Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals

Comorbid cardiovascular and metabolic risk factors (CVM) differentially impact brain structure and increase dementia risk, but their specific magnetic resonance imaging signatures (MRI) remain poorly characterized. To address this, we developed and validated machine learning models to quantify the d...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 16; no. 1; pp. 2724 - 12
Main Authors: Govindarajan, Sindhuja Tirumalai, Mamourian, Elizabeth, Erus, Guray, Abdulkadir, Ahmed, Melhem, Randa, Doshi, Jimit, Pomponio, Raymond, Tosun, Duygu, Bilgel, Murat, An, Yang, Sotiras, Aristeidis, Marcus, Daniel S., LaMontagne, Pamela, Benzinger, Tammie L. S., Espeland, Mark A., Masters, Colin L., Maruff, Paul, Launer, Lenore J., Fripp, Jurgen, Johnson, Sterling C., Morris, John C., Albert, Marilyn S., Bryan, R. Nick, Resnick, Susan M., Habes, Mohamad, Shou, Haochang, Wolk, David A., Nasrallah, Ilya M., Davatzikos, Christos
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 19.03.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2041-1723, 2041-1723
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first