Spatial Regression Models for Demographic Analysis

While spatial data analysis has received increasing attention in demographic studies, it remains a difficult subject to learn for practitioners due to its complexity and various unresolved issues. Here we give a practical guide to spatial demographic analysis, with a focus on the use of spatial regr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Population research and policy review Ročník 27; číslo 1; s. 17 - 42
Hlavní autoři: Chi, Guangqing, Zhu, Jun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer 01.02.2008
Springer Netherlands
Springer Nature B.V
Edice:Population Research and Policy Review
Témata:
ISSN:0167-5923, 1573-7829
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:While spatial data analysis has received increasing attention in demographic studies, it remains a difficult subject to learn for practitioners due to its complexity and various unresolved issues. Here we give a practical guide to spatial demographic analysis, with a focus on the use of spatial regression models. We first summarize spatially explicit and implicit theories of population dynamics. We then describe basic concepts in exploratory spatial data analysis and spatial regression modeling through an illustration of population change in the 1990s at the minor civil division level in the state of Wisconsin. We also review spatial regression models including spatial lag models, spatial error models, and spatial autoregressive moving average models and use these models for analyzing the data example. We finally suggest opportunities and directions for future research on spatial demographic theories and practice.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0167-5923
1573-7829
DOI:10.1007/s11113-007-9051-8