Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest
Predicting plant community responses to changing environmental conditions is a key element of forecasting and mitigating the effects of global change. Disturbance can play an important role in these dynamics, by initiating cycles of secondary succession and generating opportunities for communities o...
Uloženo v:
| Vydáno v: | Global change biology Ročník 16; číslo 4; s. 1281 - 1295 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.04.2010
Blackwell Publishing Ltd Wiley-Blackwell |
| Témata: | |
| ISSN: | 1354-1013, 1365-2486 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Predicting plant community responses to changing environmental conditions is a key element of forecasting and mitigating the effects of global change. Disturbance can play an important role in these dynamics, by initiating cycles of secondary succession and generating opportunities for communities of long-lived organisms to reorganize in alternative configurations. This study used landscape-scale variations in environmental conditions, stand structure, and disturbance from an extreme fire year in Alaska to examine how these factors affected successional trajectories in boreal forests dominated by black spruce. Because fire intervals in interior Alaska are typically too short to allow relay succession, the initial cohorts of seedlings that recruit after fire largely determine future canopy composition. Consequently, in a dynamically stable landscape, postfire tree seedling composition should resemble that of the prefire forest stands, with little net change in tree composition after fire. Seedling recruitment data from 90 burned stands indicated that postfire establishment of black spruce was strongly linked to environmental conditions and was highest at sites that were moist and had high densities of prefire spruce. Although deciduous broadleaf trees were absent from most prefire stands, deciduous trees recruited from seed at many sites and were most abundant at sites where the fires burned severely, consuming much of the surface organic layer. Comparison of pre- and postfire tree composition in the burned stands indicated that the expected trajectory of black spruce self-replacement was typical only at moist sites that burned with low fire severity. At severely burned sites, deciduous trees dominated the postfire tree seedling community, suggesting these sites will follow alternative, deciduous-dominated trajectories of succession. Increases in the severity of boreal fires with climate warming may catalyze shifts to an increasingly deciduous-dominated landscape, substantially altering landscape dynamics and ecosystem services in this part of the boreal forest. |
|---|---|
| AbstractList | Predicting plant community responses to changing environmental conditions is a key element of forecasting and mitigating the effects of global change. Disturbance can play an important role in these dynamics, by initiating cycles of secondary succession and generating opportunities for communities of long-lived organisms to reorganize in alternative configurations. This study used landscape-scale variations in environmental conditions, stand structure, and disturbance from an extreme fire year in Alaska to examine how these factors affected successional trajectories in boreal forests dominated by black spruce. Because fire intervals in interior Alaska are typically too short to allow relay succession, the initial cohorts of seedlings that recruit after fire largely determine future canopy composition. Consequently, in a dynamically stable landscape, postfire tree seedling composition should resemble that of the prefire forest stands, with little net change in tree composition after fire. Seedling recruitment data from 90 burned stands indicated that postfire establishment of black spruce was strongly linked to environmental conditions and was highest at sites that were moist and had high densities of prefire spruce. Although deciduous broadleaf trees were absent from most prefire stands, deciduous trees recruited from seed at many sites and were most abundant at sites where the fires burned severely, consuming much of the surface organic layer. Comparison of pre- and postfire tree composition in the burned stands indicated that the expected trajectory of black spruce self-replacement was typical only at moist sites that burned with low fire severity. At severely burned sites, deciduous trees dominated the postfire tree seedling community, suggesting these sites will follow alternative, deciduous-dominated trajectories of succession. Increases in the severity of boreal fires with climate warming may catalyze shifts to an increasingly deciduous-dominated landscape, substantially altering landscape dynamics and ecosystem services in this part of the boreal forest. AbstractPredicting plant community responses to changing environmental conditions is a key element of forecasting and mitigating the effects of global change. Disturbance can play an important role in these dynamics, by initiating cycles of secondary succession and generating opportunities for communities of long-lived organisms to reorganize in alternative configurations. This study used landscape-scale variations in environmental conditions, stand structure, and disturbance from an extreme fire year in Alaska to examine how these factors affected successional trajectories in boreal forests dominated by black spruce. Because fire intervals in interior Alaska are typically too short to allow relay succession, the initial cohorts of seedlings that recruit after fire largely determine future canopy composition. Consequently, in a dynamically stable landscape, postfire tree seedling composition should resemble that of the prefire forest stands, with little net change in tree composition after fire. Seedling recruitment data from 90 burned stands indicated that postfire establishment of black spruce was strongly linked to environmental conditions and was highest at sites that were moist and had high densities of prefire spruce. Although deciduous broadleaf trees were absent from most prefire stands, deciduous trees recruited from seed at many sites and were most abundant at sites where the fires burned severely, consuming much of the surface organic layer. Comparison of pre- and postfire tree composition in the burned stands indicated that the expected trajectory of black spruce self-replacement was typical only at moist sites that burned with low fire severity. At severely burned sites, deciduous trees dominated the postfire tree seedling community, suggesting these sites will follow alternative, deciduous-dominated trajectories of succession. Increases in the severity of boreal fires with climate warming may catalyze shifts to an increasingly deciduous-dominated landscape, substantially altering landscape dynamics and ecosystem services in this part of the boreal forest. Predicting plant community responses to changing environmental conditions is a key element of forecasting and mitigating the effects of global change. Disturbance can play an important role in these dynamics, by initiating cycles of secondary succession and generating opportunities for communities of long-lived organisms to reorganize in alternative configurations. This study used landscape-scale variations in environmental conditions, stand structure, and disturbance from an extreme fire year in Alaska to examine how these factors affected successional trajectories in boreal forests dominated by black spruce. Because fire intervals in interior Alaska are typically too short to allow relay succession, the initial cohorts of seedlings that recruit after fire largely determine future canopy composition. Consequently, in a dynamically stable landscape, postfire tree seedling composition should resemble that of the prefire forest stands, with little net change in tree composition after fire. Seedling recruitment data from 90 burned stands indicated that postfire establishment of black spruce was strongly linked to environmental conditions and was highest at sites that were moist and had high densities of prefire spruce. Although deciduous broadleaf trees were absent from most prefire stands, deciduous trees recruited from seed at many sites and were most abundant at sites where the fires burned severely, consuming much of the surface organic layer. Comparison of pre- and postfire tree composition in the burned stands indicated that the expected trajectory of black spruce self-replacement was typical only at moist sites that burned with low fire severity. At severely burned sites, deciduous trees dominated the postfire tree seedling community, suggesting these sites will follow alternative, deciduous-dominated trajectories of succession. Increases in the severity of boreal fires with climate warming may catalyze shifts to an increasingly deciduous-dominated landscape, substantially altering landscape dynamics and ecosystem services in this part of the boreal forest. [PUBLICATION ABSTRACT] |
| Author | Chapin, F. Stuart III Mack, Michelle C Hollingsworth, Teresa N Johnstone, Jill F |
| Author_xml | – sequence: 1 fullname: Johnstone, Jill F – sequence: 2 fullname: Hollingsworth, Teresa N – sequence: 3 fullname: Chapin, F. Stuart III – sequence: 4 fullname: Mack, Michelle C |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22530764$$DView record in Pascal Francis |
| BookMark | eNqNkU1v1DAQhiNUJNrCb8BCAk4Jdmzn4wBSG9oFtMABKriNHGey9a43LnZW7P57HFJ66AHVlxlpnnfGM-9JcjS4AZOEMJqx-N6sM8YLmeaiKrKc0jqjOZUs2z9Kju8KR1MuRcoo40-SkxDWlFKe0-I4aZtrNawwEDOQ3ngkHldmi6T1qDZkvEZicaX0gVinN8QNJOy0xhCMG5Qlo1dr1KPzZu5wZlXYqIG0Lsot6WMI49Pkca9swGe38TS5urz43nxIl18XH5uzZapFLVkqEWXHdFkjnf6pdN-xUlCpkbW1LJWM27aaM8416rztddvxSgtddV1XiFg5TV7PfW-8-7WLg2FrgkZr1YBuF6AUBZN1VVeRfPVfUhRSMC6KCL64B67dzsfNA8Qr55wWdIJe3kIqaGV7rwZtAtx4s1X-AHkuOS0LEbl3M6e9C8FjD9qMaoyXjGc0FhiFyVFYw2QcTMbB5Cj8dRT2sUF1r8G_GQ-Qvp2lv43Fw4N1sGjOpyzq01lvwoj7O73yGyhKXkr48WUB9adF07z_-RmWkX8-871yoFY-3uPqWx5tpayipeCU_wFTctJS |
| CitedBy_id | crossref_primary_10_1111_nph_16252 crossref_primary_10_3389_ffgc_2020_00068 crossref_primary_10_1016_j_geoderma_2014_04_008 crossref_primary_10_1139_cjfr_2014_0309 crossref_primary_10_1016_j_foreco_2020_118352 crossref_primary_10_3390_fire7010019 crossref_primary_10_1002_ece3_4879 crossref_primary_10_5194_bg_15_5287_2018 crossref_primary_10_1007_s11258_022_01242_9 crossref_primary_10_1139_X10_061 crossref_primary_10_1071_WF08183 crossref_primary_10_1111_jbi_13465 crossref_primary_10_5194_hess_25_1849_2021 crossref_primary_10_1111_1365_2664_13876 crossref_primary_10_1890_ES12_00012_1 crossref_primary_10_1088_1748_9326_ac8be6 crossref_primary_10_1038_s41467_022_31597_6 crossref_primary_10_1007_s10021_023_00854_0 crossref_primary_10_1139_cjfr_2018_0209 crossref_primary_10_1111_gcb_14511 crossref_primary_10_5194_bg_13_6669_2016 crossref_primary_10_1111_jvs_12073 crossref_primary_10_1007_s11355_019_00386_7 crossref_primary_10_1890_ES11_00115_1 crossref_primary_10_1080_11956860_2020_1791686 crossref_primary_10_1111_jbi_14302 crossref_primary_10_1111_gcb_13420 crossref_primary_10_1088_1748_9326_6_4_045501 crossref_primary_10_3390_f8040106 crossref_primary_10_1016_j_rsase_2017_07_010 crossref_primary_10_1071_WF20092 crossref_primary_10_1111_gcb_13456 crossref_primary_10_3389_ffgc_2020_00087 crossref_primary_10_1890_10_0896_1 crossref_primary_10_1016_j_ecolind_2022_109705 crossref_primary_10_1029_2018JG004702 crossref_primary_10_1016_j_foreco_2018_03_008 crossref_primary_10_12952_journal_elementa_000032 crossref_primary_10_1007_s10021_021_00666_0 crossref_primary_10_1007_s00442_019_04370_8 crossref_primary_10_1146_annurev_earth_060614_105126 crossref_primary_10_1186_s40663_020_00225_4 crossref_primary_10_3390_rs15123107 crossref_primary_10_1071_WF10113 crossref_primary_10_1002_eco_2403 crossref_primary_10_1016_j_envsoft_2014_09_003 crossref_primary_10_1007_s10980_018_00766_8 crossref_primary_10_1016_j_foreco_2017_09_020 crossref_primary_10_1029_2018GL078283 crossref_primary_10_1177_0959683616632893 crossref_primary_10_1111_j_1365_2486_2012_02649_x crossref_primary_10_3390_rs6010470 crossref_primary_10_1007_s10021_023_00866_w crossref_primary_10_1080_09640568_2014_978079 crossref_primary_10_1111_j_1365_2699_2012_02714_x crossref_primary_10_1007_s00442_018_4215_2 crossref_primary_10_1038_s41558_021_01011_y crossref_primary_10_1111_1365_2664_12504 crossref_primary_10_1002_2015MS000576 crossref_primary_10_1088_1748_9326_11_9_095008 crossref_primary_10_3390_rs16081461 crossref_primary_10_1007_s10021_012_9567_6 crossref_primary_10_3389_ffgc_2020_00020 crossref_primary_10_1139_as_2025_0009 crossref_primary_10_1016_j_rse_2017_07_003 crossref_primary_10_1088_1748_9326_11_9_095001 crossref_primary_10_1007_s10980_012_9767_7 crossref_primary_10_1007_s10980_025_02146_5 crossref_primary_10_1139_cjb_2018_0050 crossref_primary_10_1111_j_1365_2486_2010_02358_x crossref_primary_10_1002_ecs2_4397 crossref_primary_10_5194_bg_12_3579_2015 crossref_primary_10_1186_s42408_025_00374_3 crossref_primary_10_1016_j_foreco_2015_12_012 crossref_primary_10_1016_j_scitotenv_2017_01_200 crossref_primary_10_3390_f6020416 crossref_primary_10_1007_s11258_013_0191_0 crossref_primary_10_1890_ES13_00372_1 crossref_primary_10_1139_er_2013_0042 crossref_primary_10_1111_ddi_12414 crossref_primary_10_1016_j_apenergy_2016_08_093 crossref_primary_10_1016_j_foreco_2013_08_055 crossref_primary_10_1002_ecy_3096 crossref_primary_10_1016_j_foreco_2014_04_002 crossref_primary_10_1890_11_2136_1 crossref_primary_10_1139_cjfr_2019_0161 crossref_primary_10_1016_j_tree_2014_07_002 crossref_primary_10_1029_2023GL105216 crossref_primary_10_1007_s40641_016_0031_0 crossref_primary_10_1016_j_earscirev_2024_104865 crossref_primary_10_1016_j_rse_2015_03_004 crossref_primary_10_1007_s11258_014_0303_5 crossref_primary_10_1016_j_foreco_2013_08_017 crossref_primary_10_1371_journal_pone_0258558 crossref_primary_10_5558_tfc2014_039 crossref_primary_10_1007_s11831_023_09893_1 crossref_primary_10_1007_s10310_012_0345_2 crossref_primary_10_1111_1365_2745_12071 crossref_primary_10_1007_s13157_024_01794_8 crossref_primary_10_1007_s10021_022_00761_w crossref_primary_10_1007_s10021_015_9912_7 crossref_primary_10_1186_s42408_023_00188_1 crossref_primary_10_1007_s10021_023_00851_3 crossref_primary_10_1038_s41558_024_02011_4 crossref_primary_10_1139_cjfr_2019_0150 crossref_primary_10_5194_bg_21_2207_2024 crossref_primary_10_1002_2017GL075488 crossref_primary_10_3389_ffgc_2023_1020305 crossref_primary_10_1016_j_foreco_2016_08_014 crossref_primary_10_1016_j_foreco_2019_04_017 crossref_primary_10_1016_j_scitotenv_2018_04_230 crossref_primary_10_1029_2021RG000757 crossref_primary_10_1111_j_1365_2664_2012_02154_x crossref_primary_10_1139_X10_074 crossref_primary_10_1002_ecs2_2182 crossref_primary_10_1002_ecy_4042 crossref_primary_10_1016_j_agrformet_2024_110216 crossref_primary_10_1002_eap_3011 crossref_primary_10_3389_fevo_2020_00252 crossref_primary_10_3390_land5030030 crossref_primary_10_3390_land13122253 crossref_primary_10_3389_fclim_2021_730943 crossref_primary_10_1007_s10021_012_9565_8 crossref_primary_10_1016_j_foreco_2019_117649 crossref_primary_10_1007_s10021_025_00992_7 crossref_primary_10_1038_nclimate3329 crossref_primary_10_1007_s10021_016_0055_2 crossref_primary_10_1080_15230430_2023_2285334 crossref_primary_10_1111_jbi_12533 crossref_primary_10_1890_ES11_00364_1 crossref_primary_10_1657_1938_4246_44_3_319 crossref_primary_10_5194_cp_15_1063_2019 crossref_primary_10_1016_j_srs_2024_100192 crossref_primary_10_1109_LGRS_2021_3112387 crossref_primary_10_1038_s41558_021_01027_4 crossref_primary_10_1002_ecs2_3129 crossref_primary_10_1139_cjfr_2012_0486 crossref_primary_10_1890_08_2295_1 crossref_primary_10_1111_1365_2435_13132 crossref_primary_10_1186_s40168_021_01001_4 crossref_primary_10_1016_j_jenvrad_2019_106128 crossref_primary_10_1073_pnas_1305069110 crossref_primary_10_3390_fire6090364 crossref_primary_10_1007_s10980_022_01427_7 crossref_primary_10_1186_s13021_021_00184_5 crossref_primary_10_5194_acp_22_12493_2022 crossref_primary_10_1002_ecs2_3379 crossref_primary_10_1038_s41467_018_08237_z crossref_primary_10_1007_s41976_020_00038_7 crossref_primary_10_1111_gcb_15118 crossref_primary_10_1007_s10980_023_01733_8 crossref_primary_10_1002_eap_1724 crossref_primary_10_1038_s43247_024_01333_7 crossref_primary_10_1111_gcb_14380 crossref_primary_10_3389_fpls_2018_01318 crossref_primary_10_1016_j_jenvman_2021_112994 crossref_primary_10_1002_ecs2_2156 crossref_primary_10_1128_AEM_02575_10 crossref_primary_10_1007_s10584_017_1923_2 crossref_primary_10_1890_ES11_00288_1 crossref_primary_10_1111_ddi_12356 crossref_primary_10_1139_er_2013_0064 crossref_primary_10_3390_f14081577 crossref_primary_10_1038_ngeo2325 crossref_primary_10_1038_s41598_020_73095_z crossref_primary_10_1139_er_2015_0090 crossref_primary_10_1007_s11676_015_0084_2 crossref_primary_10_1002_ecy_2181 crossref_primary_10_1007_s11104_017_3386_7 crossref_primary_10_1002_ecm_1369 crossref_primary_10_1016_j_catena_2024_108114 crossref_primary_10_1016_j_catena_2024_108478 crossref_primary_10_1007_s10021_015_9920_7 crossref_primary_10_1016_j_foreco_2017_02_018 crossref_primary_10_5194_bg_13_675_2016 crossref_primary_10_1007_s10531_016_1286_4 crossref_primary_10_1029_2021JG006465 crossref_primary_10_1016_j_rse_2017_12_029 crossref_primary_10_1071_WF17095 crossref_primary_10_1139_cjfr_2017_0013 crossref_primary_10_1080_15230430_2021_1899562 crossref_primary_10_1093_aob_mcae055 crossref_primary_10_1002_ecs2_4558 crossref_primary_10_1002_ecs2_4672 crossref_primary_10_1139_er_2023_0075 crossref_primary_10_1139_cjfr_2020_0483 crossref_primary_10_1007_s10530_013_0633_6 crossref_primary_10_1007_s10980_015_0306_1 crossref_primary_10_1073_pnas_1409316111 crossref_primary_10_1007_s10980_011_9574_6 crossref_primary_10_1186_s40462_020_00223_9 crossref_primary_10_3390_f12010093 crossref_primary_10_1029_2022JG007107 crossref_primary_10_1016_j_ecolmodel_2021_109472 crossref_primary_10_1016_j_rse_2017_11_007 crossref_primary_10_1111_gcb_13461 crossref_primary_10_1111_gcb_14550 crossref_primary_10_3390_rs15225274 crossref_primary_10_1002_ecs2_1398 crossref_primary_10_1007_s10021_017_0177_1 crossref_primary_10_1111_gcb_12288 crossref_primary_10_1371_journal_pone_0059747 crossref_primary_10_1038_s41558_020_00920_8 crossref_primary_10_1016_j_foreco_2013_06_056 crossref_primary_10_1016_j_envsoft_2022_105513 crossref_primary_10_1016_j_foreco_2021_119386 crossref_primary_10_3390_rs13122247 crossref_primary_10_1073_pnas_1902841116 crossref_primary_10_3390_f10110992 crossref_primary_10_1007_s10021_010_9383_9 crossref_primary_10_3897_BDJ_6_e27427 crossref_primary_10_1016_j_funeco_2022_101222 crossref_primary_10_1002_ecy_2493 crossref_primary_10_1016_j_enpol_2021_112477 crossref_primary_10_1111_gcb_13124 crossref_primary_10_1139_cjz_2017_0069 crossref_primary_10_1890_13_1477_1 crossref_primary_10_1016_j_envsoft_2022_105410 crossref_primary_10_3390_land10020136 crossref_primary_10_1139_er_2020_0019 crossref_primary_10_7717_peerj_4160 crossref_primary_10_1016_j_accre_2021_01_001 crossref_primary_10_3390_rs15061489 crossref_primary_10_1002_ecs2_3430 crossref_primary_10_3832_ifor2145_009 crossref_primary_10_1093_biosci_biab139 crossref_primary_10_3390_su10103531 crossref_primary_10_1002_hyp_14251 crossref_primary_10_1002_eap_1420 crossref_primary_10_1016_j_rse_2022_112935 crossref_primary_10_1139_cjfr_2013_0022 crossref_primary_10_1016_j_envsoft_2020_104884 crossref_primary_10_1038_s41477_019_0495_8 crossref_primary_10_1007_s10021_016_0097_5 crossref_primary_10_1007_s10531_019_01806_8 crossref_primary_10_1111_ecog_05211 crossref_primary_10_1111_jvs_12740 crossref_primary_10_3390_su14095462 crossref_primary_10_1038_s41598_017_15644_7 crossref_primary_10_1016_j_rse_2012_11_017 crossref_primary_10_1016_j_foreco_2019_01_004 crossref_primary_10_1890_ES13_00038_1 crossref_primary_10_4996_fireecology_0603016 crossref_primary_10_1002_eap_2983 crossref_primary_10_1088_1748_9326_11_3_035004 crossref_primary_10_1071_WF15026 crossref_primary_10_1088_1748_9326_ab083d crossref_primary_10_1080_20964129_2021_1973346 crossref_primary_10_1088_1748_9326_ad98aa crossref_primary_10_1016_j_quascirev_2020_106293 crossref_primary_10_1016_j_foreco_2017_05_026 crossref_primary_10_3390_rs61212639 crossref_primary_10_1002_ece3_5061 crossref_primary_10_1016_j_foreco_2015_10_035 crossref_primary_10_1016_j_scitotenv_2022_154885 crossref_primary_10_1016_j_foreco_2012_11_039 crossref_primary_10_1038_s41558_020_00922_6 crossref_primary_10_1016_j_foreco_2017_04_005 crossref_primary_10_1073_pnas_1110199108 crossref_primary_10_1111_1365_2745_12950 crossref_primary_10_1139_cjfr_2022_0092 crossref_primary_10_1007_s10980_015_0201_9 crossref_primary_10_1016_j_foreco_2022_120522 crossref_primary_10_1371_journal_pone_0250078 crossref_primary_10_1002_ecs2_2431 crossref_primary_10_1007_s10584_015_1373_7 crossref_primary_10_3390_earth3010011 crossref_primary_10_1111_geb_13529 crossref_primary_10_1002_ppp_2048 crossref_primary_10_1002_2015JG003133 crossref_primary_10_1016_j_jag_2019_03_004 crossref_primary_10_1016_j_jag_2023_103410 crossref_primary_10_1073_pnas_2202190119 crossref_primary_10_1002_ecy_2223 crossref_primary_10_1073_pnas_2404391121 crossref_primary_10_1002_ecs2_1572 crossref_primary_10_1038_s41467_023_39092_2 crossref_primary_10_1371_journal_pone_0056033 crossref_primary_10_1002_ecm_1644 crossref_primary_10_1016_j_foreco_2024_122173 crossref_primary_10_1111_j_1654_1103_2010_01231_x crossref_primary_10_3390_f8030076 crossref_primary_10_1139_as_2023_0070 crossref_primary_10_3390_land11030322 crossref_primary_10_1016_j_scitotenv_2015_02_081 crossref_primary_10_1016_j_foreco_2016_04_026 crossref_primary_10_1088_1748_9326_8_4_041004 crossref_primary_10_1371_journal_pone_0235932 crossref_primary_10_1093_jofore_fvy019 crossref_primary_10_1002_ecm_1471 crossref_primary_10_1111_gcb_14287 crossref_primary_10_1111_nph_16611 crossref_primary_10_1016_j_chemgeo_2012_10_045 crossref_primary_10_1111_gcb_13072 crossref_primary_10_1002_ecs2_3622 crossref_primary_10_1098_rsos_172055 crossref_primary_10_3389_ffgc_2023_1130532 crossref_primary_10_1016_j_chemosphere_2025_144686 crossref_primary_10_1111_gcb_14279 crossref_primary_10_1002_ecs2_70357 crossref_primary_10_1016_j_forpol_2012_06_001 crossref_primary_10_1088_2752_664X_ad7d94 crossref_primary_10_1073_pnas_2024872118 crossref_primary_10_1016_j_forpol_2018_03_010 crossref_primary_10_1111_gcb_13181 crossref_primary_10_3390_f16050777 crossref_primary_10_1002_ecm_1220 crossref_primary_10_24057_2071_9388_2024_3121 crossref_primary_10_1016_j_foreco_2014_05_006 crossref_primary_10_1002_ecm_1587 crossref_primary_10_1186_s42408_025_00359_2 crossref_primary_10_1890_ES10_00102_1 crossref_primary_10_1007_s00442_021_04864_4 crossref_primary_10_1002_eap_1641 crossref_primary_10_1016_j_landurbplan_2011_02_019 crossref_primary_10_12677_wjf_2024_134038 crossref_primary_10_1080_10549811_2014_883998 crossref_primary_10_1071_WF18203 crossref_primary_10_1139_cjfr_2022_0054 crossref_primary_10_1007_s10980_016_0414_6 crossref_primary_10_1007_s10584_015_1375_5 crossref_primary_10_1002_ecs2_2991 crossref_primary_10_1016_j_rse_2013_04_003 crossref_primary_10_1186_s42408_024_00272_0 crossref_primary_10_5194_esd_15_1459_2024 crossref_primary_10_1016_j_foreco_2017_05_012 crossref_primary_10_1016_j_rse_2016_02_059 crossref_primary_10_1007_s10533_009_9403_z crossref_primary_10_5194_essd_16_5009_2024 crossref_primary_10_1002_ppp_2247 crossref_primary_10_1002_eap_1636 crossref_primary_10_1186_s42408_019_0049_5 crossref_primary_10_3390_f8010012 crossref_primary_10_1126_science_abf3903 crossref_primary_10_1007_s10021_018_0251_3 crossref_primary_10_1002_ecy_2660 crossref_primary_10_1016_j_envsoft_2017_04_004 crossref_primary_10_1002_fee_2188 crossref_primary_10_3390_rs6109145 crossref_primary_10_1016_j_catena_2025_108970 crossref_primary_10_1002_ecs2_2985 crossref_primary_10_5194_tc_19_3991_2025 crossref_primary_10_1002_ecs2_1410 crossref_primary_10_1002_ecs2_3818 crossref_primary_10_1139_cjfr_2015_0439 crossref_primary_10_1038_s41558_023_01851_w crossref_primary_10_1111_gcb_14804 crossref_primary_10_1111_jvs_12465 crossref_primary_10_1088_1748_9326_8_3_035030 crossref_primary_10_3390_f13040491 crossref_primary_10_1002_ecs2_2832 crossref_primary_10_1002_ece3_9933 crossref_primary_10_4039_tce_2015_38 crossref_primary_10_3390_f9030130 crossref_primary_10_1088_1748_9326_aa6ade crossref_primary_10_1007_s10021_022_00772_7 crossref_primary_10_3389_ffgc_2020_00003 crossref_primary_10_1016_j_foreco_2011_07_011 crossref_primary_10_1016_j_foreco_2024_122313 crossref_primary_10_1016_j_rse_2010_08_022 crossref_primary_10_1088_1748_9326_ac7539 crossref_primary_10_1139_cjfr_2018_0278 crossref_primary_10_1111_1365_2745_13403 crossref_primary_10_1111_1365_2745_12315 crossref_primary_10_1038_srep37572 crossref_primary_10_1016_j_foreco_2020_118523 crossref_primary_10_1007_s10021_012_9592_5 crossref_primary_10_5194_acp_16_9047_2016 crossref_primary_10_1016_j_foreco_2016_05_010 crossref_primary_10_1890_ES11_00038_1 crossref_primary_10_5194_bg_22_3635_2025 crossref_primary_10_1002_ecs2_1848 crossref_primary_10_1016_j_foreco_2011_11_006 crossref_primary_10_1088_1748_9326_ab215f crossref_primary_10_1071_WF24062 crossref_primary_10_1111_1365_2745_13517 crossref_primary_10_1002_ecy_1897 crossref_primary_10_1016_j_foreco_2025_122506 crossref_primary_10_1016_j_agrformet_2021_108511 crossref_primary_10_1111_jvs_12250 crossref_primary_10_3390_f9030151 crossref_primary_10_1016_j_foreco_2017_07_033 crossref_primary_10_1016_j_foreco_2015_03_011 crossref_primary_10_1016_j_foreco_2010_10_021 crossref_primary_10_3390_rs11060603 crossref_primary_10_1029_2021JD035589 crossref_primary_10_1007_s11258_022_01237_6 crossref_primary_10_1371_journal_pone_0238004 crossref_primary_10_3389_fevo_2022_869130 crossref_primary_10_1111_ecog_04445 crossref_primary_10_1890_14_2302_1 crossref_primary_10_1007_s11056_019_09745_6 crossref_primary_10_1016_j_scitotenv_2025_179770 crossref_primary_10_1029_2020JG006044 crossref_primary_10_1016_j_ecolmodel_2011_06_009 crossref_primary_10_1890_10_0097_1 crossref_primary_10_3390_land13081130 crossref_primary_10_3390_rs17162757 crossref_primary_10_1016_j_ecolmodel_2023_110367 crossref_primary_10_1016_j_foreco_2012_07_005 crossref_primary_10_3390_atmos11090956 crossref_primary_10_1007_s13280_011_0226_5 crossref_primary_10_1016_j_jhydrol_2023_129646 crossref_primary_10_1080_11956860_2018_1564484 crossref_primary_10_1002_eap_2549 crossref_primary_10_5194_bg_10_699_2013 crossref_primary_10_1111_j_1365_2486_2011_02412_x crossref_primary_10_1134_S1995425524700999 crossref_primary_10_1016_j_ecolmodel_2019_108765 crossref_primary_10_1016_j_ecolind_2024_112745 crossref_primary_10_1016_j_ecolind_2023_110495 crossref_primary_10_1016_j_foreco_2019_03_040 crossref_primary_10_1088_1748_9326_ac4c1e crossref_primary_10_1002_2015JG003201 crossref_primary_10_1111_1365_2745_13446 crossref_primary_10_1016_j_foreco_2011_12_009 crossref_primary_10_3390_f11080815 crossref_primary_10_1111_jvs_12443 crossref_primary_10_1007_s10980_015_0268_3 crossref_primary_10_1186_s12898_016_0075_y crossref_primary_10_1088_1748_9326_11_10_105003 crossref_primary_10_1080_07038992_2018_1437719 crossref_primary_10_1016_j_ecoleng_2017_05_033 crossref_primary_10_1088_1748_9326_8_3_035013 crossref_primary_10_1111_geb_13174 crossref_primary_10_1134_S1995425521020050 crossref_primary_10_1016_j_foreco_2024_121691 crossref_primary_10_5194_bg_16_4357_2019 crossref_primary_10_1016_j_foreco_2025_122820 crossref_primary_10_1007_s10021_019_00384_8 crossref_primary_10_1890_12_1742_1 crossref_primary_10_1002_ece3_71974 crossref_primary_10_1016_j_foreco_2017_09_068 crossref_primary_10_1371_journal_pone_0224056 |
| Cites_doi | 10.1071/WF06034 10.1139/x05-087 10.1890/1540-9295(2003)001[0351:SALFTY]2.0.CO;2 10.1139/X06-245 10.1890/04-1621 10.1017/CBO9780511565489.006 10.1046/j.0022-0477.2001.00646.x 10.1038/313570a0 10.1007/s10021-009-9240-x 10.1007/s10021-007-9114-z 10.1641/B580609 10.1111/j.1365-2699.1997.tb00076.x 10.1111/j.1365-2745.2006.01104.x 10.1126/science.1117368 10.1098/rstb.2001.1043 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2 10.2307/5037 10.1139/x04-059 10.1007/s100210000047 10.2307/3236549 10.1139/x98-211 10.1111/j.1654-1103.2002.tb02087.x 10.1007/s00442-005-0173-6 10.1086/587826 10.2307/2265709 10.1139/X08-039 10.1890/07-1289.1 10.1007/s10021-005-0061-2 10.1890/1051-0761(2001)011[0097:FTAWIT]2.0.CO;2 10.1139/x04-073 10.1111/j.0022-0477.2004.00887.x 10.1139/x06-061 10.1111/j.1466-822X.2005.00168.x 10.1139/x81-076 10.1890/03-0276 10.1073/pnas.0403822101 10.2307/1311560 10.1139/b71-103 10.1139/x97-086 10.1890/03-0656 10.1016/j.foreco.2008.09.022 10.1890/0012-9658(1998)079[2641:PIATOO]2.0.CO;2 10.2737/PNW-GTR-767 10.1111/j.1365-2699.2004.01185.x 10.1007/s10584-005-5935-y 10.1214/aos/1013203451 8110.1029/2001JD000570 18210.11029/12004GL020876 10.2307/1940722 10.1579/0044-7447-33.6.361 10.1139/x02-104 10.1007/978-1-4612-5950-3_23 10.1002/(SICI)1099-1646(199901/06)15:1/3<43::AID-RRR535>3.0.CO;2-Q 10.1007/s10021-005-0054-1 10.1890/07-0539.1 10.1139/X09-068 03010.01029/02007JG000458 10.1007/s100219900046 10.1007/978-1-4612-4902-3_15 10.2307/3235983 10.1111/j.1461-0248.2008.01173.x 10.1111/j.1365-2656.2008.01390.x 10.1139/x03-183 10.1007/s10021-004-0042-x 10.2307/1940065 10.1139/x01-065 10.1890/0012-9658(2000)081[1500:SASDIT]2.0.CO;2 10.3354/meps321267 10.1111/j.1365-2486.2008.01679.x 10.1890/0012-9658(2003)084[1403:UATMOM]2.0.CO;2 10.1007/s100219900066 10.1016/S0065-2504(08)60171-3 10.1007/s10021-001-0076-2 10.2307/3237263 |
| ContentType | Journal Article |
| Copyright | 2009 Blackwell Publishing Ltd 2015 INIST-CNRS 2010 Blackwell Publishing Ltd |
| Copyright_xml | – notice: 2009 Blackwell Publishing Ltd – notice: 2015 INIST-CNRS – notice: 2010 Blackwell Publishing Ltd |
| DBID | FBQ BSCLL AAYXX CITATION IQODW 7SN 7UA C1K F1W H97 L.G 7S9 L.6 7ST 7TV 7U6 SOI |
| DOI | 10.1111/j.1365-2486.2009.02051.x |
| DatabaseName | AGRIS Istex CrossRef Pascal-Francis Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic Environment Abstracts Pollution Abstracts Sustainability Science Abstracts Environment Abstracts |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic Pollution Abstracts Environment Abstracts Sustainability Science Abstracts |
| DatabaseTitleList | AGRICOLA CrossRef Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Biology Environmental Sciences Forestry |
| EISSN | 1365-2486 |
| EndPage | 1295 |
| ExternalDocumentID | 1968704401 22530764 10_1111_j_1365_2486_2009_02051_x GCB2051 ark_67375_WNG_9JGCCDXM_L US201301807430 |
| Genre | article Feature |
| GeographicLocations | Alaska USA, Alaska |
| GeographicLocations_xml | – name: Alaska – name: USA, Alaska |
| GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABHUG ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHBTC AHEFC AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHBH AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE AITYG ALVPJ BSCLL HGLYW OIG AAYXX CITATION O8X IQODW 7SN 7UA C1K F1W H97 L.G 7S9 L.6 7ST 7TV 7U6 SOI |
| ID | FETCH-LOGICAL-c4951-5ee5d1c79e01013acfd17405ce1b957a5111bc3133cec2bfcbd38c4c8ddd64bc3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 486 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000274813800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1354-1013 |
| IngestDate | Mon Oct 06 18:20:44 EDT 2025 Fri Jul 11 10:35:07 EDT 2025 Mon Nov 10 02:53:34 EST 2025 Mon Jul 21 09:16:22 EDT 2025 Sat Nov 29 06:02:14 EST 2025 Tue Nov 18 22:14:15 EST 2025 Sun Sep 21 06:18:48 EDT 2025 Tue Nov 11 03:31:32 EST 2025 Mon Apr 08 05:20:46 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | boosted regression trees Plant juvenile growth stage Decision tree postfire succession Recruitment Dicotyledones Fires Topography Angiospermae Gymnospermae Alaska Picea mariana Betulaceae composite burn index Boreal forest Populus tremuloides Betula neoalaskana fire severity Woody plant Salicaceae Fire ecology Coniferales Spermatophyta Betula seedling recruitment |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4951-5ee5d1c79e01013acfd17405ce1b957a5111bc3133cec2bfcbd38c4c8ddd64bc3 |
| Notes | http://hdl.handle.net/10113/40754 http://dx.doi.org/10.1111/j.1365-2486.2009.02051.x istex:ABB817734BA0E5D8AB47202D6000A423386B2D37 ArticleID:GCB2051 ark:/67375/WNG-9JGCCDXM-L SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
| PQID | 205230606 |
| PQPubID | 30327 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_746159898 proquest_miscellaneous_46541346 proquest_journals_205230606 pascalfrancis_primary_22530764 crossref_citationtrail_10_1111_j_1365_2486_2009_02051_x crossref_primary_10_1111_j_1365_2486_2009_02051_x wiley_primary_10_1111_j_1365_2486_2009_02051_x_GCB2051 istex_primary_ark_67375_WNG_9JGCCDXM_L fao_agris_US201301807430 |
| PublicationCentury | 2000 |
| PublicationDate | April 2010 |
| PublicationDateYYYYMMDD | 2010-04-01 |
| PublicationDate_xml | – month: 04 year: 2010 text: April 2010 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
| PublicationTitle | Global change biology |
| PublicationYear | 2010 |
| Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Wiley-Blackwell |
| Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Wiley-Blackwell |
| References | Fastie CL (1995) Causes and ecosystem consequences of multiple pathways of primary succession at Glacier Bay, Alaska. Ecology, 76, 1899-1916. Parisien MA, Moritz M (2009) Environmental controls on the distribution of wildfire at multiple spatial scales. Ecological Monographs, 79, 127-154. Cumming SG (2001) Forest type and wildfire in the Alberta boreal mixedwood: what do fires burn? Ecological Applications, 11, 97-110. Johnstone JF, Chapin FS III (2006a) Effects of soil burn severity on post-fire tree recruitment in boreal forests. Ecosystems, 9, 14-31. Holtmeier F-K, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Global Ecology and Biogeography, 14, 395-410. Higgins PAT, Mastrandrea MD, Schneider SH (2002) Dynamics of climate and ecosystem coupling: abrupt changes and multiple equilibria. Philosophical Transactions of the Royal Society of London B, 357, 647-655. De Grandpre L, Morissette J, Gauthier S (2000) Long-term post-fire changes in the northeastern boreal forest of Quebec. Journal of Vegetation Science, 11, 791-800. Camill P, Clark JS (2000) Long-term perspectives on lagged ecosystem responses to climate change: permafrost in boreal peatlands and the grassland/woodland boundary. Ecosystems, 3, 534-544. Chapin FS III, Sturm M, Serreze MC et al. (2005) Role of land-surface changes in arctic summer warming. Science, 310, 657-660. Johnstone JF, Boby LA, Tissier E, Mack M, Verbyla DL, Walker X (2009) Post-fire seed rain of black spruce, a semi-serotinous conifer, in forests of interior Alaska. Canadian Journal of Forest Research, in press. Foster DR, Knight DH, Franklin JF (1998) Landscape patterns and legacies resulting from large, infrequent forest disturbances. Ecosystems, 1, 497-510. Calef MP, McGuire AD, Epstein HE, Rupp TS, Shugart HH (2005) Analysis of vegetation distribution in interior Alaska and sensitivity to climate change using a logistic regression approach. Journal of Biogeography, 32, 863-878. Kane ES, Kasischke ES, Valentine DW, Turetsky MR, McGuire AD (2007) Topographic influences on wildfire consumption of soil organic carbon in interior Alaska: implications for black carbon accumulation. Journal of Geophysical Research, 112, G03017, doi: DOI: 03010.01029/02007JG000458. Payette S, Gagnon R (1985) Late Holocene deforestation and tree regeneration in the forest-tundra of Quebec. Nature, 313, 570-572. Peters DPC, Pielke RA, Bestelmeyer BT, Allen CD, Muson-McGee S, Havstad KM (2004) Cross-scale interactions, nonlinearities, and forecasting catastrophic events. Proceedings of the National Academy of Sciences, 101, 15130-15135. Greene DF, Noel J, Bergeron Y, Rousseau M, Gauthier S (2004) Recruitment of Picea mariana, Pinus banksiana, and Populus tremuloides across a burn severity gradient following wildfire in the southern boreal forest of Quebec. Canadian Journal of Forest Research, 34, 1845-1857. Gillett NP, Weaver AJ, Zwiers FW, Flannigan MD (2004) Detecting the effect of climate change on Canadian forest fires. Geophysical Research Letters, 31, L18211, doi: DOI: 18210.11029/12004GL020876. Arseneault D, Sirois L (2004) The millenial dynamics of a boreal forest stand from buried trees. Journal of Ecology, 92, 490-504. Jasinski JPP, Payette S (2005) The creation of alternative stable states in the southern boreal forest, Quebec, Canada. Ecological Monographs, 75, 561-583. Todd SK, Jewkes HA (2006) Fire in Alaska: A History of Organized Fire Suppression and Management in the Last Frontier Ag. For. Exp. Station Bull. 113. University of Alaska Fairbanks, Fairbanks, AK. Yarie J (1981) Forest fire cycles and life tables: a case study from interior Alaska. Canadian Journal of Forest Research, 11, 554-562. De Groot WJ, Bothwell PM, Taylor SW, Wotton BM, Stocks BJ, Alexander ME (2004) Jack pine regeneration and crown fires. Canadian Journal of Forest Research, 34, 1634-1641. Lavoie L, Sirois L (1998) Vegetation changes caused by recent fires in the northern boreal forest of eastern Canada. Journal of Vegetation Science, 9, 483-492. Johnstone JF, Hollingsworth TN, Chapin FS III (2008) A key for predicting post-fire successional trajectories in black spruce stands of interior Alaska PNW-GTR-767. USDA Forest Service, Pacific Northwest Research Station, Portland, OR. Larsen CPS (1997) Spatial and temporal variations in boreal forest fire frequency in northern Alberta. Journal of Biogeography, 24, 663-673. Lavertu D, Mauffette Y, Bergeron Y (1994) Effects of stand age and litter removal on the regeneration of Populus tremuloides. Journal of Vegetation Science, 5, 561-568. Davis MB, Calcote RR, Sugita S, Takahara H (1998) Patchy invasion and the origin of a hemlock-hardwoods forest mosaic. Ecology, 79, 2641-2659. Law R, Morton RD (1993) Alternative permanent states of ecological communities. Ecology, 74, 1347-1361. Chapin FSI, Trainor SF, Huntington O et al. (2008) Increasing wildfire in Alaska's boreal forest: pathways to potential solutions of a wicked problem. BioScience, 58, 531-540. Schulze ED, Wirth C, Mollicone D, Ziegler W (2005) Succession after stand replacing disturbances by fire, wind throw, and insects in the dark Taiga of Central Siberia. Oecologia, 146, 77-88. Rydgren K, Okland RH, Hestmark G (2004) Disturbance severity and community resilience in a boreal forest. Ecology, 85, 1906-1915. Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802-813. Duffy PA, Epting J, Graham JM, Rupp TS, McGuire AD (2007) Analysis of Alaskan burn severity patterns using remotely sensed data. International Journal of Wildland Fire, 16, 277-284. Chapin FS III, Callaghan TV, Bergeron Y, Fukuda M, Johnstone JF, Juday G, Zimov SA (2004) Global change and the boreal forest: thresholds, shifting states or gradual change? Ambio, 33, 361-365. Johnstone JF, Chapin FS III, Foote J, Kemmett S, Price K, Viereck L (2004) Decadal observations of tree regeneration following fire in boreal forests. Canadian Journal of Forest Research, 34, 267-273. Westoby M (1984) The self-thinning rule. Advances in Ecological Research, 14, 167-225. Nelson JL, Zavaleta ES, Chapin FS III (2008) Boreal fire effects on subsistence resources in Alaska and adjacent Canada. Ecosystems, 11, 156-171. Turner MG, Romme WH, Tinker DB (2003) Surprises and lessons from the 1988 Yellowstone fires. Frontiers in Ecology and Environment, 1, 351-358. Bergeron Y (2000) Species and stand dynamics in the mixed woods of Quebec's southern boreal forest. Ecology, 81, 1500-1516. Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems, 9, 181-199. Scheffer M, Carpenter S, Foley J, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature, 413, 591-596. Feng Z, Liu R, DeAngelis DL, Bryan JP, Kielland K, Chapin FSI, Swihart RK (2009) Plant toxicity, adaptive herbivory, and plant community dynamics. Ecosystems, 12, 534-547. Bennie J, Hill MO, Baxter R, Huntley B (2006) Influence of slope and aspect on long-term vegetation change in British chalk grasslands. Journal of Ecology, 94, 355-368. Peterson GD, Carpenter SR, Brock WA (2003) Uncertainty and the management of multistate ecosystems: an apparently rational route to collapse. Ecology, 84, 1403-1411. Vasiliauskas S, Chen HYH (2002) How long do trees take to reach breast height after fire in northeastern Ontario? Canadian Journal of Forest Research, 32, 1889-1892. Turner MG, Gardner RH, O'Neill RV (2001) Landscape Ecology in Theory and Practice. Springer-Verlag, New York. Chen HYH, Vasiliauskas S, Kayahara GJ, Ilisson T (2009) Wildfire promotes broadleaves and species mixture in boreal forest. Forest Ecology and Management, 257, 343-350. Frelich LE, Reich PB (1999) Neighborhood effects, disturbance severity, and community stability in forests. Ecosystems, 2, 151-166. Dublin HT, Sinclair ARE, McGlade J (1990) Elephants and fire as causes of multiple stable states in the Serengeti-Mara woodlands. Journal of Animal Ecology, 59, 1147-1164. Holling CS, Allen CR (2002) Adaptive inference for distinguishing credible from incredible patterns in nature. Ecosystems, 5, 319-328. Johnstone JF, Chapin FS III (2006b) Fire interval effects on successional trajectory in boreal forests of Northwest Canada. Ecosystems, 9, 268-277. Peters VS, Macdonald SE, Dale MRT (2005) The interaction between masting and fire is key to white spruce regeneration. Ecology, 86, 1744-1750. Gutsell S, Johnson EA (2002) Accurately ageing trees and examining their height-growth rates: implications for interpreting forest dynamics. Journal of Ecology, 90, 153-166. Fastie CL, Lloyd AH, Doak P (2003) Fire history and postfire forest development in an upland watershed of interior Alaska. Journal of Geophysical Research, 108, 8150, doi: DOI: 8110.1029/2001JD000570. Greene DF, Macdonald ES, Haeussler S et al. (2007) The reduction of organic-layer depth by wildfire in the North American boreal forest and its effect on tree recruitment by seed. Canadian Journal of Forest Research, 37, 1012-1023. Whittaker RH (1975) Communities and Ecosystems. Macmillan, New York. Boby LA (2007) Quantifying fire severity and carbon and nitrogen pools and emissions in Alaska's boreal black spruce forest. Master's of Science thesis, University of Florida, Gainesville, FL, USA. Clark JS, Royall PD, Chumbley C (1996) The role of fire during climate change in an eastern deciduous forest at Devil's Bathtub, New York. Ecology, 77, 2148-2166. De'ath G (2007) Boosted trees for ecological modeling and prediction. Ecology, 88, 243-251. Olden JD, Lawler JJ, Poff NL (2008) Machine learning methods without tears for ecologists. Quarterly Review of Biology, 83, 171-193. Conover WJ (1999) Practical Nonparametric Statistics. John Wiley and Sons, New York. Johnson EA, Miyanishi K (2008) Testing the assumptions of chronosequences in succession. Ecology Letters, 11, 419-431. Van Cleve K, Chapin F 2006b; 9 1990; 59 1971; 49 2000; 3 2002; 13 2006; 36 2008; 38 1995; 76 1975 2002; 357 2008; 77 2007; 37 1996; 77 2009; 12 2004; 33 2004; 31 2001 1984; 14 2005; 146 1991; 41 2000; 11 2004; 34 1993; 74 1986 2005; 75 2005; 32 1983 2002; 90 1981 2005; 72 2003; 1 2001; 11 2003; 84 2006; 321 2009; 15 2005; 35 2001; 413 2004; 101 2004; 85 2006; 94 2005; 310 1999; 29 2002; 5 1997; 24 2006; 9 2002; 32 2009 2008; 58 2008 2007 2005; 86 1997; 27 2006 2005 2008; 11 1999; 2 1992 2001; 29 2009; 257 1999 2007; 16 2007; 112 2006a; 9 2009; 79 2003; 108 2004; 92 2000; 81 1985; 313 1998; 1 2008; 83 2007; 88 1994; 5 2001; 31 1998; 9 1998; 79 2005; 14 1981; 11 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 Key CH (e_1_2_6_55_1) 2005 Todd SK (e_1_2_6_75_1) 2006 e_1_2_6_19_1 Whittaker RH (e_1_2_6_83_1) 1975 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 Van Cleve K (e_1_2_6_79_1) 1981 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 Johnstone JF (e_1_2_6_48_1) 2009 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 Viereck LA (e_1_2_6_81_1) 1983 Turner MG (e_1_2_6_76_1) 2001 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 Conover WJ (e_1_2_6_17_1) 1999 e_1_2_6_63_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_80_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_82_1 Johnstone JF (e_1_2_6_52_1) 2008 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 Boby LA (e_1_2_6_8_1) 2007 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
| References_xml | – reference: Larsen CPS (1997) Spatial and temporal variations in boreal forest fire frequency in northern Alberta. Journal of Biogeography, 24, 663-673. – reference: De Groot WJ, Bothwell PM, Taylor SW, Wotton BM, Stocks BJ, Alexander ME (2004) Jack pine regeneration and crown fires. Canadian Journal of Forest Research, 34, 1634-1641. – reference: Duffy PA, Epting J, Graham JM, Rupp TS, McGuire AD (2007) Analysis of Alaskan burn severity patterns using remotely sensed data. International Journal of Wildland Fire, 16, 277-284. – reference: Hollingsworth TN, Walker MD, Chapin FS III, Parsons AL (2006) Scale-dependent environmental controls over species composition in Alaskan black spruce communities. Canadian Journal of Forest Research, 36, 1781-1796. – reference: Johnson EA, Miyanishi K (2008) Testing the assumptions of chronosequences in succession. Ecology Letters, 11, 419-431. – reference: Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802-813. – reference: Fastie CL, Lloyd AH, Doak P (2003) Fire history and postfire forest development in an upland watershed of interior Alaska. Journal of Geophysical Research, 108, 8150, doi: DOI: 8110.1029/2001JD000570. – reference: McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. Journal of Vegetation Science, 13, 603-606. – reference: Arseneault D (2001) Impact of fire behavior on postfire forest development in a homogeneous boreal landscape. Canadian Journal of Forest Research, 31, 1367-1374. – reference: Boby LA (2007) Quantifying fire severity and carbon and nitrogen pools and emissions in Alaska's boreal black spruce forest. Master's of Science thesis, University of Florida, Gainesville, FL, USA. – reference: Leathwick JR, Elith J, Francis MP, Hastie T, Taylor P (2006) Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Marine Ecology Progress Series, 321, 267-281. – reference: Schulze ED, Wirth C, Mollicone D, Ziegler W (2005) Succession after stand replacing disturbances by fire, wind throw, and insects in the dark Taiga of Central Siberia. Oecologia, 146, 77-88. – reference: Dublin HT, Sinclair ARE, McGlade J (1990) Elephants and fire as causes of multiple stable states in the Serengeti-Mara woodlands. Journal of Animal Ecology, 59, 1147-1164. – reference: Higgins PAT, Mastrandrea MD, Schneider SH (2002) Dynamics of climate and ecosystem coupling: abrupt changes and multiple equilibria. Philosophical Transactions of the Royal Society of London B, 357, 647-655. – reference: De'ath G (2007) Boosted trees for ecological modeling and prediction. Ecology, 88, 243-251. – reference: Fastie CL (1995) Causes and ecosystem consequences of multiple pathways of primary succession at Glacier Bay, Alaska. Ecology, 76, 1899-1916. – reference: Frelich LE, Reich PB (1999) Neighborhood effects, disturbance severity, and community stability in forests. Ecosystems, 2, 151-166. – reference: Whittaker RH (1975) Communities and Ecosystems. Macmillan, New York. – reference: Johnstone JF, Boby LA, Tissier E, Mack M, Verbyla DL, Walker X (2009) Post-fire seed rain of black spruce, a semi-serotinous conifer, in forests of interior Alaska. Canadian Journal of Forest Research, in press. – reference: DesRochers A, Gagnon R (1997) Is ring count at ground level a good estimation of black spruce age? Canadian Journal of Forest Research, 27, 1263-1267. – reference: Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems, 9, 181-199. – reference: Olden JD, Lawler JJ, Poff NL (2008) Machine learning methods without tears for ecologists. Quarterly Review of Biology, 83, 171-193. – reference: Foster DR, Knight DH, Franklin JF (1998) Landscape patterns and legacies resulting from large, infrequent forest disturbances. Ecosystems, 1, 497-510. – reference: Law R, Morton RD (1993) Alternative permanent states of ecological communities. Ecology, 74, 1347-1361. – reference: Arseneault D, Sirois L (2004) The millenial dynamics of a boreal forest stand from buried trees. Journal of Ecology, 92, 490-504. – reference: Gillett NP, Weaver AJ, Zwiers FW, Flannigan MD (2004) Detecting the effect of climate change on Canadian forest fires. Geophysical Research Letters, 31, L18211, doi: DOI: 18210.11029/12004GL020876. – reference: Kane ES, Kasischke ES, Valentine DW, Turetsky MR, McGuire AD (2007) Topographic influences on wildfire consumption of soil organic carbon in interior Alaska: implications for black carbon accumulation. Journal of Geophysical Research, 112, G03017, doi: DOI: 03010.01029/02007JG000458. – reference: Peterson GD, Carpenter SR, Brock WA (2003) Uncertainty and the management of multistate ecosystems: an apparently rational route to collapse. Ecology, 84, 1403-1411. – reference: Davis MB, Calcote RR, Sugita S, Takahara H (1998) Patchy invasion and the origin of a hemlock-hardwoods forest mosaic. Ecology, 79, 2641-2659. – reference: Westoby M (1984) The self-thinning rule. Advances in Ecological Research, 14, 167-225. – reference: Yarie J (1981) Forest fire cycles and life tables: a case study from interior Alaska. Canadian Journal of Forest Research, 11, 554-562. – reference: Flannigan MD, Logan KA, Amiro BD, Skinner WR, Stocks BJ (2005) Future area burned in Canada. Climatic Change, 72, 1-16. – reference: Johnstone JF, Chapin FS III, Foote J, Kemmett S, Price K, Viereck L (2004) Decadal observations of tree regeneration following fire in boreal forests. Canadian Journal of Forest Research, 34, 267-273. – reference: Chapin FS III, Callaghan TV, Bergeron Y, Fukuda M, Johnstone JF, Juday G, Zimov SA (2004) Global change and the boreal forest: thresholds, shifting states or gradual change? Ambio, 33, 361-365. – reference: Chapin FSI, Trainor SF, Huntington O et al. (2008) Increasing wildfire in Alaska's boreal forest: pathways to potential solutions of a wicked problem. BioScience, 58, 531-540. – reference: Turner MG, Gardner RH, O'Neill RV (2001) Landscape Ecology in Theory and Practice. Springer-Verlag, New York. – reference: Peters DPC, Pielke RA, Bestelmeyer BT, Allen CD, Muson-McGee S, Havstad KM (2004) Cross-scale interactions, nonlinearities, and forecasting catastrophic events. Proceedings of the National Academy of Sciences, 101, 15130-15135. – reference: Nelson JL, Zavaleta ES, Chapin FS III (2008) Boreal fire effects on subsistence resources in Alaska and adjacent Canada. Ecosystems, 11, 156-171. – reference: Parisien MA, Moritz M (2009) Environmental controls on the distribution of wildfire at multiple spatial scales. Ecological Monographs, 79, 127-154. – reference: Peters VS, Macdonald SE, Dale MRT (2005) The interaction between masting and fire is key to white spruce regeneration. Ecology, 86, 1744-1750. – reference: Calef MP, McGuire AD, Epstein HE, Rupp TS, Shugart HH (2005) Analysis of vegetation distribution in interior Alaska and sensitivity to climate change using a logistic regression approach. Journal of Biogeography, 32, 863-878. – reference: Johnstone JF, Chapin FS III (2006a) Effects of soil burn severity on post-fire tree recruitment in boreal forests. Ecosystems, 9, 14-31. – reference: De Grandpre L, Morissette J, Gauthier S (2000) Long-term post-fire changes in the northeastern boreal forest of Quebec. Journal of Vegetation Science, 11, 791-800. – reference: Johnstone JF, Hollingsworth TN, Chapin FS III (2008) A key for predicting post-fire successional trajectories in black spruce stands of interior Alaska PNW-GTR-767. USDA Forest Service, Pacific Northwest Research Station, Portland, OR. – reference: Van Cleve K, Chapin FS III, Dryness CT, Viereck LA (1991) Element cycling in taiga forest: State-factor control. BioScience, 41, 78-88. – reference: Vasiliauskas S, Chen HYH (2002) How long do trees take to reach breast height after fire in northeastern Ontario? Canadian Journal of Forest Research, 32, 1889-1892. – reference: Jasinski JPP, Payette S (2005) The creation of alternative stable states in the southern boreal forest, Quebec, Canada. Ecological Monographs, 75, 561-583. – reference: Payette S, Gagnon R (1985) Late Holocene deforestation and tree regeneration in the forest-tundra of Quebec. Nature, 313, 570-572. – reference: Todd SK, Jewkes HA (2006) Fire in Alaska: A History of Organized Fire Suppression and Management in the Last Frontier Ag. For. Exp. Station Bull. 113. University of Alaska Fairbanks, Fairbanks, AK. – reference: Greene DF, Noel J, Bergeron Y, Rousseau M, Gauthier S (2004) Recruitment of Picea mariana, Pinus banksiana, and Populus tremuloides across a burn severity gradient following wildfire in the southern boreal forest of Quebec. Canadian Journal of Forest Research, 34, 1845-1857. – reference: Lavertu D, Mauffette Y, Bergeron Y (1994) Effects of stand age and litter removal on the regeneration of Populus tremuloides. Journal of Vegetation Science, 5, 561-568. – reference: Conover WJ (1999) Practical Nonparametric Statistics. John Wiley and Sons, New York. – reference: Cumming SG (2001) Forest type and wildfire in the Alberta boreal mixedwood: what do fires burn? Ecological Applications, 11, 97-110. – reference: Dix RL, Swan JA (1971) The role of disturbance and succession in upland forest at Candle Lake, Saskatchewan. Canadian Journal of Botany, 49, 657-676. – reference: Johnstone JF, Chapin FS III (2006b) Fire interval effects on successional trajectory in boreal forests of Northwest Canada. Ecosystems, 9, 268-277. – reference: Balshi MS, McGuire AD, Duffy PA, Flannigan M, Walsh J, Melillo JM (2009) Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Global Change Biology, 15, 578-600. – reference: Gutsell S, Johnson EA (2002) Accurately ageing trees and examining their height-growth rates: implications for interpreting forest dynamics. Journal of Ecology, 90, 153-166. – reference: Feng Z, Liu R, DeAngelis DL, Bryan JP, Kielland K, Chapin FSI, Swihart RK (2009) Plant toxicity, adaptive herbivory, and plant community dynamics. Ecosystems, 12, 534-547. – reference: Chen HYH, Vasiliauskas S, Kayahara GJ, Ilisson T (2009) Wildfire promotes broadleaves and species mixture in boreal forest. Forest Ecology and Management, 257, 343-350. – reference: Holling CS, Allen CR (2002) Adaptive inference for distinguishing credible from incredible patterns in nature. Ecosystems, 5, 319-328. – reference: Clark JS, Royall PD, Chumbley C (1996) The role of fire during climate change in an eastern deciduous forest at Devil's Bathtub, New York. Ecology, 77, 2148-2166. – reference: Lavoie L, Sirois L (1998) Vegetation changes caused by recent fires in the northern boreal forest of eastern Canada. Journal of Vegetation Science, 9, 483-492. – reference: Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ (2007) Random forests for classification in ecology. Ecology, 88, 2783-2792. – reference: Holtmeier F-K, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Global Ecology and Biogeography, 14, 395-410. – reference: Rydgren K, Okland RH, Hestmark G (2004) Disturbance severity and community resilience in a boreal forest. Ecology, 85, 1906-1915. – reference: Bergeron Y (2000) Species and stand dynamics in the mixed woods of Quebec's southern boreal forest. Ecology, 81, 1500-1516. – reference: Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29, 1189-1232. – reference: Bennie J, Hill MO, Baxter R, Huntley B (2006) Influence of slope and aspect on long-term vegetation change in British chalk grasslands. Journal of Ecology, 94, 355-368. – reference: Scheffer M, Carpenter S, Foley J, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature, 413, 591-596. – reference: Chapin FS III, Sturm M, Serreze MC et al. (2005) Role of land-surface changes in arctic summer warming. Science, 310, 657-660. – reference: Greene DF, Macdonald ES, Haeussler S et al. (2007) The reduction of organic-layer depth by wildfire in the North American boreal forest and its effect on tree recruitment by seed. Canadian Journal of Forest Research, 37, 1012-1023. – reference: Camill P, Clark JS (2000) Long-term perspectives on lagged ecosystem responses to climate change: permafrost in boreal peatlands and the grassland/woodland boundary. Ecosystems, 3, 534-544. – reference: Johnstone JF, Kasischke ES (2005) Stand-level effects of soil burn severity on post-fire regeneration in a recently-burned black spruce forest. Canadian Journal of Forest Research, 35, 2151-2163. – reference: Turner MG, Romme WH, Tinker DB (2003) Surprises and lessons from the 1988 Yellowstone fires. Frontiers in Ecology and Environment, 1, 351-358. – reference: Greene DF, Johnson EA (1999) Modelling recruitment of Populus tremuloides, Pinus banksiana, and Picea mariana following fire in the mixedwood boreal forest. Canadian Journal of Forest Research, 29, 462-473. – reference: Kurkowski TA, Mann DH, Rupp TS, Verbyla DL (2008) Relative importance of different secondary successional pathways in an Alaskan boreal forest. Canadian Journal of Forest Research, 38, 1911-1923. – start-page: 374 year: 1981 end-page: 405 – year: 2009 – volume: 11 start-page: 419 year: 2008 end-page: 431 article-title: Testing the assumptions of chronosequences in succession publication-title: Ecology Letters – volume: 13 start-page: 603 year: 2002 end-page: 606 article-title: Equations for potential annual direct incident radiation and heat load publication-title: Journal of Vegetation Science – volume: 11 start-page: 156 year: 2008 end-page: 171 article-title: Boreal fire effects on subsistence resources in Alaska and adjacent Canada publication-title: Ecosystems – volume: 37 start-page: 1012 year: 2007 end-page: 1023 article-title: The reduction of organic‐layer depth by wildfire in the North American boreal forest and its effect on tree recruitment by seed publication-title: Canadian Journal of Forest Research – year: 2005 – volume: 9 start-page: 483 year: 1998 end-page: 492 article-title: Vegetation changes caused by recent fires in the northern boreal forest of eastern Canada publication-title: Journal of Vegetation Science – volume: 24 start-page: 663 year: 1997 end-page: 673 article-title: Spatial and temporal variations in boreal forest fire frequency in northern Alberta publication-title: Journal of Biogeography – volume: 108 start-page: 8150 year: 2003 article-title: Fire history and postfire forest development in an upland watershed of interior Alaska publication-title: Journal of Geophysical Research – year: 2001 – volume: 5 start-page: 319 year: 2002 end-page: 328 article-title: Adaptive inference for distinguishing credible from incredible patterns in nature publication-title: Ecosystems – volume: 12 start-page: 534 year: 2009 end-page: 547 article-title: Plant toxicity, adaptive herbivory, and plant community dynamics publication-title: Ecosystems – start-page: 184 year: 1981 end-page: 211 – year: 1975 – volume: 310 start-page: 657 year: 2005 end-page: 660 article-title: Role of land‐surface changes in arctic summer warming publication-title: Science – volume: 11 start-page: 97 year: 2001 end-page: 110 article-title: Forest type and wildfire in the Alberta boreal mixedwood publication-title: Ecological Applications – volume: 49 start-page: 657 year: 1971 end-page: 676 article-title: The role of disturbance and succession in upland forest at Candle Lake, Saskatchewan publication-title: Canadian Journal of Botany – volume: 35 start-page: 2151 year: 2005 end-page: 2163 article-title: Stand‐level effects of soil burn severity on post‐fire regeneration in a recently‐burned black spruce forest publication-title: Canadian Journal of Forest Research – volume: 1 start-page: 351 year: 2003 end-page: 358 article-title: Surprises and lessons from the 1988 Yellowstone fires publication-title: Frontiers in Ecology and Environment – volume: 79 start-page: 2641 year: 1998 end-page: 2659 article-title: Patchy invasion and the origin of a hemlock‐hardwoods forest mosaic publication-title: Ecology – volume: 101 start-page: 15130 year: 2004 end-page: 15135 article-title: Cross‐scale interactions, nonlinearities, and forecasting catastrophic events publication-title: Proceedings of the National Academy of Sciences – volume: 77 start-page: 802 year: 2008 end-page: 813 article-title: A working guide to boosted regression trees publication-title: Journal of Animal Ecology – volume: 58 start-page: 531 year: 2008 end-page: 540 article-title: Increasing wildfire in Alaska's boreal forest publication-title: BioScience – volume: 38 start-page: 1911 year: 2008 end-page: 1923 article-title: Relative importance of different secondary successional pathways in an Alaskan boreal forest publication-title: Canadian Journal of Forest Research – volume: 11 start-page: 554 year: 1981 end-page: 562 article-title: Forest fire cycles and life tables publication-title: Canadian Journal of Forest Research – volume: 86 start-page: 1744 year: 2005 end-page: 1750 article-title: The interaction between masting and fire is key to white spruce regeneration publication-title: Ecology – volume: 31 year: 2004 article-title: Detecting the effect of climate change on Canadian forest fires publication-title: Geophysical Research Letters – volume: 83 start-page: 171 year: 2008 end-page: 193 article-title: Machine learning methods without tears for ecologists publication-title: Quarterly Review of Biology – volume: 88 start-page: 2783 year: 2007 end-page: 2792 article-title: Random forests for classification in ecology publication-title: Ecology – year: 2008 – volume: 88 start-page: 243 year: 2007 end-page: 251 article-title: Boosted trees for ecological modeling and prediction publication-title: Ecology – volume: 357 start-page: 647 year: 2002 end-page: 655 article-title: Dynamics of climate and ecosystem coupling publication-title: Philosophical Transactions of the Royal Society of London B – volume: 5 start-page: 561 year: 1994 end-page: 568 article-title: Effects of stand age and litter removal on the regeneration of publication-title: Journal of Vegetation Science – volume: 1 start-page: 497 year: 1998 end-page: 510 article-title: Landscape patterns and legacies resulting from large, infrequent forest disturbances publication-title: Ecosystems – volume: 29 start-page: 1189 year: 2001 end-page: 1232 article-title: Greedy function approximation publication-title: Annals of Statistics – volume: 321 start-page: 267 year: 2006 end-page: 281 article-title: Variation in demersal fish species richness in the oceans surrounding New Zealand publication-title: Marine Ecology Progress Series – volume: 9 start-page: 14 year: 2006a end-page: 31 article-title: Effects of soil burn severity on post‐fire tree recruitment in boreal forests publication-title: Ecosystems – volume: 313 start-page: 570 year: 1985 end-page: 572 article-title: Late Holocene deforestation and tree regeneration in the forest‐tundra of Quebec publication-title: Nature – volume: 11 start-page: 791 year: 2000 end-page: 800 article-title: Long‐term post‐fire changes in the northeastern boreal forest of Quebec publication-title: Journal of Vegetation Science – volume: 90 start-page: 153 year: 2002 end-page: 166 article-title: Accurately ageing trees and examining their height‐growth rates publication-title: Journal of Ecology – volume: 31 start-page: 1367 year: 2001 end-page: 1374 article-title: Impact of fire behavior on postfire forest development in a homogeneous boreal landscape publication-title: Canadian Journal of Forest Research – year: 2009 article-title: Post‐fire seed rain of black spruce, a semi‐serotinous conifer, in forests of interior Alaska publication-title: Canadian Journal of Forest Research – volume: 14 start-page: 167 year: 1984 end-page: 225 article-title: The self‐thinning rule publication-title: Advances in Ecological Research – volume: 27 start-page: 1263 year: 1997 end-page: 1267 article-title: Is ring count at ground level a good estimation of black spruce age? publication-title: Canadian Journal of Forest Research – volume: 32 start-page: 1889 year: 2002 end-page: 1892 article-title: How long do trees take to reach breast height after fire in northeastern Ontario? publication-title: Canadian Journal of Forest Research – start-page: 213 year: 1986 end-page: 225 – volume: 16 start-page: 277 year: 2007 end-page: 284 article-title: Analysis of Alaskan burn severity patterns using remotely sensed data publication-title: International Journal of Wildland Fire – volume: 81 start-page: 1500 year: 2000 end-page: 1516 article-title: Species and stand dynamics in the mixed woods of Quebec's southern boreal forest publication-title: Ecology – volume: 34 start-page: 1634 year: 2004 end-page: 1641 article-title: Jack pine regeneration and crown fires publication-title: Canadian Journal of Forest Research – volume: 32 start-page: 863 year: 2005 end-page: 878 article-title: Analysis of vegetation distribution in interior Alaska and sensitivity to climate change using a logistic regression approach publication-title: Journal of Biogeography – volume: 74 start-page: 1347 year: 1993 end-page: 1361 article-title: Alternative permanent states of ecological communities publication-title: Ecology – year: 2007 – volume: 14 start-page: 395 year: 2005 end-page: 410 article-title: Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales publication-title: Global Ecology and Biogeography – volume: 92 start-page: 490 year: 2004 end-page: 504 article-title: The millenial dynamics of a boreal forest stand from buried trees publication-title: Journal of Ecology – volume: 34 start-page: 1845 year: 2004 end-page: 1857 article-title: Recruitment of , and across a burn severity gradient following wildfire in the southern boreal forest of Quebec publication-title: Canadian Journal of Forest Research – volume: 85 start-page: 1906 year: 2004 end-page: 1915 article-title: Disturbance severity and community resilience in a boreal forest publication-title: Ecology – volume: 413 start-page: 591 year: 2001 end-page: 596 article-title: Catastrophic shifts in ecosystems publication-title: Nature – volume: 59 start-page: 1147 year: 1990 end-page: 1164 article-title: Elephants and fire as causes of multiple stable states in the Serengeti‐Mara woodlands publication-title: Journal of Animal Ecology – volume: 33 start-page: 361 year: 2004 end-page: 365 article-title: Global change and the boreal forest publication-title: Ambio – volume: 76 start-page: 1899 year: 1995 end-page: 1916 article-title: Causes and ecosystem consequences of multiple pathways of primary succession at Glacier Bay, Alaska publication-title: Ecology – start-page: 201 year: 1983 end-page: 220 – volume: 36 start-page: 1781 year: 2006 end-page: 1796 article-title: Scale‐dependent environmental controls over species composition in Alaskan black spruce communities publication-title: Canadian Journal of Forest Research – start-page: 144 year: 1992 end-page: 169 – volume: 15 start-page: 578 year: 2009 end-page: 600 article-title: Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach publication-title: Global Change Biology – volume: 257 start-page: 343 year: 2009 end-page: 350 article-title: Wildfire promotes broadleaves and species mixture in boreal forest publication-title: Forest Ecology and Management – volume: 112 year: 2007 article-title: Topographic influences on wildfire consumption of soil organic carbon in interior Alaska publication-title: Journal of Geophysical Research – volume: 84 start-page: 1403 year: 2003 end-page: 1411 article-title: Uncertainty and the management of multistate ecosystems publication-title: Ecology – volume: 2 start-page: 151 year: 1999 end-page: 166 article-title: Neighborhood effects, disturbance severity, and community stability in forests publication-title: Ecosystems – volume: 29 start-page: 462 year: 1999 end-page: 473 article-title: Modelling recruitment of , and following fire in the mixedwood boreal forest publication-title: Canadian Journal of Forest Research – year: 2006 – volume: 72 start-page: 1 year: 2005 end-page: 16 article-title: Future area burned in Canada publication-title: Climatic Change – volume: 75 start-page: 561 year: 2005 end-page: 583 article-title: The creation of alternative stable states in the southern boreal forest, Quebec, Canada publication-title: Ecological Monographs – volume: 146 start-page: 77 year: 2005 end-page: 88 article-title: Succession after stand replacing disturbances by fire, wind throw, and insects in the dark Taiga of Central Siberia publication-title: Oecologia – volume: 77 start-page: 2148 year: 1996 end-page: 2166 article-title: The role of fire during climate change in an eastern deciduous forest at Devil's Bathtub, New York publication-title: Ecology – volume: 9 start-page: 268 year: 2006b end-page: 277 article-title: Fire interval effects on successional trajectory in boreal forests of Northwest Canada publication-title: Ecosystems – volume: 9 start-page: 181 year: 2006 end-page: 199 article-title: Newer classification and regression tree techniques publication-title: Ecosystems – volume: 79 start-page: 127 year: 2009 end-page: 154 article-title: Environmental controls on the distribution of wildfire at multiple spatial scales publication-title: Ecological Monographs – volume: 34 start-page: 267 year: 2004 end-page: 273 article-title: Decadal observations of tree regeneration following fire in boreal forests publication-title: Canadian Journal of Forest Research – volume: 3 start-page: 534 year: 2000 end-page: 544 article-title: Long‐term perspectives on lagged ecosystem responses to climate change publication-title: Ecosystems – volume: 94 start-page: 355 year: 2006 end-page: 368 article-title: Influence of slope and aspect on long‐term vegetation change in British chalk grasslands publication-title: Journal of Ecology – volume: 41 start-page: 78 year: 1991 end-page: 88 article-title: Element cycling in taiga forest publication-title: BioScience – year: 1999 – ident: e_1_2_6_27_1 doi: 10.1071/WF06034 – ident: e_1_2_6_53_1 doi: 10.1139/x05-087 – ident: e_1_2_6_77_1 doi: 10.1890/1540-9295(2003)001[0351:SALFTY]2.0.CO;2 – volume-title: Practical Nonparametric Statistics year: 1999 ident: e_1_2_6_17_1 – ident: e_1_2_6_38_1 doi: 10.1139/X06-245 – ident: e_1_2_6_46_1 doi: 10.1890/04-1621 – ident: e_1_2_6_66_1 doi: 10.1017/CBO9780511565489.006 – ident: e_1_2_6_40_1 doi: 10.1046/j.0022-0477.2001.00646.x – ident: e_1_2_6_67_1 doi: 10.1038/313570a0 – volume-title: Landscape Ecology in Theory and Practice year: 2001 ident: e_1_2_6_76_1 – ident: e_1_2_6_31_1 doi: 10.1007/s10021-009-9240-x – ident: e_1_2_6_63_1 doi: 10.1007/s10021-007-9114-z – ident: e_1_2_6_14_1 doi: 10.1641/B580609 – ident: e_1_2_6_57_1 doi: 10.1111/j.1365-2699.1997.tb00076.x – volume-title: Communities and Ecosystems year: 1975 ident: e_1_2_6_83_1 – ident: e_1_2_6_6_1 doi: 10.1111/j.1365-2745.2006.01104.x – ident: e_1_2_6_13_1 doi: 10.1126/science.1117368 – ident: e_1_2_6_42_1 doi: 10.1098/rstb.2001.1043 – ident: e_1_2_6_21_1 doi: 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2 – ident: e_1_2_6_26_1 doi: 10.2307/5037 – ident: e_1_2_6_39_1 doi: 10.1139/x04-059 – ident: e_1_2_6_11_1 doi: 10.1007/s100210000047 – ident: e_1_2_6_22_1 doi: 10.2307/3236549 – ident: e_1_2_6_37_1 doi: 10.1139/x98-211 – ident: e_1_2_6_62_1 doi: 10.1111/j.1654-1103.2002.tb02087.x – ident: e_1_2_6_74_1 doi: 10.1007/s00442-005-0173-6 – ident: e_1_2_6_64_1 doi: 10.1086/587826 – start-page: 184 volume-title: Forest Succession, Concepts and Application year: 1981 ident: e_1_2_6_79_1 – ident: e_1_2_6_16_1 doi: 10.2307/2265709 – volume-title: FIREMON: Fire Effects Monitoring and Inventory System year: 2005 ident: e_1_2_6_55_1 – ident: e_1_2_6_56_1 doi: 10.1139/X08-039 – volume-title: Quantifying fire severity and carbon and nitrogen pools and emissions in Alaska's boreal black spruce forest year: 2007 ident: e_1_2_6_8_1 – ident: e_1_2_6_65_1 doi: 10.1890/07-1289.1 – ident: e_1_2_6_50_1 doi: 10.1007/s10021-005-0061-2 – ident: e_1_2_6_18_1 doi: 10.1890/1051-0761(2001)011[0097:FTAWIT]2.0.CO;2 – volume-title: Fire in Alaska: A History of Organized Fire Suppression and Management in the Last Frontier Ag. For. Exp. Station Bull. 113 year: 2006 ident: e_1_2_6_75_1 – ident: e_1_2_6_23_1 doi: 10.1139/x04-073 – ident: e_1_2_6_4_1 doi: 10.1111/j.0022-0477.2004.00887.x – ident: e_1_2_6_44_1 doi: 10.1139/x06-061 – ident: e_1_2_6_45_1 doi: 10.1111/j.1466-822X.2005.00168.x – ident: e_1_2_6_84_1 doi: 10.1139/x81-076 – ident: e_1_2_6_72_1 doi: 10.1890/03-0276 – ident: e_1_2_6_68_1 doi: 10.1073/pnas.0403822101 – ident: e_1_2_6_78_1 doi: 10.2307/1311560 – ident: e_1_2_6_25_1 doi: 10.1139/b71-103 – ident: e_1_2_6_24_1 doi: 10.1139/x97-086 – ident: e_1_2_6_69_1 doi: 10.1890/03-0656 – ident: e_1_2_6_15_1 doi: 10.1016/j.foreco.2008.09.022 – ident: e_1_2_6_20_1 doi: 10.1890/0012-9658(1998)079[2641:PIATOO]2.0.CO;2 – volume-title: A key for predicting post‐fire successional trajectories in black spruce stands of interior Alaska PNW‐GTR‐767 year: 2008 ident: e_1_2_6_52_1 doi: 10.2737/PNW-GTR-767 – ident: e_1_2_6_10_1 doi: 10.1111/j.1365-2699.2004.01185.x – ident: e_1_2_6_32_1 doi: 10.1007/s10584-005-5935-y – start-page: 201 volume-title: The Role of Fire in Northern Circumpolar Ecosystems year: 1983 ident: e_1_2_6_81_1 – ident: e_1_2_6_35_1 doi: 10.1214/aos/1013203451 – ident: e_1_2_6_30_1 doi: 8110.1029/2001JD000570 – ident: e_1_2_6_36_1 doi: 18210.11029/12004GL020876 – ident: e_1_2_6_29_1 doi: 10.2307/1940722 – ident: e_1_2_6_12_1 doi: 10.1579/0044-7447-33.6.361 – ident: e_1_2_6_80_1 doi: 10.1139/x02-104 – ident: e_1_2_6_41_1 doi: 10.1007/978-1-4612-5950-3_23 – ident: e_1_2_6_73_1 doi: 10.1002/(SICI)1099-1646(199901/06)15:1/3<43::AID-RRR535>3.0.CO;2-Q – ident: e_1_2_6_71_1 doi: 10.1007/s10021-005-0054-1 – ident: e_1_2_6_19_1 doi: 10.1890/07-0539.1 – year: 2009 ident: e_1_2_6_48_1 article-title: Post‐fire seed rain of black spruce, a semi‐serotinous conifer, in forests of interior Alaska publication-title: Canadian Journal of Forest Research doi: 10.1139/X09-068 – ident: e_1_2_6_54_1 doi: 03010.01029/02007JG000458 – ident: e_1_2_6_33_1 doi: 10.1007/s100219900046 – ident: e_1_2_6_9_1 doi: 10.1007/978-1-4612-4902-3_15 – ident: e_1_2_6_58_1 doi: 10.2307/3235983 – ident: e_1_2_6_47_1 doi: 10.1111/j.1461-0248.2008.01173.x – ident: e_1_2_6_2_1 – ident: e_1_2_6_28_1 doi: 10.1111/j.1365-2656.2008.01390.x – ident: e_1_2_6_51_1 doi: 10.1139/x03-183 – ident: e_1_2_6_49_1 doi: 10.1007/s10021-004-0042-x – ident: e_1_2_6_60_1 doi: 10.2307/1940065 – ident: e_1_2_6_3_1 doi: 10.1139/x01-065 – ident: e_1_2_6_7_1 doi: 10.1890/0012-9658(2000)081[1500:SASDIT]2.0.CO;2 – ident: e_1_2_6_61_1 doi: 10.3354/meps321267 – ident: e_1_2_6_5_1 doi: 10.1111/j.1365-2486.2008.01679.x – ident: e_1_2_6_70_1 doi: 10.1890/0012-9658(2003)084[1403:UATMOM]2.0.CO;2 – ident: e_1_2_6_34_1 doi: 10.1007/s100219900066 – ident: e_1_2_6_82_1 doi: 10.1016/S0065-2504(08)60171-3 – ident: e_1_2_6_43_1 doi: 10.1007/s10021-001-0076-2 – ident: e_1_2_6_59_1 doi: 10.2307/3237263 |
| SSID | ssj0003206 |
| Score | 2.5226512 |
| Snippet | Predicting plant community responses to changing environmental conditions is a key element of forecasting and mitigating the effects of global change.... AbstractPredicting plant community responses to changing environmental conditions is a key element of forecasting and mitigating the effects of global change.... |
| SourceID | proquest pascalfrancis crossref wiley istex fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1281 |
| SubjectTerms | Alaska Animal and plant ecology Animal, plant and microbial ecology Betula Betula neoalaskana Biological and medical sciences boosted regression trees Boreal forests Canopies Climate change composite burn index data analysis Deciduous trees disturbance regimes Ecological succession Ecosystem services Environmental changes Environmental conditions environmental factors Environmental impact fire regime fire severity Fires forest communities forest stands forest succession forest trees Forestry Forests Fundamental and applied biological sciences. Psychology General aspects General forest ecology Generalities. Production, biomass. Quality of wood and forest products. General forest ecology Global warming history Picea mariana Plant communities Populus tremuloides postfire succession Prescribed fire recruitment regression analysis seedling recruitment Seedlings stand composition stand structure statistical models topography Trees |
| Title | Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest |
| URI | https://api.istex.fr/ark:/67375/WNG-9JGCCDXM-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2009.02051.x https://www.proquest.com/docview/205230606 https://www.proquest.com/docview/46541346 https://www.proquest.com/docview/746159898 |
| Volume | 16 |
| WOSCitedRecordID | wos000274813800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-2486 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003206 issn: 1354-1013 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED5BBxIvAwrTssHwA9pbUJ3feRzZWoS2CgEVfbNsx5m6lgQlLdr-e-6cLKwSSBPiLVVst7l-_vKdfb4DeMvjSHMlCxd5wHODWOauRGC5aajSgjKSKy1tsYl4Ok3m8_RTF_9EZ2Ha_BD9ghvNDMvXNMGlarYnuY3QCpKoSzvpIcDeoZ7c8fDbwgHsnH4ez857XvY9W2mT-2GA5MP97bieP4619bJ6WMgKJSxZ_5pCKGWDViza8hdb-vSuyrWvqfHT__mAz2C3E6vspEXXc3hgyiE8bstX3gxh7-z3KTls1tFEMwTnAqV4Vdtm7JhlqwXqYvvpBaj2PEPDFiUrkG8ZlYb4bhi65nLJUI6ylbmU-obhW3bJqpI1G1vT0S5ZsnUtr-w-w6Id4QTF_1KWDJGMipehAkfbvITZ-Oxr9sHtCj24Gv0z7obGhDnXcWoo450vdZGjozQKteEqDWOJohAx46M7rY32VKFV7ic60Eme51GAd_ZgUFal2QdmdKJypT0dJZwOzUrNOV5GOhnlRay0A_HtPyp0lwWdinGsxB1vCM0uyOxUozMV1uzi2gHe9_zRZgK5R599BI2Ql0jYYvbFo21iTumH_JEDxxZJ_ViyXlKQXRyKb9OJSD9Osux0fiHOHTjaglrfAZkYCToKHDi8xZ7oCKjBX0HL_eidOvCmv4vMQdtBsjTVphGUSY_7AbZgf2kRB6h3qcCoA5FF6r0fXEyy93R18K8dD-FJG6dBMVKvYLCuN-Y1PNI_14umPuqm9i9BwkoK |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED7BBoIXBmXTwtjmB7S3oDq_8ziytQPaCsEq-mY5jjOVlgQlLdr-e-6cLKwSSBPiLVVsq7l8_vKdfb4DeMPDQPFU5jbygGN7ocxsicCyYz-Nc8pInippik2Ek0k0m8Wf2nJAdBamyQ_RLbjRzDB8TROcFqQ3Z7kJ0fKioM076SDC3qKg3PYQVQj37bPPg-moI2bXMaU2uet7yD7c3Qzs-eNYG1-rh7ksUcOS-a8phlLWaMa8qX-xIVDvylzznRrs_NcnfA7PWrnKTht8vYAHuujB46aA5U0P9s5_n5PDZi1R1D2wxijGy8o0YycsWc5RGZtfLyFtTjTUbF6wHBmXUXGI75qhcy4XDAUpW-orqW4YfmcXrCxYvTZVHc2iJVtV8pvZaZg3I5yi_F_IgiGWUfMy1OBonF2YDs4vkwu7LfVgK_TQuO1r7WdchbGmnHeuVHmGrlLfV5qnsR9KlIWIGhcdaqWVk-YqzdxIeSrKsizw8M4ebBVlofeBaRWlWaocFUScjs1KxTleBirqZ3mYKgvC21cqVJsHncpxLMUdfwjNLsjsVKUzFsbs4toC3vX80eQCuUeffUSNkFdI2WL6xaGNYk4JiNy-BScGSt1YslpQmF3oi6-ToYg_DJPkbDYWIwuONrDWdUAuRooOPAsObsEnWgqq8V_Qgj_6pxYcd3eRO2hDSBa6XNeCculx18MW7C8tQg8VL5UYtSAwUL33g4th8o6uXv1rx2N4cnE5HonR-8nHA3jaRG1QxNRr2FpVa30Ij9TP1byujtp5_gsG6k36 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9BB4gXPsqmhcHmB7S3oDrfeRzpWj66agIq-mY5jjOVlmRKWrT999w5WVglkCbEW6rYVnM5__I7-3w_gDc8DBRPZW4jDji2F8rMluhYduyncU4VyVMljdhEOJ1G83l83soB0VmYpj5Et-BGM8PgNU1wfZnl27PcpGh5UdDWnXTQw94iodzxSFOmBzvDz6PZpANm1zFSm9z1PUQf7m4n9vxxrK2v1f1clshhyfxXlEMpazRj3uhfbBHU2zTXfKdGT__rEz6DJy1dZSeNfz2He7row8NGwPK6D3unv8_JYbMWKOo-WGdIxsvKNGPHLFktkBmbXy8gbU401GxRsBwRl5E4xA_NMDiXS4aElK30hVTXDL-zS1YWrN4YVUezaMnWlfxudhoWzQgnSP-XsmDoy8h5GXJwNM4uzEanX5P3div1YCuM0Ljta-1nXIWxppp3rlR5hqHSwFeap7EfSqSF6DUuBtRKKyfNVZq5kfJUlGVZ4OGdPegVZaH3gWkVpVmqHBVEnI7NSsU5XgYqGmR5mCoLwptXKlRbB53kOFbiVjyEZhdkdlLpjIUxu7iygHc9L5taIHfos49eI-QFQraYfXFoo5hTASJ3YMGxcaVuLFktKc0u9MW36VjEH8dJMpyfiYkFh1u-1nVALEaIDjwLDm6cT7QQVOO_oAV_jE8tOOruInbQhpAsdLmpBdXS466HLdhfWoQeMl6SGLUgMK565wcX4-QdXb38145H8Oh8OBKTD9NPB_C4SdqghKlX0FtXG_0aHqif60VdHbbT_Bcc5U11 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+fire+regime+break+the+legacy+lock+on+successional+trajectories+in+Alaskan+boreal+forest&rft.jtitle=Global+change+biology&rft.au=JOHNSTONE%2C+JILL+F&rft.au=HOLLINGSWORTH%2C+TERESA+N&rft.au=CHAPIN%2C+F+STUART&rft.au=MACK%2C+MICHELLE+C&rft.date=2010-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=16&rft.issue=4&rft.spage=1281&rft_id=info:doi/10.1111%2Fj.1365-2486.2009.02051.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1968704401 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |