Integration of smart insoles for gait assessment in exoskeleton assisted rehabilitation
A robotic exoskeleton enables individuals with limited or no mobility to engage in moderate exercises, thereby promoting physical fitness and overall well-being. However, exoskeletons alone do not provide comprehensive insights into gait pattern monitoring and analysis over time. This study proposes...
Saved in:
| Published in: | Scientific reports Vol. 15; no. 1; pp. 28350 - 16 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
04.08.2025
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A robotic exoskeleton enables individuals with limited or no mobility to engage in moderate exercises, thereby promoting physical fitness and overall well-being. However, exoskeletons alone do not provide comprehensive insights into gait pattern monitoring and analysis over time. This study proposes the integration of smart insoles as a cost-effective and non-invasive tool for gait assessment in exoskeleton-assisted rehabilitation. Ten participants, including three unimpaired subjects used only as a reference, one stroke, one spinal cord injury, one traumatic brain injury, and four multiple sclerosis subjects were involved in a 12-week program where weekly rehabilitation exercises were conducted and gait patterns were monitored in three assessment sessions. Gait phases were identified using a Finite State Machine, with transitions guided by predictions from a fuzzy c-means clustering algorithm. Kinematic and kinetic analyses revealed significant disparities in stride time, stance time, and the trajectories of the centre of pressure. The findings demonstrated that while the exoskeleton enabled participants with limited or no mobility to walk similarly to unimpaired individuals, the use of smart insoles identified notable differences in their gait patterns. These differences could be traced back to choices in the rehabilitation plan, underscoring the importance of such devices for understanding rehabilitation progress. An acceptability analysis showed that participants found the smart insoles comfortable and expressed a willingness to use them for future rehabilitation. In conclusion, this study demonstrates the potential of smart insoles for the assessment of individuals’ rehabilitation progress while using an exoskeleton, laying the groundwork for a system that can support clinicians in developing tailored rehabilitation plans. |
|---|---|
| AbstractList | A robotic exoskeleton enables individuals with limited or no mobility to engage in moderate exercises, thereby promoting physical fitness and overall well-being. However, exoskeletons alone do not provide comprehensive insights into gait pattern monitoring and analysis over time. This study proposes the integration of smart insoles as a cost-effective and non-invasive tool for gait assessment in exoskeleton-assisted rehabilitation. Ten participants, including three unimpaired subjects used only as a reference, one stroke, one spinal cord injury, one traumatic brain injury, and four multiple sclerosis subjects were involved in a 12-week program where weekly rehabilitation exercises were conducted and gait patterns were monitored in three assessment sessions. Gait phases were identified using a Finite State Machine, with transitions guided by predictions from a fuzzy c-means clustering algorithm. Kinematic and kinetic analyses revealed significant disparities in stride time, stance time, and the trajectories of the centre of pressure. The findings demonstrated that while the exoskeleton enabled participants with limited or no mobility to walk similarly to unimpaired individuals, the use of smart insoles identified notable differences in their gait patterns. These differences could be traced back to choices in the rehabilitation plan, underscoring the importance of such devices for understanding rehabilitation progress. An acceptability analysis showed that participants found the smart insoles comfortable and expressed a willingness to use them for future rehabilitation. In conclusion, this study demonstrates the potential of smart insoles for the assessment of individuals' rehabilitation progress while using an exoskeleton, laying the groundwork for a system that can support clinicians in developing tailored rehabilitation plans.A robotic exoskeleton enables individuals with limited or no mobility to engage in moderate exercises, thereby promoting physical fitness and overall well-being. However, exoskeletons alone do not provide comprehensive insights into gait pattern monitoring and analysis over time. This study proposes the integration of smart insoles as a cost-effective and non-invasive tool for gait assessment in exoskeleton-assisted rehabilitation. Ten participants, including three unimpaired subjects used only as a reference, one stroke, one spinal cord injury, one traumatic brain injury, and four multiple sclerosis subjects were involved in a 12-week program where weekly rehabilitation exercises were conducted and gait patterns were monitored in three assessment sessions. Gait phases were identified using a Finite State Machine, with transitions guided by predictions from a fuzzy c-means clustering algorithm. Kinematic and kinetic analyses revealed significant disparities in stride time, stance time, and the trajectories of the centre of pressure. The findings demonstrated that while the exoskeleton enabled participants with limited or no mobility to walk similarly to unimpaired individuals, the use of smart insoles identified notable differences in their gait patterns. These differences could be traced back to choices in the rehabilitation plan, underscoring the importance of such devices for understanding rehabilitation progress. An acceptability analysis showed that participants found the smart insoles comfortable and expressed a willingness to use them for future rehabilitation. In conclusion, this study demonstrates the potential of smart insoles for the assessment of individuals' rehabilitation progress while using an exoskeleton, laying the groundwork for a system that can support clinicians in developing tailored rehabilitation plans. A robotic exoskeleton enables individuals with limited or no mobility to engage in moderate exercises, thereby promoting physical fitness and overall well-being. However, exoskeletons alone do not provide comprehensive insights into gait pattern monitoring and analysis over time. This study proposes the integration of smart insoles as a cost-effective and non-invasive tool for gait assessment in exoskeleton-assisted rehabilitation. Ten participants, including three unimpaired subjects used only as a reference, one stroke, one spinal cord injury, one traumatic brain injury, and four multiple sclerosis subjects were involved in a 12-week program where weekly rehabilitation exercises were conducted and gait patterns were monitored in three assessment sessions. Gait phases were identified using a Finite State Machine, with transitions guided by predictions from a fuzzy c-means clustering algorithm. Kinematic and kinetic analyses revealed significant disparities in stride time, stance time, and the trajectories of the centre of pressure. The findings demonstrated that while the exoskeleton enabled participants with limited or no mobility to walk similarly to unimpaired individuals, the use of smart insoles identified notable differences in their gait patterns. These differences could be traced back to choices in the rehabilitation plan, underscoring the importance of such devices for understanding rehabilitation progress. An acceptability analysis showed that participants found the smart insoles comfortable and expressed a willingness to use them for future rehabilitation. In conclusion, this study demonstrates the potential of smart insoles for the assessment of individuals’ rehabilitation progress while using an exoskeleton, laying the groundwork for a system that can support clinicians in developing tailored rehabilitation plans. Abstract A robotic exoskeleton enables individuals with limited or no mobility to engage in moderate exercises, thereby promoting physical fitness and overall well-being. However, exoskeletons alone do not provide comprehensive insights into gait pattern monitoring and analysis over time. This study proposes the integration of smart insoles as a cost-effective and non-invasive tool for gait assessment in exoskeleton-assisted rehabilitation. Ten participants, including three unimpaired subjects used only as a reference, one stroke, one spinal cord injury, one traumatic brain injury, and four multiple sclerosis subjects were involved in a 12-week program where weekly rehabilitation exercises were conducted and gait patterns were monitored in three assessment sessions. Gait phases were identified using a Finite State Machine, with transitions guided by predictions from a fuzzy c-means clustering algorithm. Kinematic and kinetic analyses revealed significant disparities in stride time, stance time, and the trajectories of the centre of pressure. The findings demonstrated that while the exoskeleton enabled participants with limited or no mobility to walk similarly to unimpaired individuals, the use of smart insoles identified notable differences in their gait patterns. These differences could be traced back to choices in the rehabilitation plan, underscoring the importance of such devices for understanding rehabilitation progress. An acceptability analysis showed that participants found the smart insoles comfortable and expressed a willingness to use them for future rehabilitation. In conclusion, this study demonstrates the potential of smart insoles for the assessment of individuals’ rehabilitation progress while using an exoskeleton, laying the groundwork for a system that can support clinicians in developing tailored rehabilitation plans. |
| ArticleNumber | 28350 |
| Author | D’Arco, Luigi Wang, Haiying Zheng, Huiru |
| Author_xml | – sequence: 1 givenname: Luigi surname: D’Arco fullname: D’Arco, Luigi organization: School of Computing, Ulster University, Department of Electrical Engineering and Information Technologies, University of Naples Federico II – sequence: 2 givenname: Haiying surname: Wang fullname: Wang, Haiying organization: School of Computing, Ulster University – sequence: 3 givenname: Huiru surname: Zheng fullname: Zheng, Huiru email: h.zheng@ulster.ac.uk organization: School of Computing, Ulster University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40759688$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uk1v1DAUtFARLaV_gAOKxIVLwJ-xc0Ko4mOlSlxAHC3Hfk69ZO1iZxH773E2pbQc8MWW38x43vM8RScxRUDoOcGvCWbqTeFE9KrFVLQEY0bbwyN0RjEXLWWUntw7n6KLUra4LkF7Tvon6JRjKfpOqTP0bRNnGLOZQ4pN8k3ZmTw3IZY0QWl8ys1owtyYUqCUHcSl1sCvVL7DBHPl1EooM7gmw7UZwhTmo9Yz9NibqcDF7X6Ovn54_-XyU3v1-ePm8t1Va3nP51Z6K4zzjIBl3hHT9Z3BShovJBXUKIwHTwaiRG8FA4UHyaQ0brDWK95byc7RZtV1yWz1TQ7V_0EnE_TxIuVR14aCnUCzoVO0Y5gx57l0fPB4sI7XORLCncJV6-2qdbMfduBs7Tab6YHow0oM13pMPzVZxkyIqgqvbhVy-rGHMutdKBamyURI-6IZZV0nlewX6Mt_oNu0z7HO6ohilJNusfTivqU7L38-sALoCrA5lZLB30EI1ktQ9BoUXYOij0HRh0piK6lUcBwh_337P6zf0-_BeA |
| Cites_doi | 10.1109/TNSRE.2016.2521160 10.3390/app9142868 10.3390/s21082821 10.1016/S0167-9457(99)00039-1 10.1097/PHM.0B013E31802F0247 10.12720/jomb.4.1.1-6 10.3390/s16101579 10.1145/3633785 10.1109/BIBM55620.2022.9995237 10.1109/ISSC61953.2024.10602869 10.3390/s18030706 10.1186/s40537-021-00469-z 10.12659/MSM.940511 10.3390/s16010066 10.1080/03610918.2014.931971 10.1109/TMECH.2007.901934 10.1109/LSENS.2020.3010373 10.1007/978-3-540-30301-5_34 10.1109/JBHI.2021.3092875 10.3390/S21093207 10.1093/bioinformatics/btq534 10.1109/JSEN.2018.2871328 10.1016/J.APMR.2019.10.192 10.1016/j.neulet.2019.01.052 10.1002/pri.1624 10.23736/S1973-9087.22.07549-9 10.1016/j.robot.2014.10.012 10.1016/j.disamonth.2013.03.016 10.3390/bioengineering10050585 10.1007/978-3-031-47508-5_22 10.1016/S0924-980X(97)00055-6 10.1007/s41315-023-00283-1 10.1109/IROS55552.2023.10341440 10.1371/journal.pone.0172398 10.1016/j.rehab.2017.12.008 10.1007/BF02351013 10.1016/j.gaitpost.2013.09.001 10.1061/(ASCE)0733-9453(2004)130:4(175) 10.1155/2018/7847014 10.1109/ICIEA58696.2023.10241537 10.3389/FNINS.2022.859298 10.1109/THMS.2019.2961969 10.1155/2018/8610458 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-025-10032-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 16 |
| ExternalDocumentID | oai_doaj_org_article_3b68263033df47d4bf0bcd4415114d80 PMC12322118 40759688 10_1038_s41598_025_10032_y |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Ulster University UKRI prime-pump funding – fundername: Ulster-Beitto Collaboration Programme |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AARCD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c494t-7fc5adf31ec3fd1a696a087af57252a800bf1b1859c53e80b7377adbccf849c73 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001544992900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:51:07 EDT 2025 Tue Nov 04 02:03:58 EST 2025 Fri Sep 05 15:22:30 EDT 2025 Tue Oct 07 08:26:46 EDT 2025 Sun Aug 10 01:32:10 EDT 2025 Sat Nov 29 07:33:36 EST 2025 Tue Aug 05 01:10:31 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Gait kinetic parameters Gait kinematic parameters Exoskeleton Rehabilitation Smart insoles Gait analysis |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c494t-7fc5adf31ec3fd1a696a087af57252a800bf1b1859c53e80b7377adbccf849c73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/3b68263033df47d4bf0bcd4415114d80 |
| PMID | 40759688 |
| PQID | 3236324160 |
| PQPubID | 2041939 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3b68263033df47d4bf0bcd4415114d80 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12322118 proquest_miscellaneous_3236678798 proquest_journals_3236324160 pubmed_primary_40759688 crossref_primary_10_1038_s41598_025_10032_y springer_journals_10_1038_s41598_025_10032_y |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-04 |
| PublicationDateYYYYMMDD | 2025-08-04 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | M Jacquelin Perry (10032_CR28) 2010 10032_CR17 10032_CR15 10032_CR16 D-X Liu (10032_CR20) 2016; 16 D Duddy (10032_CR12) 2021; 21 10032_CR7 10032_CR8 J Howcroft (10032_CR42) 2017; 12 Z Taha (10032_CR30) 2015; 4 A Wisniowska-Szurlej (10032_CR27) 2023; 29 A Ur Rehman (10032_CR38) 2021; 8 P Gryfe (10032_CR11) 2022; 58 J Myers (10032_CR4) 2007; 86 10032_CR23 J Taborri (10032_CR29) 2016 B Ugurlu (10032_CR25) 2020; 50 H Guo (10032_CR36) 2004; 130 AJ Young (10032_CR6) 2016; 25 J Wening (10032_CR3) 2013; 59 G Cicirelli (10032_CR2) 2022; 26 C Yue (10032_CR18) 2018 T Afzal (10032_CR13) 2020; 101 B Ren (10032_CR22) 2023; 7 P Ilett (10032_CR43) 2016; 21 S Mohammed (10032_CR48) 2016; 75 C Chatzaki (10032_CR40) 2021; 21 A De Luca (10032_CR26) 2019; 9 M Iosa (10032_CR49) 2019; 699 DG Pereira (10032_CR47) 2015; 44 PG Morasso (10032_CR46) 1999; 18 10032_CR39 J Perry (10032_CR5) 2007; 12 Y-H Lee (10032_CR9) 2023 V Schwämmle (10032_CR34) 2010; 26 10032_CR35 L Rocchi (10032_CR45) 2004; 42 P Schubert (10032_CR44) 2014; 39 Q Chen (10032_CR14) 2018 S Ding (10032_CR21) 2018; 18 R Suganya (10032_CR33) 2012; 2 A Tiwari (10032_CR41) 2020; 4 10032_CR24 R Das (10032_CR1) 2022 L D’Arco (10032_CR19) 2024; 5 S Pandit (10032_CR37) 2018 MJ Escalona (10032_CR10) 2018; 61 10032_CR31 10032_CR32 |
| References_xml | – volume: 25 start-page: 171 year: 2016 ident: 10032_CR6 publication-title: IEEE Trans. Neural Syst. Rehab. Eng. doi: 10.1109/TNSRE.2016.2521160 – volume: 9 start-page: 2868 year: 2019 ident: 10032_CR26 publication-title: Appl. Sci. doi: 10.3390/app9142868 – volume: 21 start-page: 2821 year: 2021 ident: 10032_CR40 publication-title: Sensors doi: 10.3390/s21082821 – volume: 18 start-page: 759 year: 1999 ident: 10032_CR46 publication-title: Human Mov. Sci. doi: 10.1016/S0167-9457(99)00039-1 – volume: 86 start-page: 142 year: 2007 ident: 10032_CR4 publication-title: Am. J. Phys. Med. Rehab. doi: 10.1097/PHM.0B013E31802F0247 – ident: 10032_CR24 – volume-title: Gait analysis: Normal and pathological function year: 2010 ident: 10032_CR28 – volume: 4 start-page: 1 year: 2015 ident: 10032_CR30 publication-title: J. Med. Bioeng. doi: 10.12720/jomb.4.1.1-6 – volume: 16 start-page: 1579 year: 2016 ident: 10032_CR20 publication-title: Sensors doi: 10.3390/s16101579 – volume: 5 start-page: 1 year: 2024 ident: 10032_CR19 publication-title: ACM Trans. Comput. Healthcare doi: 10.1145/3633785 – ident: 10032_CR35 doi: 10.1109/BIBM55620.2022.9995237 – ident: 10032_CR15 – ident: 10032_CR32 doi: 10.1109/ISSC61953.2024.10602869 – year: 2018 ident: 10032_CR37 publication-title: Sensors doi: 10.3390/s18030706 – volume: 8 start-page: 80 year: 2021 ident: 10032_CR38 publication-title: J. Big Data doi: 10.1186/s40537-021-00469-z – volume: 29 start-page: e940511 year: 2023 ident: 10032_CR27 publication-title: Med. Sci. Monitor Int. Med. J. Exp. Clin. Res. doi: 10.12659/MSM.940511 – year: 2016 ident: 10032_CR29 publication-title: Sensors doi: 10.3390/s16010066 – volume: 44 start-page: 2636 year: 2015 ident: 10032_CR47 publication-title: Commun. Stat. Simul. Comput. doi: 10.1080/03610918.2014.931971 – volume: 12 start-page: 408 year: 2007 ident: 10032_CR5 publication-title: IEEE/ASME Trans. Mech. doi: 10.1109/TMECH.2007.901934 – volume: 4 start-page: 1 year: 2020 ident: 10032_CR41 publication-title: IEEE Sens. Lett. doi: 10.1109/LSENS.2020.3010373 – ident: 10032_CR7 doi: 10.1007/978-3-540-30301-5_34 – ident: 10032_CR16 – volume: 26 start-page: 229 year: 2022 ident: 10032_CR2 publication-title: IEEE J. Biomed. Health Info. doi: 10.1109/JBHI.2021.3092875 – volume: 21 start-page: 3207 year: 2021 ident: 10032_CR12 publication-title: Sensors doi: 10.3390/S21093207 – volume: 2 start-page: 1 year: 2012 ident: 10032_CR33 publication-title: Int. J. Sci. Res. Publ. – volume: 26 start-page: 2841 year: 2010 ident: 10032_CR34 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq534 – volume: 18 start-page: 9728 year: 2018 ident: 10032_CR21 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2871328 – volume: 101 start-page: 599 year: 2020 ident: 10032_CR13 publication-title: Archiv. Phys. Med. Rehabil. doi: 10.1016/J.APMR.2019.10.192 – volume: 699 start-page: 127 year: 2019 ident: 10032_CR49 publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2019.01.052 – volume: 21 start-page: 91 year: 2016 ident: 10032_CR43 publication-title: Physiother. Res. Int. doi: 10.1002/pri.1624 – volume: 58 start-page: 723 year: 2022 ident: 10032_CR11 publication-title: Eur. J. Phys. Rehabil. Med. doi: 10.23736/S1973-9087.22.07549-9 – volume: 75 start-page: 50 year: 2016 ident: 10032_CR48 publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2014.10.012 – volume: 59 start-page: 284 year: 2013 ident: 10032_CR3 publication-title: Disease-a-month doi: 10.1016/j.disamonth.2013.03.016 – year: 2023 ident: 10032_CR9 publication-title: Bioengineering doi: 10.3390/bioengineering10050585 – ident: 10032_CR31 doi: 10.1007/978-3-031-47508-5_22 – ident: 10032_CR17 – ident: 10032_CR39 doi: 10.1016/S0924-980X(97)00055-6 – volume: 7 start-page: 602 year: 2023 ident: 10032_CR22 publication-title: Int. J. Intell. Robot. Appl. doi: 10.1007/s41315-023-00283-1 – ident: 10032_CR8 doi: 10.1109/IROS55552.2023.10341440 – volume: 12 start-page: e0172398 year: 2017 ident: 10032_CR42 publication-title: PLoS One doi: 10.1371/journal.pone.0172398 – volume: 61 start-page: 215 year: 2018 ident: 10032_CR10 publication-title: Ann. Phys. Rehabil. Med. doi: 10.1016/j.rehab.2017.12.008 – volume: 42 start-page: 71 year: 2004 ident: 10032_CR45 publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02351013 – volume: 39 start-page: 518 year: 2014 ident: 10032_CR44 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2013.09.001 – volume: 130 start-page: 175 year: 2004 ident: 10032_CR36 publication-title: J. Surv. Eng. doi: 10.1061/(ASCE)0733-9453(2004)130:4(175) – year: 2018 ident: 10032_CR14 publication-title: Appl. Bionics Biomech. doi: 10.1155/2018/7847014 – ident: 10032_CR23 doi: 10.1109/ICIEA58696.2023.10241537 – year: 2022 ident: 10032_CR1 publication-title: Front. Neurosci. doi: 10.3389/FNINS.2022.859298 – volume: 50 start-page: 144 year: 2020 ident: 10032_CR25 publication-title: IEEE Trans. Human-Mach. Syst. doi: 10.1109/THMS.2019.2961969 – year: 2018 ident: 10032_CR18 publication-title: Appl. Bionics Biomech. doi: 10.1155/2018/8610458 |
| SSID | ssj0000529419 |
| Score | 2.4562068 |
| Snippet | A robotic exoskeleton enables individuals with limited or no mobility to engage in moderate exercises, thereby promoting physical fitness and overall... Abstract A robotic exoskeleton enables individuals with limited or no mobility to engage in moderate exercises, thereby promoting physical fitness and overall... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 28350 |
| SubjectTerms | 639/705/117 692/700 Adult Algorithms Biomechanical Phenomena Brain Injuries, Traumatic - physiopathology Brain Injuries, Traumatic - rehabilitation Exercise Therapy - methods Exoskeleton Exoskeleton Device Female Fitness equipment Foot Orthoses Gait Gait - physiology Gait analysis Gait kinematic parameters Gait kinetic parameters Humanities and Social Sciences Humans Kinematics Male Middle Aged multidisciplinary Multiple sclerosis Multiple Sclerosis - physiopathology Multiple Sclerosis - rehabilitation Musculoskeletal diseases Physical fitness Rehabilitation Robotics Science Science (multidisciplinary) Sensors Shoes Smart insoles Spinal cord injuries Spinal Cord Injuries - physiopathology Spinal Cord Injuries - rehabilitation Stroke Rehabilitation Traumatic brain injury Walking |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggNQL5VUILchI3CBqEjuxfUKAqOBS9QCiN8vPsqIk7WaL2H_PjJNNFV4XrplEsvPNeGY89jeEPG9kdFJAWsJtDDkXYFIWYM4hejaBB7y0Z1KzCXF0JE9O1PG44daPxyo3a2JaqH3ncI_8gFUMmcXLpnh1fpFj1yisro4tNK6TG8iSwNLRveNpjwWrWLxU412ZgsmDHvwV3imrkH6zYFW-nvmjRNv_p1jz9yOTv9RNkzs63Pnfidwht8dAlL4eNOcuuRbae-TW0JpyfZ98_jDySAButIu0_wY6RvGq2FnoKUS69NQsVtRMxJ4go-FH138FPwbxJEpQgzxdzrjAH5BPh-8-vn2fj00YcscVX-Uiutr4yMrgWPSlaVRjCilMrEVVVwbiTRtLC15fuZoFWVjBhDDeOhclV06wXbLVdm14RGitbFDM8BAN57HxMjLhqto0LAQDgUVGXmyg0OcD14ZONXIm9QCcBuB0Ak6vM_IG0ZreRJ7s9KBbnurR7DSzDeRP4KaZj1x4UMjCOo85JOSBXhYZ2d-ApEfj7fUVQhl5NonB7LCWYtrQXQ7vgJ8XSmbk4aAa00ggR65VI0EiZ0ozG-pc0i6-JGpvDHAhJYdPX27062pcf_8Xj_89jT2yXaHK40kXvk-2VsvL8ITcdN9Xi375NNnMTykiIIE priority: 102 providerName: ProQuest |
| Title | Integration of smart insoles for gait assessment in exoskeleton assisted rehabilitation |
| URI | https://link.springer.com/article/10.1038/s41598-025-10032-y https://www.ncbi.nlm.nih.gov/pubmed/40759688 https://www.proquest.com/docview/3236324160 https://www.proquest.com/docview/3236678798 https://pubmed.ncbi.nlm.nih.gov/PMC12322118 https://doaj.org/article/3b68263033df47d4bf0bcd4415114d80 |
| Volume | 15 |
| WOSCitedRecordID | wos001544992900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (via ProQuest SciTech Premium Collection) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagBYkL4s1CWRmJG0RNbCe2jxS1ooeuIgRiOVl-lhWQRZstYv89Yzu7NDzEhYsPGTtyvrEz38j2Z4SeNSJYwSEtYSb4gnGYUgbcXAB71p75eGhPp8sm-Gwm5nPZXrrqK-4Jy_LAGbhDahpgwPCjpS4w7uCVpbEuZgHA5J1I2TqwnkvJVFb1JpJVcjglU1Jx2EOLeJqMROHNkpJiM4pESbD_Tyzz982Sv6yYpkB0cgvdHBgkfpl7fhtd8d0ddD3fKbm5i96fDgIQADheBtx_gW_E8YzXZ99joKj4XC_WWO8UOcGG_fdl_wkCEBDBaImud3g1EvG-h96dHL999boYbk8oLJNsXfBga-0CrbylwVW6kY0uBdeh5qQmGoiiCZWBcC1tTb0oDaeca2esDYJJy-l9tNctO_8Q4VoaL6lmPmjGQuNEoNySWjfUew2MYIKeb5FUX7NIhkqL21SojLsC3FXCXW0m6CiCvasZBa7TA3C7Gtyu_uX2CTrYukoNs65XlNCoPl81YH66M8N8iYsguvPLi1wHAjSXYoIeZM_uegLJbS0bARYx8vmoq2NLt_iYNLkjM4VcGpq-2A6Pn_36OxaP_gcWj9ENEsd13MjCDtDeenXhn6Br9tt60a-m6Cqf81SKKdo_Op61b6ZpskB5RtpYcij329Oz9sMP3eIYxA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9UwEB6VAoIL-xIoYCQ4QdTEdmLngBBb1aeWpx6K6M11HLt9KiTl5RV4f4rfyDhbFbZbD1wzUeTE38x8E88C8CSVzkiBYQnPnQ25QJXKcZtDZM_acuuL9nQzbEJMp3JvL9tZgR99LYxPq-xtYmOoi8r4f-TrjDLfWTxOo5fHX0I_NcqfrvYjNFpYbNnlNwzZ6heTt7i_TyndeLf7ZjPspgqEhmd8EQpnEl04FlvDXBHrNEt1JIV2iaAJ1Uigchfn6MYykzAro1wwIXSRG-Mkz4xg-NxzcB5pBJVNquDO8E_Hn5rxOOtqcyIm12v0j76Gjfp2nxGj4XLk_5oxAX_itr-naP5yTtu4v42r_9uHuwZXOqJNXrWacR1WbHkDLrajN5c34eOk65OBuCSVI_Vn1CHiS-E-2ZogkycHerYgemhcijJiv1f1Efpp5Mte4jWkIPNRr_Nb8OFM3uo2rJZVae8CSbLcZkxz6zTnLi2kY8LQRKfMWo3EKYBn_dar47aXiGpyAJhULVAUAkU1QFHLAF57dAx3-j7gzYVqfqA6s6JYnmJ8iDSEFY6LAhUuyk3hY2SMcwsZBbDWg0J1xqlWp4gI4PEgRrPiz4p0aauT9h7kMSKTAdxpoTishCPNzFKJEjkC6WipY0k5O2xal3sCTzGmDeB5j-fTdf39W9z792s8gkubu--31fZkunUfLlOvbj6rh6_B6mJ-Yh_ABfN1MavnDxt9JbB_1jj_CUR7fvI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o9AASPBCaJNYid2DggBZcWqaLUHEL0Zx7HLCkjKZgvsX-PXMXYeVXjdeuCaiSIn_mbmm3geAA8yYbXgGJawwpqQcVSpArc5RPasDDOuaE_5YRN8Phf7-_liC370tTAurbK3id5Ql7V2_8gnNKGus3icRRPbpUUsdqdPD7-EboKUO2ntx2m0ENkzm28YvjVPZru41w-TZPryzYtXYTdhINQsZ-uQW52q0tLYaGrLWGV5piLBlU15kiYKyVRh4wJdWq5TakRUcMq5KgutrWC55hSfewpOc9e03KcNLob_O-4EjcV5V6cTUTFp0Fe6erbEtf6MaBJuRr7Qjwz4E8_9PV3zlzNb7wqnF__nj3gJLnQEnDxrNeYybJnqCpxtR3JursK7Wdc_A_FKakuaz6hbxJXIfTINQYZPDtRyTdTQ0BRlxHyvm4_ov5FHO4nTnJKsRj3Qr8HbE3mr67Bd1ZW5CSTNC5NTxYxVjNmsFJZynaQqo8YoJFQBPOphIA_bHiPS5wZQIVvQSASN9KCRmwCeO6QMd7r-4P5CvTqQnbmRtMgwbkR6QkvLeImKGBW6dLEzxr-liALY6QEiO6PVyGN0BHB_EKO5cWdIqjL1UXsP8hueiwButLAcVsKQfuaZQIkYAXa01LGkWn7wLc0dsU8w1g3gcY_t43X9_Vvc-vdr3INzCG_5ejbfuw3nE6d5LtmH7cD2enVk7sAZ_XW9bFZ3veoSeH_SMP8Jej6Hrw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+smart+insoles+for+gait+assessment+in+exoskeleton+assisted+rehabilitation&rft.jtitle=Scientific+reports&rft.au=D%E2%80%99Arco%2C+Luigi&rft.au=Wang%2C+Haiying&rft.au=Zheng%2C+Huiru&rft.date=2025-08-04&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-10032-y&rft_id=info%3Apmid%2F40759688&rft.externalDocID=PMC12322118 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |