Spectral Geometry Processing with Manifold Harmonics

We present an explicit method to compute a generalization of the Fourier Transform on a mesh. It is well known that the eigenfunctions of the Laplace Beltrami operator (Manifold Harmonics) define a function basis allowing for such a transform. However, computing even just a few eigenvectors is out o...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer graphics forum Ročník 27; číslo 2; s. 251 - 260
Hlavní autori: Vallet, B., Lévy, B.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford, UK Blackwell Publishing Ltd 01.04.2008
Wiley
Predmet:
ISSN:0167-7055, 1467-8659
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We present an explicit method to compute a generalization of the Fourier Transform on a mesh. It is well known that the eigenfunctions of the Laplace Beltrami operator (Manifold Harmonics) define a function basis allowing for such a transform. However, computing even just a few eigenvectors is out of reach for meshes with more than a few thousand vertices, and storing these eigenvectors is prohibitive for large meshes. To overcome these limitations, we propose a band‐by‐band spectrum computation algorithm and an out‐of‐core implementation that can compute thousands of eigenvectors for meshes with up to a million vertices. We also propose a limited‐memory filtering algorithm, that does not need to store the eigenvectors. Using this latter algorithm, specific frequency bands can be filtered, without needing to compute the entire spectrum. Finally, we demonstrate some applications of our method to interactive convolution geometry filtering. These technical achievements are supported by a solid yet simple theoretic framework based on Discrete Exterior Calculus (DEC). In particular, the issues of symmetry and discretization of the operator are considered with great care.
Bibliografia:ark:/67375/WNG-5V99VKTZ-R
ArticleID:CGF1122
istex:B73CBA9B303CAA04753104D06B669D3CAF272870
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0167-7055
1467-8659
DOI:10.1111/j.1467-8659.2008.01122.x