Enhancing breast cancer classification using a deep sparse wavelet autoencoder approach

As digital imaging technology advances, accurate classification of 2D breast cancer images becomes increasingly crucial for early detection and staging. This paper introduces a novel classification approach that integrates deep learning, sparse coding, and wavelet networks through a unique architect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 26194 - 11
Hauptverfasser: Alzakari, Sarah A., Hassairi, Salima, Hussan, Amel Ali Al, Ejbali, Ridha
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 19.07.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As digital imaging technology advances, accurate classification of 2D breast cancer images becomes increasingly crucial for early detection and staging. This paper introduces a novel classification approach that integrates deep learning, sparse coding, and wavelet networks through a unique architecture we call the Deep Sparse Wavelet Autoencoder (DSWAE). The key innovation of our method lies in its construction: DSWAE combines stacked wavelet autoencoders to create a robust model specifically designed for differentiating between distinct categories in 2D breast cancer image datasets. This architecture not only enhances classification accuracy but also optimizes computational efficiency by utilizing deep networks with minimal parameters, which significantly reduces processing time and costs. Our experimental results demonstrate the superior performance of the DSWAE model, achieving precision rates of 94.5% for benign and 93.8% for malignant cases, with recall rates of 93.65% for benign and 96.2% for malignant cases. Remarkably, our method attained a perfect precision rate of 100% for normal cases. These results highlight the effectiveness of our approach, which outperforms current state-of-the-art methods in 2D breast cancer image classification.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-025-11816-y