Enhancing breast cancer classification using a deep sparse wavelet autoencoder approach

As digital imaging technology advances, accurate classification of 2D breast cancer images becomes increasingly crucial for early detection and staging. This paper introduces a novel classification approach that integrates deep learning, sparse coding, and wavelet networks through a unique architect...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 15; no. 1; pp. 26194 - 11
Main Authors: Alzakari, Sarah A., Hassairi, Salima, Hussan, Amel Ali Al, Ejbali, Ridha
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 19.07.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As digital imaging technology advances, accurate classification of 2D breast cancer images becomes increasingly crucial for early detection and staging. This paper introduces a novel classification approach that integrates deep learning, sparse coding, and wavelet networks through a unique architecture we call the Deep Sparse Wavelet Autoencoder (DSWAE). The key innovation of our method lies in its construction: DSWAE combines stacked wavelet autoencoders to create a robust model specifically designed for differentiating between distinct categories in 2D breast cancer image datasets. This architecture not only enhances classification accuracy but also optimizes computational efficiency by utilizing deep networks with minimal parameters, which significantly reduces processing time and costs. Our experimental results demonstrate the superior performance of the DSWAE model, achieving precision rates of 94.5% for benign and 93.8% for malignant cases, with recall rates of 93.65% for benign and 96.2% for malignant cases. Remarkably, our method attained a perfect precision rate of 100% for normal cases. These results highlight the effectiveness of our approach, which outperforms current state-of-the-art methods in 2D breast cancer image classification.
AbstractList As digital imaging technology advances, accurate classification of 2D breast cancer images becomes increasingly crucial for early detection and staging. This paper introduces a novel classification approach that integrates deep learning, sparse coding, and wavelet networks through a unique architecture we call the Deep Sparse Wavelet Autoencoder (DSWAE). The key innovation of our method lies in its construction: DSWAE combines stacked wavelet autoencoders to create a robust model specifically designed for differentiating between distinct categories in 2D breast cancer image datasets. This architecture not only enhances classification accuracy but also optimizes computational efficiency by utilizing deep networks with minimal parameters, which significantly reduces processing time and costs. Our experimental results demonstrate the superior performance of the DSWAE model, achieving precision rates of 94.5% for benign and 93.8% for malignant cases, with recall rates of 93.65% for benign and 96.2% for malignant cases. Remarkably, our method attained a perfect precision rate of 100% for normal cases. These results highlight the effectiveness of our approach, which outperforms current state-of-the-art methods in 2D breast cancer image classification.
As digital imaging technology advances, accurate classification of 2D breast cancer images becomes increasingly crucial for early detection and staging. This paper introduces a novel classification approach that integrates deep learning, sparse coding, and wavelet networks through a unique architecture we call the Deep Sparse Wavelet Autoencoder (DSWAE). The key innovation of our method lies in its construction: DSWAE combines stacked wavelet autoencoders to create a robust model specifically designed for differentiating between distinct categories in 2D breast cancer image datasets. This architecture not only enhances classification accuracy but also optimizes computational efficiency by utilizing deep networks with minimal parameters, which significantly reduces processing time and costs. Our experimental results demonstrate the superior performance of the DSWAE model, achieving precision rates of 94.5% for benign and 93.8% for malignant cases, with recall rates of 93.65% for benign and 96.2% for malignant cases. Remarkably, our method attained a perfect precision rate of 100% for normal cases. These results highlight the effectiveness of our approach, which outperforms current state-of-the-art methods in 2D breast cancer image classification.As digital imaging technology advances, accurate classification of 2D breast cancer images becomes increasingly crucial for early detection and staging. This paper introduces a novel classification approach that integrates deep learning, sparse coding, and wavelet networks through a unique architecture we call the Deep Sparse Wavelet Autoencoder (DSWAE). The key innovation of our method lies in its construction: DSWAE combines stacked wavelet autoencoders to create a robust model specifically designed for differentiating between distinct categories in 2D breast cancer image datasets. This architecture not only enhances classification accuracy but also optimizes computational efficiency by utilizing deep networks with minimal parameters, which significantly reduces processing time and costs. Our experimental results demonstrate the superior performance of the DSWAE model, achieving precision rates of 94.5% for benign and 93.8% for malignant cases, with recall rates of 93.65% for benign and 96.2% for malignant cases. Remarkably, our method attained a perfect precision rate of 100% for normal cases. These results highlight the effectiveness of our approach, which outperforms current state-of-the-art methods in 2D breast cancer image classification.
Abstract As digital imaging technology advances, accurate classification of 2D breast cancer images becomes increasingly crucial for early detection and staging. This paper introduces a novel classification approach that integrates deep learning, sparse coding, and wavelet networks through a unique architecture we call the Deep Sparse Wavelet Autoencoder (DSWAE). The key innovation of our method lies in its construction: DSWAE combines stacked wavelet autoencoders to create a robust model specifically designed for differentiating between distinct categories in 2D breast cancer image datasets. This architecture not only enhances classification accuracy but also optimizes computational efficiency by utilizing deep networks with minimal parameters, which significantly reduces processing time and costs. Our experimental results demonstrate the superior performance of the DSWAE model, achieving precision rates of 94.5% for benign and 93.8% for malignant cases, with recall rates of 93.65% for benign and 96.2% for malignant cases. Remarkably, our method attained a perfect precision rate of 100% for normal cases. These results highlight the effectiveness of our approach, which outperforms current state-of-the-art methods in 2D breast cancer image classification.
ArticleNumber 26194
Author Alzakari, Sarah A.
Ejbali, Ridha
Hassairi, Salima
Hussan, Amel Ali Al
Author_xml – sequence: 1
  givenname: Sarah A.
  surname: Alzakari
  fullname: Alzakari, Sarah A.
  organization: Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University
– sequence: 2
  givenname: Salima
  surname: Hassairi
  fullname: Hassairi, Salima
  organization: Research Team in Intelligent Machines, National Engineering School of Gabes, University of Gabes
– sequence: 3
  givenname: Amel Ali Al
  surname: Hussan
  fullname: Hussan, Amel Ali Al
  organization: Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University
– sequence: 4
  givenname: Ridha
  surname: Ejbali
  fullname: Ejbali, Ridha
  email: ridha_ejbali@ieee.org
  organization: Research Team in Intelligent Machines, National Engineering School of Gabes, University of Gabes
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40681757$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1URMvQP8ACRWLDJuBnYq8QqgpUqsSmEkvrjnM9k1HGDnbSav497qSUlgXe-PWd42v7vCYnIQYk5C2jHxkV-lOWTBldU65qxjRr6sMLcsapVDUXnJ88GZ-S85x3tDTFjWTmFTmVtNGsVe0Z-XkZthBcHzbVOiHkqXJliqlyA-Tc-97B1MdQzfkegapDHKs8QspY3cEtDjhVME8Rg4tdkcE4pghu-4a89DBkPH_oV-Tm6-XNxff6-se3q4sv17WTRk512zbMdKBZh7plggrKqBRyrZhztDONVIpLVM4prz0g8A4dcMelcN4JLVbkarHtIuzsmPo9pION0NvjQkwbC2nq3YC2EcpIwVwH3EvuQTcalRd87Q1KRk3x-rx4jfN6j53DMCUYnpk-3wn91m7irWWct1JRWhw-PDik-GvGPNl9nx0OAwSMc7aCC1auZKgo6Pt_0F2cUyhPdaTKt-lS7Yq8e1rSYy1__q8AfAFcijkn9I8Io_Y-J3bJiS05scec2EMRiUWUCxw2mP6e_R_Vb0vxwFU
Cites_doi 10.1117/12.2180554
10.1109/ACCESS.2023.3335604
10.1109/ICIP.2019.8803154
10.1109/ICECA.2018.8474739
10.1016/j.procs.2018.05.054
10.1109/ICTAI.2015.119
10.1109/LSP.2024.3392690
10.1109/ACCESS.2020.3021343
10.1109/ISBI.2017.7950592
10.1109/ACCESS.2020.3019327
10.1016/j.neunet.2017.07.015
10.2147/BCTT.S460856
10.1142/S0219691311004389
10.1038/s41598-020-70438-8
10.1109/SMC.2017.8122889
10.1109/IJCNN.2010.5596876
10.1016/j.mlwa.2022.100430
10.1007/s11042-017-4523-2
10.1016/j.eswa.2024.123747
10.1016/j.asoc.2021.108184
10.1109/SOCPAR.2014.7008011
10.1007/s40120-021-00279-8
10.1016/j.icte.2024.01.002
10.1016/j.asoc.2016.04.036
10.1109/ICTAI.2015.49
10.1007/978-3-319-47364-2_48
10.3389/fonc.2021.763527
10.1016/B978-0-08-100659-7.00005-1
10.1109/IJCNN.2016.7727519
10.1109/ICPR.2016.7900002
10.1109/TCSVT.2017.2654543
10.1007/s40745-018-0162-3
10.1088/0266-5611/23/3/008
10.1016/j.pacs.2023.100569
ContentType Journal Article
Copyright The Author(s) 2025 corrected publication 2025
2025. The Author(s).
corrected publication 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025 corrected publication 2025
– notice: 2025. The Author(s).
– notice: corrected publication 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-11816-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database (ProQuest)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_6359431cda2f42fa868e5f32bf9e4109
PMC12274500
40681757
10_1038_s41598_025_11816_y
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c494t-77619da81de871303010434b51cc0d9645524e5cc5f8faea2deca2c243cfc383
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001531186600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:51:44 EDT 2025
Tue Nov 04 02:03:06 EST 2025
Sat Nov 01 15:09:42 EDT 2025
Sat Nov 01 14:57:32 EDT 2025
Sat Sep 06 11:16:34 EDT 2025
Sat Nov 29 07:34:42 EST 2025
Sat Sep 06 07:29:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Wavelet Networks
Autoencoders
Breakhis
2D Image Analysis
Computational Efficiency
Sparse coding
Breast Cancer Classification
Deep Learning
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-77619da81de871303010434b51cc0d9645524e5cc5f8faea2deca2c243cfc383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/6359431cda2f42fa868e5f32bf9e4109
PMID 40681757
PQID 3231322894
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_6359431cda2f42fa868e5f32bf9e4109
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12274500
proquest_miscellaneous_3231645903
proquest_journals_3231322894
pubmed_primary_40681757
crossref_primary_10_1038_s41598_025_11816_y
springer_journals_10_1038_s41598_025_11816_y
PublicationCentury 2000
PublicationDate 2025-07-19
PublicationDateYYYYMMDD 2025-07-19
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 11816_CR29
E Ridha (11816_CR10) 2018; 77
11816_CR24
X Xie (11816_CR18) 2021; 11
11816_CR23
S Lu (11816_CR22) 2024
P Földiák (11816_CR33) 1998
11816_CR27
P Li (11816_CR13) 2020; 10
11816_CR25
E Asma (11816_CR12) 2017; 95
V Chauhan (11816_CR16) 2022; 115
T Sun (11816_CR19) 2023; 34
T Mahmood (11816_CR2) 2024; 249
C Zhang (11816_CR20) 2021; 10
E Candès (11816_CR34) 2007; 23
A Eladel (11816_CR28) 2014
C Yang (11816_CR21) 2024
K Zhang (11816_CR6) 2018; 28
11816_CR35
11816_CR32
11816_CR17
11816_CR39
11816_CR38
R Singh (11816_CR11) 2018; 132
11816_CR15
11816_CR37
11816_CR14
11816_CR36
W Arshad (11816_CR3) 2023; 11
T Mahmood (11816_CR1) 2020; 8
11816_CR7
11816_CR31
11816_CR8
11816_CR30
C Guo (11816_CR4) 2022; 10
11816_CR5
M Zaied (11816_CR26) 2011; 09
A-A Nahid (11816_CR40) 2019; 6
11816_CR9
R Man (11816_CR41) 2020; 8
References_xml – ident: 11816_CR30
  doi: 10.1117/12.2180554
– volume: 11
  start-page: 133804
  year: 2023
  ident: 11816_CR3
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3335604
– ident: 11816_CR5
  doi: 10.1109/ICIP.2019.8803154
– ident: 11816_CR9
  doi: 10.1109/ICECA.2018.8474739
– volume: 132
  start-page: 11
  year: 2018
  ident: 11816_CR11
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.05.054
– ident: 11816_CR31
  doi: 10.1109/ICTAI.2015.119
– ident: 11816_CR36
– year: 2024
  ident: 11816_CR21
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2024.3392690
– volume: 8
  start-page: 165779
  year: 2020
  ident: 11816_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3021343
– volume-title: Sparse Coding in the Primate Cortex, 895–898
  year: 1998
  ident: 11816_CR33
– ident: 11816_CR39
  doi: 10.1109/ISBI.2017.7950592
– volume: 8
  start-page: 155362
  year: 2020
  ident: 11816_CR41
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3019327
– volume: 95
  start-page: 10
  year: 2017
  ident: 11816_CR12
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.07.015
– ident: 11816_CR17
  doi: 10.2147/BCTT.S460856
– volume: 09
  start-page: 923
  year: 2011
  ident: 11816_CR26
  publication-title: Int. J. Wavelets, Multiresolution Inf. Process.
  doi: 10.1142/S0219691311004389
– volume: 10
  year: 2020
  ident: 11816_CR13
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-70438-8
– ident: 11816_CR24
  doi: 10.1109/SMC.2017.8122889
– ident: 11816_CR27
  doi: 10.1109/IJCNN.2010.5596876
– ident: 11816_CR7
– ident: 11816_CR14
– volume: 10
  year: 2022
  ident: 11816_CR4
  publication-title: Mach. Learn. withAppl.
  doi: 10.1016/j.mlwa.2022.100430
– volume: 77
  start-page: 6149
  year: 2018
  ident: 11816_CR10
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-017-4523-2
– volume: 249
  year: 2024
  ident: 11816_CR2
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2024.123747
– volume: 115
  year: 2022
  ident: 11816_CR16
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.108184
– year: 2014
  ident: 11816_CR28
  publication-title: A new system for image retrieval using beta wavelet network for descriptors extraction and fuzzy decision support.
  doi: 10.1109/SOCPAR.2014.7008011
– volume: 10
  start-page: 1001
  year: 2021
  ident: 11816_CR20
  publication-title: Neurol. Ther.
  doi: 10.1007/s40120-021-00279-8
– year: 2024
  ident: 11816_CR22
  publication-title: ICT Express
  doi: 10.1016/j.icte.2024.01.002
– ident: 11816_CR8
  doi: 10.1016/j.asoc.2016.04.036
– ident: 11816_CR32
  doi: 10.1109/ICTAI.2015.49
– ident: 11816_CR29
– ident: 11816_CR37
  doi: 10.1007/978-3-319-47364-2_48
– volume: 11
  year: 2021
  ident: 11816_CR18
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2021.763527
– ident: 11816_CR35
– ident: 11816_CR15
  doi: 10.1016/B978-0-08-100659-7.00005-1
– ident: 11816_CR23
  doi: 10.1109/IJCNN.2016.7727519
– ident: 11816_CR38
  doi: 10.1109/ICPR.2016.7900002
– volume: 28
  start-page: 1303
  year: 2018
  ident: 11816_CR6
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2017.2654543
– volume: 6
  start-page: 513
  year: 2019
  ident: 11816_CR40
  publication-title: Annals Data Sci.
  doi: 10.1007/s40745-018-0162-3
– ident: 11816_CR25
– volume: 23
  start-page: 969
  year: 2007
  ident: 11816_CR34
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/23/3/008
– volume: 34
  year: 2023
  ident: 11816_CR19
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2023.100569
SSID ssj0000529419
Score 2.4543946
Snippet As digital imaging technology advances, accurate classification of 2D breast cancer images becomes increasingly crucial for early detection and staging. This...
Abstract As digital imaging technology advances, accurate classification of 2D breast cancer images becomes increasingly crucial for early detection and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 26194
SubjectTerms 639/705/117
692/699/67
Accuracy
Algorithms
Autoencoder
Autoencoders
Automation
Breakhis
Breast cancer
Breast Cancer Classification
Breast Neoplasms - classification
Breast Neoplasms - diagnosis
Breast Neoplasms - diagnostic imaging
Breast Neoplasms - pathology
Cancer research
Classification
Datasets
Deep Learning
Female
Histopathology
Humanities and Social Sciences
Humans
Image Interpretation, Computer-Assisted - methods
Image Processing, Computer-Assisted - methods
Machine learning
Mammography
Mammography - methods
Medical research
Medical screening
multidisciplinary
Science
Science (multidisciplinary)
Sparse coding
Tissues
Tumors
Wavelet Analysis
Wavelet Networks
Wavelet transforms
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL70egICNxg6iJ7WySEwLUigNUPVSiN8sZO9tekiXJttp_z4yTbLW8LlzjRLLzje1vPONvAN4y0KqqMCbunce6dhhbZ6tYqZLwLiqtdLgo_DU_Pi7OzsqT6cCtn9Iq5zUxLNSuRT4jP1CSRQbJPdAfVj9irhrF0dWphMZNuEXMJuWUrm_yZHvGwlEsnZbTXZlEFQc97Vd8p0xmMd-4XMSbnf0oyPb_iWv-njL5S9w0bEdH9_93IA_g3kRExcfRch7CDd88gjtjacrNY_h-2JyzFEezFBXnrQ8C2T46gUy3Ob8oQCo4b34prHDerwStTl3vxZXlahaDsOuhZZ1MR5_N2uVP4PTo8PTzl3gqwhCjLvVA7JtcLGeJ1nryrRR7UAkBWGUpYuLKhc4yqX2GmNVFbb2VzqOVKLXCGsn9fQp7Tdv45yAcuzI2TXO0qJXDyiHxC-QyEzKtFUbwbkbCrEapDRNC5KowI26GcDMBN7OJ4BODtX2TZbLDg7ZbmmnWGWJTJTEkdFbWWta2WBQ-q5Ws6tLrNCkj2J8xMtPc7c01QBG82TbTrONQim18ux7fYRmeREXwbLSMbU-IIhVEyvIIih2b2enqbktzcR6UvVMpc50lSQTvZ_O67tff_8WLfw_jJdyVbPEsB1ruw97Qrf0ruI2Xw0XfvQ5T5ifJ_h9r
  priority: 102
  providerName: ProQuest
Title Enhancing breast cancer classification using a deep sparse wavelet autoencoder approach
URI https://link.springer.com/article/10.1038/s41598-025-11816-y
https://www.ncbi.nlm.nih.gov/pubmed/40681757
https://www.proquest.com/docview/3231322894
https://www.proquest.com/docview/3231645903
https://pubmed.ncbi.nlm.nih.gov/PMC12274500
https://doaj.org/article/6359431cda2f42fa868e5f32bf9e4109
Volume 15
WOSCitedRecordID wos001531186600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (Proquest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BCxIXxGdJKSsjcYOoie1skiNFW4FEVxGqxHKKnLHT9pKtdrOg_fedsbNLlw9x4eJD4kjWe3ZmRp55A_CGiVZNgzH53nmsW4uxsaaJlSqJ76LRSvtC4c_5dFrMZmV1q9UX54QFeeAA3DEZxJKMHFojWy1bU4wLl7VKNm3pdBpK95K8vBVMBVVvWeq0HKpkElUcL8lScTWZzGKutRzH6x1L5AX7_-Rl_p4s-cuNqTdEp4_g4eBBivdh5Y_hjuuewP3QU3L9FL5OukvW0OguRMMJ571AJnYhkP1kTgzyXAhOeL8QRljnrgX9VhZLJ34YbkPRC7Pq5yxwaemzjej4Mzg_nZx_-BgP3RNi1KXuyW2m2Mga8kcdBUWKQ5-EkG-yFDGx5VhnmdQuQ8zaojXOSOvQSJRaYYsUtz6HvW7euRcgLMcgJk1zNKiVxcYiOQbI_SFk2iqM4O0GyPo6aGTU_m5bFXWAvSbYaw97vY7ghLHezmR9a_-AWK8H1ut_sR7B0Yapejh0y1pJ1qGkCFJH8Hr7mo4L34GYzs1XYQ7r5yQqgoNA7HYl5NsU5E3lERQ7lO8sdfdNd3XpJblTSdF9liQRvNvsjp_r-jsWh_8Di5fwQPK2ZrXP8gj2-sXKvYJ7-L2_Wi5GcDef5X4sRrB_MplWX0b-rNB4Jisecxr3q09n1bcbKTsYOQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFET29lNDgjxaNWqy6qHlejNcsbOtpdkyWap9kfxH5lJNlstr1sPXOMksuPP42_imW8AXvFEqzzHkLj3MNSFw9A6m4dKZTTfaa6VbhOFR8PxOD05yY634EefC8Nhlb1NbA21q5D_ke8qySKD5B7o97NvIVeN4tPVvoRGB4sjvzwnl23-7vAzze9rKff3Jp8OwlVVgRB1phuik-QzOEs8zZOzoNgliKhHeRIjRi4b6CSR2ieISZEW1lvpPFqJUisskPw5eu0VuKpZWIwjBeXx-pcOH5rpOFul5kQq3Z3T9sgpbDIJOcFzEC43tr-2SsCfqO3vEZq_HNO2u9_-7f_su92BWyuaLT506-IubPnyHlzvCm8u78PXvfKUhUbKqcg5Kr8RyOivBbIzwdFTLWAFZwVMhRXO-5kg21vPvTi3XKujEXbRVKwC6uixXpn9AUwuY1APYbusSv8YhGNHzcbxEC1q5TB3SOwJuYiGjAuFAbzpJ97MOiER0wYAqNR0MDEEE9PCxCwD-MjYWN_JIuDthaqempVNMcQVM-J_6KwstCxsOkh9UiiZF5nXcZQFsNNDwqws09xc4CGAl-tmsil8UGRLXy26e1hkKFIBPOqAuO4JEcCUKOcwgHQDohtd3Wwpz05b3fJYyqFOoiiAtz2aL_r192_x5N_DeAE3DiZfRmZ0OD56CjclLzYWPs12YLupF_4ZXMPvzdm8ft6uVgHmklH-E00Qe0I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFBAX3o-FAkaCE6yya3uT3QNCQBsRtUQ5VKKcLO_Ym_ayCXlQ5afx75jZR6rwuvXAdV_y2p_H39gz3wC85IFWeY4hce9-qAuHoXU2D5XKaLzTXCtdJQof9Uej9OQkG-_AjzYXhsMqW5tYGWo3Rd4j7yrJIoPkHuhu0YRFjPcH72bfQq4gxSetbTmNGiKHfn1O7tvi7XCfxvqVlIOD44-fwqbCQIg600uiluQ_OEuczZPjoNg9iKh1eRIjRi7r6SSR2ieISZEW1lvpPFqJUisskHw7-uwV2CVGrmUHdsfDz-Ovmw0ePkLTcdYk6kQq7S5oseSENpmEnO7ZC9dbi2FVM-BPRPf3eM1fDm2rtXBw6z_uxdtwsyHg4n09Y-7Aji_vwrW6JOf6Hnw5KE9ZgqSciJzj9ZcCeV7MBbKbwXFVFZQF5wtMhBXO-5kgqzxfeHFuuYrHUtjVcsr6oI5eazXb78PxZfzUA-iU09I_AuHYhbNx3EeLWjnMHRKvQi6vIeNCYQCvWxCYWS0xYqrQAJWaGjKGIGMqyJh1AB8YJ5snWR68ujCdT0xjbQyxyIyYITorCy0Lm_ZSnxRK5kXmdRxlAey18DCNzVqYC2wE8GJzm6wNHyHZ0k9X9TMsPxSpAB7WoNy0hKhhSmS0H0C6Bdetpm7fKc9OK0XzWMq-TqIogDctsi_a9fe-ePzv33gO1wnc5mg4OnwCNyTPO1ZEzfags5yv_FO4it-XZ4v5s2bqCjCXDPOfVz6Fiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+breast+cancer+classification+using+a+deep+sparse+wavelet+autoencoder+approach&rft.jtitle=Scientific+reports&rft.au=Alzakari%2C+Sarah+A&rft.au=Hassairi%2C+Salima&rft.au=Hussan%2C+Amel+Ali+Al&rft.au=Ejbali%2C+Ridha&rft.date=2025-07-19&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=26194&rft_id=info:doi/10.1038%2Fs41598-025-11816-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon