31BdFAZIuGXe5sR4EHpQk00w5QmbcFbaAB0_zHVi6tnFvEXbSwsW11YYE2ye5Bhg1Y7nPqJDSJOjzatlrEzORh4IYv-p-R5yq-j6REvRx3ft8yMDxj35HgYLrPiFvdt_QLs7qKIY1pc4rSTMjHBCIUS1mgnuR55YRD-ySoO1A_xrm08HolPDgNEuVoP0Vleso5PB-TeIEfeqZ5NEJ1mU1pYKz3cfH2kPPw4eH42j76OlyceneoWfmajnvFu8jg_8BG9D9mg priority: 102 providerName: ProQuest |
| Title | Twenty‐First Century Drought Projections in the CMIP6 Forcing Scenarios |
| URI | https://ntrs.nasa.gov/citations/20205001089 https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019EF001461 https://www.proquest.com/docview/2417108315 https://doaj.org/article/22ef9821c6e24142a6b65f633d40f000 |
| Volume | 8 |
| WOSCitedRecordID | wos000545702400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2328-4277 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970357 issn: 2328-4277 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2328-4277 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970357 issn: 2328-4277 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2328-4277 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970357 issn: 2328-4277 databaseCode: PCBAR dateStart: 20131201 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 2328-4277 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970357 issn: 2328-4277 databaseCode: PATMY dateStart: 20131201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2328-4277 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970357 issn: 2328-4277 databaseCode: BENPR dateStart: 20131201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2328-4277 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970357 issn: 2328-4277 databaseCode: PIMPY dateStart: 20131201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2328-4277 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970357 issn: 2328-4277 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2328-4277 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000970357 issn: 2328-4277 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBah6aGXJm0T6iRddGguDaa2rD8fk61NF5rFlC1JT0aWpbBQvGW9Seitj5BnzJN0JCvbzaGFUjDY-mEQ0ozm01j6hNBbklpCtIKVaqNpTC3VYFKJdECOATplhA2U-Z_EdCovL_MqBNzcWZiBH2IdcHOW4edrZ-Cq6QPZgOPIBM-VF6WD-G71s52mmXBaTWi1jrEkOeizJ_sE3CBjSoQIe99BxPtNAY-8kifvh1enevUIeG7CV-9_yp3_bfkueh6QJz4dVOUF2jLdS7Rf_D7oBoXB0vtXaDK7hawf9z_vyjkARDwenBP-4K_1WeFqiOA4pcXzDgOMxOPzScVxuVhqcIcgynSwDl_0e-hLWczGH-Nw7UKsac5pLGVr25TZFuZJZonmKjFGZ5pYIQTYvKTMZLq1YPowXVJFc5MkDTOiFfBhSbYPXbfozGuEjWzhYapVOnFeUDIFgKqhmU0Jl1JH6OSh22sdOMnd1Rjfav9vnOT1Zl9F6Hhd-_vAxfGHemduBNd1HIO2z1gsr-pgkDUhxuaSpJobADGUKN5wZnmWtTSxoDoR2nPjX0N7epBOEuaWzzKP0NGDQtTB3KGcpoDUZJayCL3zQ__XBtZFOSOc0YN_qXyInrlmDNvUjtCT1fLavEFP9c1q3i9HXvFHaPusmFafRz6yAKlqcl59hdTFZPoLUMkAzw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VLRJc-G1FoIAP9AKKmji24xwQgu1Gjbq7ymGRyil4HRuthLIlWah64xF4Eh6KJ2Gcn6U90FsPSJESOZblxN_MfB7bMwAvaWgp1QpnqgvNfGaZRpEKpCNyHNkpp7wLmT-JZzN5eprkW_BrOAvjtlUOOrFV1OVKOx_5IVoaNIYyCvnbs6--yxrlVleHFBodLE7MxTlO2Zo32RGO7wGl6Xg-Ovb7rAK-ZolgvpSlLUNuS1QD3FItVGCMjjS1cRwjpCXjJtKlRWSjNmCKJSYIFtzEZYwP1gU6QJW_wxzYt2Enz6b5x41XJ0hQgnjc77APaHKIBjYZp24mIsIrtq9NEYC3SjXqCr29TJJbK5fe-9_-z3242_Np8q4TgAewZaqHsDf-e3wPX_b6q3kE2fwciy5-__iZLpH2klFncslRm6xoTfLOL-VEkSwrguSYjKZZLki6qjUaeWzKVKperppd-HAjn7WHQ7WqzGMgRpZ4cVUqHTjbLrlCmrhgkQ2pkFJ78HoY5kL3kdZdwo8vRbviT5PiMig8ONjUPusijPyj3nuHmE0dFxe8LVjVn4tezRSUGptIGmphEBCMKrEQ3IooKllgEZ4e7Dq8FdifBlunAXdOAZl4sD-gquiVGL7fQMqDVy0or-1gMU7nVHD25Pq2XsDt4_l0Ukyy2clTuOM60W2924ftdf3NPINb-vt62dTPe-Ei8Omm8foHM_RZ5Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VLUJc-G1FoIAP9AKK1nFsxzkgVHY3YtV2lcMilVPIOjZaCSUlWah64xF4Hh6HJ2Gcn6U90FsPSJES2ZblxN_MfHbGMwAvWWAZ0zmuVJea-9xyjSJFlSNyAtmpYKILmX8czefq9DROt-DXcBbGuVUOOrFV1EWl3R75CC0NGkMVBmJke7eIdJK8PfvquwxS7k_rkE6jg8iRuTjH5VvzZjbBuT5gLJkuxu_9PsOAr3ksua9UYYtA2AJVgrBMy5wao0PNbBRFCG_FhQl1YRHlqBl4zmND6VKYqIjwwbqgB6j-d5SMqNqGnfRwcfJxs8NDY5QmEfXe9pTFIzS28TRxqxIZXLGDbboAvJV5k1-hupcJc2vxknv_87e6D3d7nk0OO8F4AFumfAh707_H-rCy12vNI5gtzrHo4vePn8kK6TAZd6aYTNokRmuSdvtVTkTJqiRImsn4ZJZKklS1RuOPXZkyr1dVswsfbuS19nDaqtI8BmJUgZfIi1xTZ_OVyJE-LnloAyaV0h68HqY8030EdpcI5EvWegKwOLsMEA8ONq3Pusgj_2j3zqFn08bFC28Lqvpz1qufjDFjY8UCLQ2Cg7NcLqWwMgwLTi1C1YNdh70Mx9Ng74wKt1mgYg_2B4RlvXLD-g28PHjVAvTaAWbTZMGk4E-u7-sF3EaQZsez-dFTuOPG0Hnk7cP2uv5mnsEt_X29aurnvZwR-HTTcP0Drs5iog |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Twenty%E2%80%90First+Century+Drought+Projections+in+the+CMIP6+Forcing+Scenarios&rft.jtitle=Earth%27s+future&rft.au=Cook%2C+B.+I.&rft.au=Mankin%2C+J.+S.&rft.au=Marvel%2C+K.&rft.au=Williams%2C+A.+P.&rft.date=2020-06-01&rft.issn=2328-4277&rft.eissn=2328-4277&rft.volume=8&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2019EF001461&rft.externalDBID=10.1029%252F2019EF001461&rft.externalDocID=EFT2654 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-4277&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-4277&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-4277&client=summon |