Spectral Geometry Processing with Manifold Harmonics

We present an explicit method to compute a generalization of the Fourier Transform on a mesh. It is well known that the eigenfunctions of the Laplace Beltrami operator (Manifold Harmonics) define a function basis allowing for such a transform. However, computing even just a few eigenvectors is out o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 27; číslo 2; s. 251 - 260
Hlavní autoři: Vallet, B., Lévy, B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford, UK Blackwell Publishing Ltd 01.04.2008
Wiley
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present an explicit method to compute a generalization of the Fourier Transform on a mesh. It is well known that the eigenfunctions of the Laplace Beltrami operator (Manifold Harmonics) define a function basis allowing for such a transform. However, computing even just a few eigenvectors is out of reach for meshes with more than a few thousand vertices, and storing these eigenvectors is prohibitive for large meshes. To overcome these limitations, we propose a band‐by‐band spectrum computation algorithm and an out‐of‐core implementation that can compute thousands of eigenvectors for meshes with up to a million vertices. We also propose a limited‐memory filtering algorithm, that does not need to store the eigenvectors. Using this latter algorithm, specific frequency bands can be filtered, without needing to compute the entire spectrum. Finally, we demonstrate some applications of our method to interactive convolution geometry filtering. These technical achievements are supported by a solid yet simple theoretic framework based on Discrete Exterior Calculus (DEC). In particular, the issues of symmetry and discretization of the operator are considered with great care.
Bibliografie:ark:/67375/WNG-5V99VKTZ-R
ArticleID:CGF1122
istex:B73CBA9B303CAA04753104D06B669D3CAF272870
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0167-7055
1467-8659
DOI:10.1111/j.1467-8659.2008.01122.x