The analysis of optimization in music aesthetic education under artificial intelligence
In the artificial intelligence (AI) domain, effectively integrating deep learning (DL) technology with the content, teaching methodologies, and learning processes of music aesthetic education remains a subject worthy of in-depth exploration and discussion. The aim is to meet to the music aesthetic n...
Uložené v:
| Vydané v: | Scientific reports Ročník 15; číslo 1; s. 11545 - 13 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
04.04.2025
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In the artificial intelligence (AI) domain, effectively integrating deep learning (DL) technology with the content, teaching methodologies, and learning processes of music aesthetic education remains a subject worthy of in-depth exploration and discussion. The aim is to meet to the music aesthetic needs of students across different age groups and levels of musical literacy. In this paper, the concepts of AI and DL algorithm are first introduced, and their algorithm principles and application status are understood. Then, they are integrated into the application of music aesthetic education, and the algorithm principles and running codes are designed. Finally, experiments are carried out to verify the accuracy of music emotion recognition based on DL algorithm in AI environment to verify the effectiveness of music aesthetic education method based on DL. The results show that the algorithm proposed in this paper has higher accuracy, which combines the advantages of AI and DL algorithm, and obtains higher recognition accuracy. It provides more possibilities for future music aesthetic teaching activities. This paper is dedicated to investigating the feasibility and approach to optimizing the method of music aesthetic education through DL. Its objective is to chart a new developmental direction and practical pathway for music aesthetic education in the era of AI. |
|---|---|
| AbstractList | In the artificial intelligence (AI) domain, effectively integrating deep learning (DL) technology with the content, teaching methodologies, and learning processes of music aesthetic education remains a subject worthy of in-depth exploration and discussion. The aim is to meet to the music aesthetic needs of students across different age groups and levels of musical literacy. In this paper, the concepts of AI and DL algorithm are first introduced, and their algorithm principles and application status are understood. Then, they are integrated into the application of music aesthetic education, and the algorithm principles and running codes are designed. Finally, experiments are carried out to verify the accuracy of music emotion recognition based on DL algorithm in AI environment to verify the effectiveness of music aesthetic education method based on DL. The results show that the algorithm proposed in this paper has higher accuracy, which combines the advantages of AI and DL algorithm, and obtains higher recognition accuracy. It provides more possibilities for future music aesthetic teaching activities. This paper is dedicated to investigating the feasibility and approach to optimizing the method of music aesthetic education through DL. Its objective is to chart a new developmental direction and practical pathway for music aesthetic education in the era of AI. Abstract In the artificial intelligence (AI) domain, effectively integrating deep learning (DL) technology with the content, teaching methodologies, and learning processes of music aesthetic education remains a subject worthy of in-depth exploration and discussion. The aim is to meet to the music aesthetic needs of students across different age groups and levels of musical literacy. In this paper, the concepts of AI and DL algorithm are first introduced, and their algorithm principles and application status are understood. Then, they are integrated into the application of music aesthetic education, and the algorithm principles and running codes are designed. Finally, experiments are carried out to verify the accuracy of music emotion recognition based on DL algorithm in AI environment to verify the effectiveness of music aesthetic education method based on DL. The results show that the algorithm proposed in this paper has higher accuracy, which combines the advantages of AI and DL algorithm, and obtains higher recognition accuracy. It provides more possibilities for future music aesthetic teaching activities. This paper is dedicated to investigating the feasibility and approach to optimizing the method of music aesthetic education through DL. Its objective is to chart a new developmental direction and practical pathway for music aesthetic education in the era of AI. In the artificial intelligence (AI) domain, effectively integrating deep learning (DL) technology with the content, teaching methodologies, and learning processes of music aesthetic education remains a subject worthy of in-depth exploration and discussion. The aim is to meet to the music aesthetic needs of students across different age groups and levels of musical literacy. In this paper, the concepts of AI and DL algorithm are first introduced, and their algorithm principles and application status are understood. Then, they are integrated into the application of music aesthetic education, and the algorithm principles and running codes are designed. Finally, experiments are carried out to verify the accuracy of music emotion recognition based on DL algorithm in AI environment to verify the effectiveness of music aesthetic education method based on DL. The results show that the algorithm proposed in this paper has higher accuracy, which combines the advantages of AI and DL algorithm, and obtains higher recognition accuracy. It provides more possibilities for future music aesthetic teaching activities. This paper is dedicated to investigating the feasibility and approach to optimizing the method of music aesthetic education through DL. Its objective is to chart a new developmental direction and practical pathway for music aesthetic education in the era of AI.In the artificial intelligence (AI) domain, effectively integrating deep learning (DL) technology with the content, teaching methodologies, and learning processes of music aesthetic education remains a subject worthy of in-depth exploration and discussion. The aim is to meet to the music aesthetic needs of students across different age groups and levels of musical literacy. In this paper, the concepts of AI and DL algorithm are first introduced, and their algorithm principles and application status are understood. Then, they are integrated into the application of music aesthetic education, and the algorithm principles and running codes are designed. Finally, experiments are carried out to verify the accuracy of music emotion recognition based on DL algorithm in AI environment to verify the effectiveness of music aesthetic education method based on DL. The results show that the algorithm proposed in this paper has higher accuracy, which combines the advantages of AI and DL algorithm, and obtains higher recognition accuracy. It provides more possibilities for future music aesthetic teaching activities. This paper is dedicated to investigating the feasibility and approach to optimizing the method of music aesthetic education through DL. Its objective is to chart a new developmental direction and practical pathway for music aesthetic education in the era of AI. |
| ArticleNumber | 11545 |
| Author | Peng, Yixuan |
| Author_xml | – sequence: 1 givenname: Yixuan surname: Peng fullname: Peng, Yixuan email: pengyixuan0426@163.com organization: School of Preschool Education, Hunan College for Preschool Education |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40185937$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1v1DAQhi1URD_oH-CAInHhEvDHJLZPCFVQKlXiUsTRmjjOrleJvdgJUvn1eJtSWg744pHnmdejmfeUHIUYHCGvGH3HqFDvM7BGq5ryptYtiLbmz8gJp9DUXHB-9Cg-Juc572g5DdfA9AtyDJSpRgt5Qr7fbF2FAcfb7HMVhyruZz_5Xzj7GCofqmnJ3lbo8rx1c4lcv9g1uYTepQrT7AdvPY6Fnt04-o0L1r0kzwccszu_v8_It8-fbi6-1NdfL68uPl7XFjTMNYJsrWaqE9xKyQVwROF420kYdK8RQQx2ABTQOs5EC5LbjtsGW0cVDo04I1erbh9xZ_bJT5huTURv7h5i2phDh3Z0BgB6kE2jgEvARnVcUio1tQ6g7WVbtD6sWvulm1xvXZgTjk9En2aC35pN_GkY05IJqYrC23uFFH8sZWZm8tmWoWBwcclGMNVKxYU8NP7mH3QXl1QWsVJQBkMP1OvHLT308meBBeArYFPMObnhAWHUHIxiVqOYYhRzZxTDS5FYi3KBw8alv3__p-o358G_Vg |
| Cites_doi | 10.1109/TCYB.2020.2981480 10.1002/cav.2163 10.1016/j.compeleceng.2024.109095 10.3352/jeehp.2023.20.38 10.3390/ijfs11030094 10.52783/jes.631 10.1007/s10994-023-06309-w 10.1007/s00371-018-1582-y 10.1007/s10462-022-10246-w 10.21275/SR231224074241 10.1007/s11831-022-09841-5 10.1016/j.scitotenv.2023.162797 10.1016/j.heliyon.2024.e29830 10.1038/s41586-023-06221-2 10.3390/electronics12081789 10.1016/j.entcom.2024.100814 10.1007/s11227-023-05704-3 10.1109/TCSVT.2020.3046625 10.3390/info14070358 10.1016/j.entcom.2024.100779 10.1155/2021/9141339 10.1056/NEJMra2204787 10.1080/10447318.2023.2209984 10.1142/S021926592141005X 10.1145/3597493 10.1080/10494820.2022.2059520 10.1016/j.smse.2023.100009 10.3390/app13074543 10.1007/s11227-022-04914-5 10.1109/ACCESS.2023.3244620 10.1016/j.chbah.2023.100004 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-025-96436-2 |
| DatabaseName | Springer Nature Link CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database ProQuest ProQuest Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Education Music |
| EISSN | 2045-2322 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_444d475584274a58b2700790ce446d76 PMC11971378 40185937 10_1038_s41598_025_96436_2 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION PHGZM PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c494t-a476c918b32c772342aa3e26b74f9d9aa43fcf4a346e2136472cb2c5a6e08af53 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001459958000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:51:56 EDT 2025 Tue Nov 04 02:06:07 EST 2025 Fri Sep 05 17:43:30 EDT 2025 Tue Oct 07 07:47:19 EDT 2025 Sat May 17 01:30:17 EDT 2025 Sat Nov 29 08:02:49 EST 2025 Sat Apr 05 01:12:47 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Emotion recognition Artificial intelligence Music aesthetic education Algorithm optimization |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c494t-a476c918b32c772342aa3e26b74f9d9aa43fcf4a346e2136472cb2c5a6e08af53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/444d475584274a58b2700790ce446d76 |
| PMID | 40185937 |
| PQID | 3186447605 |
| PQPubID | 2041939 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_444d475584274a58b2700790ce446d76 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11971378 proquest_miscellaneous_3186782375 proquest_journals_3186447605 pubmed_primary_40185937 crossref_primary_10_1038_s41598_025_96436_2 springer_journals_10_1038_s41598_025_96436_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-04 |
| PublicationDateYYYYMMDD | 2025-04-04 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | G Sonkavde (96436_CR27) 2023; 11 X Li (96436_CR36) 2020; 36 X Zhuang (96436_CR38) 2024; 10 F Li (96436_CR1) 2024; 80 R Paroiu (96436_CR4) 2023; 14 JP Bharadiya (96436_CR11) 2023; 7 L Moysis (96436_CR12) 2023; 11 H Wang (96436_CR21) 2023; 620 K Cui (96436_CR16) 2023; 31 UMR Paturi (96436_CR28) 2023; 30 S Shukla (96436_CR13) 2023; 2 W Zhang (96436_CR30) 2022; 22 W Liu (96436_CR22) 2023; 79 S Ji (96436_CR6) 2023; 56 J Zhang (96436_CR29) 2024; 115 RK Oruganti (96436_CR7) 2023; 876 B Rathore (96436_CR18) 2023; 12 M Soori (96436_CR10) 2023; 2 B Liu (96436_CR19) 2023; 35 S Ahmadi (96436_CR26) 2023; 12 E Mosqueira-Rey (96436_CR23) 2023; 56 TW Kim (96436_CR20) 2023; 20 A Borkowski (96436_CR15) 2023; 50 L Zhang (96436_CR39) 2021; 52 LZL Zhang (96436_CR3) 2023; 19 Z Yin (96436_CR8) 2023; 112 P Li (96436_CR2) 2023; 40 96436_CR33 X Dan (96436_CR34) 2025; 52 A Oksanen (96436_CR14) 2023; 20 P Ferreira (96436_CR32) 2023; 13 S Tufail (96436_CR25) 2023; 12 96436_CR31 ZK Alkayyali (96436_CR24) 2023; 101 X Zhang (96436_CR37) 2020; 31 B Gomes (96436_CR9) 2023; 388 J Fang (96436_CR35) 2025; 52 F Iffath (96436_CR5) 2023; 34 96436_CR17 |
| References_xml | – ident: 96436_CR17 – volume: 52 start-page: 5682 issue: 7 year: 2021 ident: 96436_CR39 publication-title: IEEE Trans. Cybernetics doi: 10.1109/TCYB.2020.2981480 – volume: 34 start-page: e2163 issue: 3–4 year: 2023 ident: 96436_CR5 publication-title: Comput. Animat. Virtual Worlds doi: 10.1002/cav.2163 – volume: 115 start-page: 109095 year: 2024 ident: 96436_CR29 publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2024.109095 – volume: 20 start-page: 38 year: 2023 ident: 96436_CR20 publication-title: J. Educational Evaluation Health Professions doi: 10.3352/jeehp.2023.20.38 – volume: 11 start-page: 94 issue: 3 year: 2023 ident: 96436_CR27 publication-title: Int. J. Financial Stud. doi: 10.3390/ijfs11030094 – volume: 19 start-page: 178 issue: 4 year: 2023 ident: 96436_CR3 publication-title: J. Electr. Syst. doi: 10.52783/jes.631 – volume: 112 start-page: 1785 issue: 5 year: 2023 ident: 96436_CR8 publication-title: Mach. Learn. doi: 10.1007/s10994-023-06309-w – volume: 36 start-page: 39 year: 2020 ident: 96436_CR36 publication-title: Visual Comput. doi: 10.1007/s00371-018-1582-y – volume: 56 start-page: 3005 issue: 4 year: 2023 ident: 96436_CR23 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10246-w – volume: 12 start-page: 1859 issue: 12 year: 2023 ident: 96436_CR26 publication-title: Int. J. Sci. Res. (IJSR) doi: 10.21275/SR231224074241 – volume: 30 start-page: 1345 issue: 2 year: 2023 ident: 96436_CR28 publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-022-09841-5 – volume: 876 start-page: 162797 year: 2023 ident: 96436_CR7 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.162797 – volume: 10 start-page: 1 issue: 9 year: 2024 ident: 96436_CR38 publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e29830 – volume: 620 start-page: 47 issue: 7972 year: 2023 ident: 96436_CR21 publication-title: Nature doi: 10.1038/s41586-023-06221-2 – volume: 12 start-page: 1789 issue: 8 year: 2023 ident: 96436_CR25 publication-title: Electronics doi: 10.3390/electronics12081789 – volume: 52 start-page: 100814 year: 2025 ident: 96436_CR34 publication-title: Entertainment Comput. doi: 10.1016/j.entcom.2024.100814 – volume: 12 start-page: 42 issue: 1 year: 2023 ident: 96436_CR18 publication-title: Eduzone: Int. Peer Reviewed/Refereed Multidisciplinary J. – volume: 80 start-page: 6068 issue: 5 year: 2024 ident: 96436_CR1 publication-title: J. Supercomputing doi: 10.1007/s11227-023-05704-3 – volume: 31 start-page: 4162 issue: 11 year: 2020 ident: 96436_CR37 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2020.3046625 – volume: 35 start-page: 811 issue: 3 year: 2023 ident: 96436_CR19 publication-title: Arte Individuo Y Sociedad – volume: 14 start-page: 358 issue: 7 year: 2023 ident: 96436_CR4 publication-title: Information doi: 10.3390/info14070358 – volume: 101 start-page: 1353 issue: 4 year: 2023 ident: 96436_CR24 publication-title: J. Theoretical Appl. Inform. Technol. – volume: 52 start-page: 100779 year: 2025 ident: 96436_CR35 publication-title: Entertainment Comput. doi: 10.1016/j.entcom.2024.100779 – volume: 2 start-page: 556 issue: 1 year: 2023 ident: 96436_CR13 publication-title: J. Environ. Sci. Technol. – ident: 96436_CR31 doi: 10.1155/2021/9141339 – volume: 7 start-page: 24 issue: 1 year: 2023 ident: 96436_CR11 publication-title: Am. J. Artif. Intell. – volume: 388 start-page: 2456 issue: 26 year: 2023 ident: 96436_CR9 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra2204787 – volume: 40 start-page: 4183 issue: 16 year: 2023 ident: 96436_CR2 publication-title: Int. J. Human–Computer Interact. doi: 10.1080/10447318.2023.2209984 – volume: 22 start-page: 2141005 issue: Supp01 year: 2022 ident: 96436_CR30 publication-title: J. Interconnect. Networks doi: 10.1142/S021926592141005X – volume: 56 start-page: 1 issue: 1 year: 2023 ident: 96436_CR6 publication-title: ACM Comput. Surveys doi: 10.1145/3597493 – volume: 50 start-page: 129 issue: 2 year: 2023 ident: 96436_CR15 publication-title: Reconfiguring Smart Interfaces[J] Afterimage – volume: 31 start-page: 7017 issue: 10 year: 2023 ident: 96436_CR16 publication-title: Interact. Learn. Environ. doi: 10.1080/10494820.2022.2059520 – ident: 96436_CR33 – volume: 2 start-page: 100009 year: 2023 ident: 96436_CR10 publication-title: Sustainable Manuf. Service Econ. doi: 10.1016/j.smse.2023.100009 – volume: 13 start-page: 4543 issue: 7 year: 2023 ident: 96436_CR32 publication-title: Appl. Sci. doi: 10.3390/app13074543 – volume: 79 start-page: 6560 issue: 6 year: 2023 ident: 96436_CR22 publication-title: J. Supercomputing doi: 10.1007/s11227-022-04914-5 – volume: 11 start-page: 17031 year: 2023 ident: 96436_CR12 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3244620 – volume: 20 start-page: 100004 year: 2023 ident: 96436_CR14 publication-title: Comput. Hum. Behav. Artif. Hum. doi: 10.1016/j.chbah.2023.100004 |
| SSID | ssj0000529419 |
| Score | 2.4518986 |
| Snippet | In the artificial intelligence (AI) domain, effectively integrating deep learning (DL) technology with the content, teaching methodologies, and learning... Abstract In the artificial intelligence (AI) domain, effectively integrating deep learning (DL) technology with the content, teaching methodologies, and... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 11545 |
| SubjectTerms | 639/705 639/705/1041 639/705/1042 639/705/1045 639/705/1046 639/705/117 639/705/258 639/705/531 639/705/794 Accuracy Adult Algorithm optimization Algorithms Artificial Intelligence Deep Learning Education Emotion recognition Emotions Esthetics Female Humanities and Social Sciences Humans Male multidisciplinary Music Music - psychology Music aesthetic education Science Science (multidisciplinary) Young Adult |
| SummonAdditionalLinks | – databaseName: ProQuest Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BCxIXHssrUJCRuEHUje3E9gkBouIAVQ8gerMcx2730KTsbpH498w4zpbldeGSQ2JFk8zDM56ZbwCedzWPddOK0teyxQAlxNJEI_ESZOANV61OjcIf1OGhPj42R_nAbZXLKiebmAx1N3g6I99H2cOtW6H3_er8a0lToyi7mkdoXIVd9GwqKun6yI82ZyyUxZKVyb0yc6H3V7hfUU8Zr0sCompKvrUfJdj-P_mav5dM_pI3TdvRwa3__ZDbcDM7ouz1KDl34EroZ3B9HE35fUbTnHPlxwx20zDou_AFZYq5jGLChsgGtDdnuZGTLXp2RuuYQ1pOqTeShekdjFrVlozEdESsYIufoEDvweeDd5_evi_zYIbSSyPXpUPyval0K7hH71xI7pxAzrZKRtMZ56SIPkonZBN4lRDqfct97Zow1y7W4j7s9EMfHgKrle9E53kUfi7R2XEGTQhavkarSMFcAS8m9tjzEX_Dpry50HZkpkVm2sRMywt4QxzcrCTs7HRjWJ7YrIpWStlJVaPnhRG5q3VLuXdl5j5gaNyppoC9iXE2K_TKXnKtgGebx6iKlF9xfRguxjWKwH9wzYNRXDaUYBhLyHKqAL0lSFukbj_pF6cJ7psSvZVQuoCXk8xd0vX3f_Ho35_xGG5wUoNUh7QHO-vlRXgC1_y39WK1fJr06AcTwyPO priority: 102 providerName: ProQuest |
| Title | The analysis of optimization in music aesthetic education under artificial intelligence |
| URI | https://link.springer.com/article/10.1038/s41598-025-96436-2 https://www.ncbi.nlm.nih.gov/pubmed/40185937 https://www.proquest.com/docview/3186447605 https://www.proquest.com/docview/3186782375 https://pubmed.ncbi.nlm.nih.gov/PMC11971378 https://doaj.org/article/444d475584274a58b2700790ce446d76 |
| Volume | 15 |
| WOSCitedRecordID | wos001459958000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ: Directory of Open Access Journal (DOAJ) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEB5qq-CLWK26Wo8Ivtmld_mxSR6ttLRgj0UUr08hm03oPXRP7q6C_72TZO-804ovvgzsJrDhm01mhsl8A_C2FTSIqmGlE7zBAMWHUgfNUXjuaUVlo1Kh8Ec5HqvJRNcbrb7inbBMD5yBO-act1wKtJMYP1mhmpgplXroPAYyrUxk2_i8EUxlVm-q-Uj3VTJDpo4XaKliNRkVZaSgqkq6ZYkSYf9dXuaflyV_y5gmQ3T2GB71HiR5n1e-Dzu-ewIPck_JH0_hKyqe2J5qhMwCmeGhcNNXW5JpR25iZ2di8evXsYCR-NUVDxLryeYkQpJpJch0g6_zAL6cnX7-cF723RNKxzVflpbLyumRahh16EIzTq1lCH8jedCttpaz4AK3jFeejhKNvGuoE7byQ2WDYM9gt5t1_gUQIV3LWkcDc0OOHonVuM_xeKqUDDHiKuDdCknzLZNkmJTcZspk3A3ibhLuhhZwEsFez4wE1-kFqt30ajf_UnsBhytVmX7XLQyeT-jeSYzQCnizHsb9EpMgtvOz2zxHRoYenPM8a3a9Eow1I_2bLEBt6Xxrqdsj3fQ6cXLHbOyISVXA0er3-LWuv2Px8n9g8Qoe0vhfpytFh7C7nN_613DffV9OF_MB3JMTmaQawN7J6bj-NEibBeUlraOUKPfqi8v66iefPxTc |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VLQguPJZXoICR4ARRd20njg8I8apadal6KKI313FsuocmZXcL6p_iNzLjJFuW160HLjkkVmQn34xnPDPfADytMh6yvBSpy2SJDooPqQ5a4sVLz3OuyiIWCo_V7m5xcKD3VuB7XwtDaZW9ToyKumocnZFvIPZw61Zofb86-ZJS1yiKrvYtNFpY7Pizb-iyzV5uv8P_-4zzzff7b7fSrqtA6qSW89TiS5weFaXgDk1LIbm1AqdVKhl0pa2VIrggrZC556NIr-5K7jKb-2FhA3WJQJW_JolZjFIF-d7iTIeiZnKku9qcoSg2Zrg_Ug0bz1IivspTvrT_xTYBf7Jtf0_R_CVOG7e_zev_24e7Adc6Q5u9biXjJqz4egCX29abZwPqVt1ltgxgLTa7vgWfUGaY7VhaWBNYg_r0uCtUZZOaHdM4ZnHtR1T7yXz_DkaleFNGYtgycrDJT1Snt-Hjhaz0DqzWTe3vAcuUq0TleBBuKNGYsxpVJGr2vFCBnNUEnvdwMCctv4iJeQGiMC14DILHRPAYnsAbQsxiJHGDxxvN9LPpVI2RUlZSZWhZciVtVpSUW6D00Hl0_SuVJ7DeA8V0CmtmzlGSwJPFY1Q1FD-ytW9O2zGKyI1wzN0WnouZoJtOzHkqgWIJuEtTXX5ST44inTkFskdCFQm86DF-Pq-_f4v7_17GY7iytf9hbMbbuzsP4ConEYw5V-uwOp-e-odwyX2dT2bTR1GGGRxeNPZ_ACy_gFw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tWkBceJRXYQEjwQmitrYTJweEgKWi2qXqAcRy8jqOzfawydJ2QfvX-HXMOEmX8rrtgUsPjRU5zjefx5mZbwAeFzH3cZKLyMYyxwOK81HmM4k_TjqecJWnoVB4T02n6f5-NtuC720tDKVVtpwYiLqoLH0jHyD2cOtW6H0PfJMWMdsZvzj-ElEHKYq0tu00aojsutNveHxbPp_s4Lt-wvn4zfvXb6Omw0BkZSZXkcEb2myU5oJbdDOF5MYInGKupM-KzBgpvPXSCJk4PgpS6zbnNjaJG6bGU8cIpP8uuuSSd6A7m7ybfVp_4aEYmhxlTaXOUKSDJe6WVNHG44hksJKIb-yGoWnAnzzd3xM2f4nahs1wfPV_XsZrcKVxwdnL2mauw5Yre3Cxbsp52qM-1k3OSw-6oQ32DfiI1sRMo9_CKs8qZNqjpoSVzUt2ROOYwXU4pKpQ5tp7MCrSWzAy0Fqrg81_EkG9CR_O5UlvQaesSncHWKxsIQrLvbBDiW6eyZA8kfOTVHk6xvbhaQsNfVwrj-iQMSBSXQNJI5B0AJLmfXhF6FmPJNXw8Ee1-KwbEtJSykKqGH1OrqSJ05yyDlQ2tE7KpFBJH7Zb0OiGypb6DDF9eLS-jCREkSVTuuqkHqNI9gjH3K6hup4JHuBJU0_1Id0A8cZUN6-U88MgdE4h7pFQaR-etXg_m9ff1-Luvx_jIVxCyOu9yXT3HlzmZI0hGWsbOqvFibsPF-zX1Xy5eNAYNIOD8wb_Dy1UiqU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+analysis+of+optimization+in+music+aesthetic+education+under+artificial+intelligence&rft.jtitle=Scientific+reports&rft.au=Peng%2C+Yixuan&rft.date=2025-04-04&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-96436-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_96436_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |