Enhancing breast cancer classification using a deep sparse wavelet autoencoder approach
As digital imaging technology advances, accurate classification of 2D breast cancer images becomes increasingly crucial for early detection and staging. This paper introduces a novel classification approach that integrates deep learning, sparse coding, and wavelet networks through a unique architect...
Saved in:
| Published in: | Scientific reports Vol. 15; no. 1; pp. 26194 - 11 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
19.07.2025
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | As digital imaging technology advances, accurate classification of 2D breast cancer images becomes increasingly crucial for early detection and staging. This paper introduces a novel classification approach that integrates deep learning, sparse coding, and wavelet networks through a unique architecture we call the Deep Sparse Wavelet Autoencoder (DSWAE). The key innovation of our method lies in its construction: DSWAE combines stacked wavelet autoencoders to create a robust model specifically designed for differentiating between distinct categories in 2D breast cancer image datasets. This architecture not only enhances classification accuracy but also optimizes computational efficiency by utilizing deep networks with minimal parameters, which significantly reduces processing time and costs. Our experimental results demonstrate the superior performance of the DSWAE model, achieving precision rates of 94.5% for benign and 93.8% for malignant cases, with recall rates of 93.65% for benign and 96.2% for malignant cases. Remarkably, our method attained a perfect precision rate of 100% for normal cases. These results highlight the effectiveness of our approach, which outperforms current state-of-the-art methods in 2D breast cancer image classification. |
|---|---|
| AbstractList | As digital imaging technology advances, accurate classification of 2D breast cancer images becomes increasingly crucial for early detection and staging. This paper introduces a novel classification approach that integrates deep learning, sparse coding, and wavelet networks through a unique architecture we call the Deep Sparse Wavelet Autoencoder (DSWAE). The key innovation of our method lies in its construction: DSWAE combines stacked wavelet autoencoders to create a robust model specifically designed for differentiating between distinct categories in 2D breast cancer image datasets. This architecture not only enhances classification accuracy but also optimizes computational efficiency by utilizing deep networks with minimal parameters, which significantly reduces processing time and costs. Our experimental results demonstrate the superior performance of the DSWAE model, achieving precision rates of 94.5% for benign and 93.8% for malignant cases, with recall rates of 93.65% for benign and 96.2% for malignant cases. Remarkably, our method attained a perfect precision rate of 100% for normal cases. These results highlight the effectiveness of our approach, which outperforms current state-of-the-art methods in 2D breast cancer image classification. As digital imaging technology advances, accurate classification of 2D breast cancer images becomes increasingly crucial for early detection and staging. This paper introduces a novel classification approach that integrates deep learning, sparse coding, and wavelet networks through a unique architecture we call the Deep Sparse Wavelet Autoencoder (DSWAE). The key innovation of our method lies in its construction: DSWAE combines stacked wavelet autoencoders to create a robust model specifically designed for differentiating between distinct categories in 2D breast cancer image datasets. This architecture not only enhances classification accuracy but also optimizes computational efficiency by utilizing deep networks with minimal parameters, which significantly reduces processing time and costs. Our experimental results demonstrate the superior performance of the DSWAE model, achieving precision rates of 94.5% for benign and 93.8% for malignant cases, with recall rates of 93.65% for benign and 96.2% for malignant cases. Remarkably, our method attained a perfect precision rate of 100% for normal cases. These results highlight the effectiveness of our approach, which outperforms current state-of-the-art methods in 2D breast cancer image classification.As digital imaging technology advances, accurate classification of 2D breast cancer images becomes increasingly crucial for early detection and staging. This paper introduces a novel classification approach that integrates deep learning, sparse coding, and wavelet networks through a unique architecture we call the Deep Sparse Wavelet Autoencoder (DSWAE). The key innovation of our method lies in its construction: DSWAE combines stacked wavelet autoencoders to create a robust model specifically designed for differentiating between distinct categories in 2D breast cancer image datasets. This architecture not only enhances classification accuracy but also optimizes computational efficiency by utilizing deep networks with minimal parameters, which significantly reduces processing time and costs. Our experimental results demonstrate the superior performance of the DSWAE model, achieving precision rates of 94.5% for benign and 93.8% for malignant cases, with recall rates of 93.65% for benign and 96.2% for malignant cases. Remarkably, our method attained a perfect precision rate of 100% for normal cases. These results highlight the effectiveness of our approach, which outperforms current state-of-the-art methods in 2D breast cancer image classification. Abstract As digital imaging technology advances, accurate classification of 2D breast cancer images becomes increasingly crucial for early detection and staging. This paper introduces a novel classification approach that integrates deep learning, sparse coding, and wavelet networks through a unique architecture we call the Deep Sparse Wavelet Autoencoder (DSWAE). The key innovation of our method lies in its construction: DSWAE combines stacked wavelet autoencoders to create a robust model specifically designed for differentiating between distinct categories in 2D breast cancer image datasets. This architecture not only enhances classification accuracy but also optimizes computational efficiency by utilizing deep networks with minimal parameters, which significantly reduces processing time and costs. Our experimental results demonstrate the superior performance of the DSWAE model, achieving precision rates of 94.5% for benign and 93.8% for malignant cases, with recall rates of 93.65% for benign and 96.2% for malignant cases. Remarkably, our method attained a perfect precision rate of 100% for normal cases. These results highlight the effectiveness of our approach, which outperforms current state-of-the-art methods in 2D breast cancer image classification. |
| ArticleNumber | 26194 |
| Author | Alzakari, Sarah A. Ejbali, Ridha Hassairi, Salima Hussan, Amel Ali Al |
| Author_xml | – sequence: 1 givenname: Sarah A. surname: Alzakari fullname: Alzakari, Sarah A. organization: Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University – sequence: 2 givenname: Salima surname: Hassairi fullname: Hassairi, Salima organization: Research Team in Intelligent Machines, National Engineering School of Gabes, University of Gabes – sequence: 3 givenname: Amel Ali Al surname: Hussan fullname: Hussan, Amel Ali Al organization: Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University – sequence: 4 givenname: Ridha surname: Ejbali fullname: Ejbali, Ridha email: ridha_ejbali@ieee.org organization: Research Team in Intelligent Machines, National Engineering School of Gabes, University of Gabes |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40681757$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1DAUhS1URMvQP8ACRWLDJuBnYq8QqgpUqsSmEkvrjnM9k1HGDnbSav497qSUlgXe-PWd42v7vCYnIQYk5C2jHxkV-lOWTBldU65qxjRr6sMLcsapVDUXnJ88GZ-S85x3tDTFjWTmFTmVtNGsVe0Z-XkZthBcHzbVOiHkqXJliqlyA-Tc-97B1MdQzfkegapDHKs8QspY3cEtDjhVME8Rg4tdkcE4pghu-4a89DBkPH_oV-Tm6-XNxff6-se3q4sv17WTRk512zbMdKBZh7plggrKqBRyrZhztDONVIpLVM4prz0g8A4dcMelcN4JLVbkarHtIuzsmPo9pION0NvjQkwbC2nq3YC2EcpIwVwH3EvuQTcalRd87Q1KRk3x-rx4jfN6j53DMCUYnpk-3wn91m7irWWct1JRWhw-PDik-GvGPNl9nx0OAwSMc7aCC1auZKgo6Pt_0F2cUyhPdaTKt-lS7Yq8e1rSYy1__q8AfAFcijkn9I8Io_Y-J3bJiS05scec2EMRiUWUCxw2mP6e_R_Vb0vxwFU |
| Cites_doi | 10.1117/12.2180554 10.1109/ACCESS.2023.3335604 10.1109/ICIP.2019.8803154 10.1109/ICECA.2018.8474739 10.1016/j.procs.2018.05.054 10.1109/ICTAI.2015.119 10.1109/LSP.2024.3392690 10.1109/ACCESS.2020.3021343 10.1109/ISBI.2017.7950592 10.1109/ACCESS.2020.3019327 10.1016/j.neunet.2017.07.015 10.2147/BCTT.S460856 10.1142/S0219691311004389 10.1038/s41598-020-70438-8 10.1109/SMC.2017.8122889 10.1109/IJCNN.2010.5596876 10.1016/j.mlwa.2022.100430 10.1007/s11042-017-4523-2 10.1016/j.eswa.2024.123747 10.1016/j.asoc.2021.108184 10.1109/SOCPAR.2014.7008011 10.1007/s40120-021-00279-8 10.1016/j.icte.2024.01.002 10.1016/j.asoc.2016.04.036 10.1109/ICTAI.2015.49 10.1007/978-3-319-47364-2_48 10.3389/fonc.2021.763527 10.1016/B978-0-08-100659-7.00005-1 10.1109/IJCNN.2016.7727519 10.1109/ICPR.2016.7900002 10.1109/TCSVT.2017.2654543 10.1007/s40745-018-0162-3 10.1088/0266-5611/23/3/008 10.1016/j.pacs.2023.100569 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 corrected publication 2025 2025. The Author(s). corrected publication 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 corrected publication 2025 – notice: 2025. The Author(s). – notice: corrected publication 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-025-11816-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database (ProQuest) url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 11 |
| ExternalDocumentID | oai_doaj_org_article_6359431cda2f42fa868e5f32bf9e4109 PMC12274500 40681757 10_1038_s41598_025_11816_y |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RNT RNTTT RPM SNYQT UKHRP AAYXX AFFHD CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c494t-77619da81de871303010434b51cc0d9645524e5cc5f8faea2deca2c243cfc383 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001531186600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:51:44 EDT 2025 Tue Nov 04 02:03:06 EST 2025 Sat Nov 01 15:09:42 EDT 2025 Sat Nov 01 14:57:32 EDT 2025 Sat Sep 06 11:16:34 EDT 2025 Sat Nov 29 07:34:42 EST 2025 Sat Sep 06 07:29:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Wavelet Networks Autoencoders Breakhis 2D Image Analysis Computational Efficiency Sparse coding Breast Cancer Classification Deep Learning |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c494t-77619da81de871303010434b51cc0d9645524e5cc5f8faea2deca2c243cfc383 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/6359431cda2f42fa868e5f32bf9e4109 |
| PMID | 40681757 |
| PQID | 3231322894 |
| PQPubID | 2041939 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6359431cda2f42fa868e5f32bf9e4109 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12274500 proquest_miscellaneous_3231645903 proquest_journals_3231322894 pubmed_primary_40681757 crossref_primary_10_1038_s41598_025_11816_y springer_journals_10_1038_s41598_025_11816_y |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-19 |
| PublicationDateYYYYMMDD | 2025-07-19 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | 11816_CR29 E Ridha (11816_CR10) 2018; 77 11816_CR24 X Xie (11816_CR18) 2021; 11 11816_CR23 S Lu (11816_CR22) 2024 P Földiák (11816_CR33) 1998 11816_CR27 P Li (11816_CR13) 2020; 10 11816_CR25 E Asma (11816_CR12) 2017; 95 V Chauhan (11816_CR16) 2022; 115 T Sun (11816_CR19) 2023; 34 T Mahmood (11816_CR2) 2024; 249 C Zhang (11816_CR20) 2021; 10 E Candès (11816_CR34) 2007; 23 A Eladel (11816_CR28) 2014 C Yang (11816_CR21) 2024 K Zhang (11816_CR6) 2018; 28 11816_CR35 11816_CR32 11816_CR17 11816_CR39 11816_CR38 R Singh (11816_CR11) 2018; 132 11816_CR15 11816_CR37 11816_CR14 11816_CR36 W Arshad (11816_CR3) 2023; 11 T Mahmood (11816_CR1) 2020; 8 11816_CR7 11816_CR31 11816_CR8 11816_CR30 C Guo (11816_CR4) 2022; 10 11816_CR5 M Zaied (11816_CR26) 2011; 09 A-A Nahid (11816_CR40) 2019; 6 11816_CR9 R Man (11816_CR41) 2020; 8 |
| References_xml | – ident: 11816_CR30 doi: 10.1117/12.2180554 – volume: 11 start-page: 133804 year: 2023 ident: 11816_CR3 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3335604 – ident: 11816_CR5 doi: 10.1109/ICIP.2019.8803154 – ident: 11816_CR9 doi: 10.1109/ICECA.2018.8474739 – volume: 132 start-page: 11 year: 2018 ident: 11816_CR11 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.05.054 – ident: 11816_CR31 doi: 10.1109/ICTAI.2015.119 – ident: 11816_CR36 – year: 2024 ident: 11816_CR21 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2024.3392690 – volume: 8 start-page: 165779 year: 2020 ident: 11816_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3021343 – volume-title: Sparse Coding in the Primate Cortex, 895–898 year: 1998 ident: 11816_CR33 – ident: 11816_CR39 doi: 10.1109/ISBI.2017.7950592 – volume: 8 start-page: 155362 year: 2020 ident: 11816_CR41 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3019327 – volume: 95 start-page: 10 year: 2017 ident: 11816_CR12 publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.07.015 – ident: 11816_CR17 doi: 10.2147/BCTT.S460856 – volume: 09 start-page: 923 year: 2011 ident: 11816_CR26 publication-title: Int. J. Wavelets, Multiresolution Inf. Process. doi: 10.1142/S0219691311004389 – volume: 10 year: 2020 ident: 11816_CR13 publication-title: Sci. Rep. doi: 10.1038/s41598-020-70438-8 – ident: 11816_CR24 doi: 10.1109/SMC.2017.8122889 – ident: 11816_CR27 doi: 10.1109/IJCNN.2010.5596876 – ident: 11816_CR7 – ident: 11816_CR14 – volume: 10 year: 2022 ident: 11816_CR4 publication-title: Mach. Learn. withAppl. doi: 10.1016/j.mlwa.2022.100430 – volume: 77 start-page: 6149 year: 2018 ident: 11816_CR10 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-017-4523-2 – volume: 249 year: 2024 ident: 11816_CR2 publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2024.123747 – volume: 115 year: 2022 ident: 11816_CR16 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.108184 – year: 2014 ident: 11816_CR28 publication-title: A new system for image retrieval using beta wavelet network for descriptors extraction and fuzzy decision support. doi: 10.1109/SOCPAR.2014.7008011 – volume: 10 start-page: 1001 year: 2021 ident: 11816_CR20 publication-title: Neurol. Ther. doi: 10.1007/s40120-021-00279-8 – year: 2024 ident: 11816_CR22 publication-title: ICT Express doi: 10.1016/j.icte.2024.01.002 – ident: 11816_CR8 doi: 10.1016/j.asoc.2016.04.036 – ident: 11816_CR32 doi: 10.1109/ICTAI.2015.49 – ident: 11816_CR29 – ident: 11816_CR37 doi: 10.1007/978-3-319-47364-2_48 – volume: 11 year: 2021 ident: 11816_CR18 publication-title: Front. Oncol. doi: 10.3389/fonc.2021.763527 – ident: 11816_CR35 – ident: 11816_CR15 doi: 10.1016/B978-0-08-100659-7.00005-1 – ident: 11816_CR23 doi: 10.1109/IJCNN.2016.7727519 – ident: 11816_CR38 doi: 10.1109/ICPR.2016.7900002 – volume: 28 start-page: 1303 year: 2018 ident: 11816_CR6 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2017.2654543 – volume: 6 start-page: 513 year: 2019 ident: 11816_CR40 publication-title: Annals Data Sci. doi: 10.1007/s40745-018-0162-3 – ident: 11816_CR25 – volume: 23 start-page: 969 year: 2007 ident: 11816_CR34 publication-title: Inverse Probl. doi: 10.1088/0266-5611/23/3/008 – volume: 34 year: 2023 ident: 11816_CR19 publication-title: Photoacoustics doi: 10.1016/j.pacs.2023.100569 |
| SSID | ssj0000529419 |
| Score | 2.4543946 |
| Snippet | As digital imaging technology advances, accurate classification of 2D breast cancer images becomes increasingly crucial for early detection and staging. This... Abstract As digital imaging technology advances, accurate classification of 2D breast cancer images becomes increasingly crucial for early detection and... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 26194 |
| SubjectTerms | 639/705/117 692/699/67 Accuracy Algorithms Autoencoder Autoencoders Automation Breakhis Breast cancer Breast Cancer Classification Breast Neoplasms - classification Breast Neoplasms - diagnosis Breast Neoplasms - diagnostic imaging Breast Neoplasms - pathology Cancer research Classification Datasets Deep Learning Female Histopathology Humanities and Social Sciences Humans Image Interpretation, Computer-Assisted - methods Image Processing, Computer-Assisted - methods Machine learning Mammography Mammography - methods Medical research Medical screening multidisciplinary Science Science (multidisciplinary) Sparse coding Tissues Tumors Wavelet Analysis Wavelet Networks Wavelet transforms |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL70egICNxg6iJ7WySEwLUigNUPVSiN8sZO9tekiXJttp_z4yTbLW8LlzjRLLzje1vPONvAN4y0KqqMCbunce6dhhbZ6tYqZLwLiqtdLgo_DU_Pi7OzsqT6cCtn9Iq5zUxLNSuRT4jP1CSRQbJPdAfVj9irhrF0dWphMZNuEXMJuWUrm_yZHvGwlEsnZbTXZlEFQc97Vd8p0xmMd-4XMSbnf0oyPb_iWv-njL5S9w0bEdH9_93IA_g3kRExcfRch7CDd88gjtjacrNY_h-2JyzFEezFBXnrQ8C2T46gUy3Ob8oQCo4b34prHDerwStTl3vxZXlahaDsOuhZZ1MR5_N2uVP4PTo8PTzl3gqwhCjLvVA7JtcLGeJ1nryrRR7UAkBWGUpYuLKhc4yqX2GmNVFbb2VzqOVKLXCGsn9fQp7Tdv45yAcuzI2TXO0qJXDyiHxC-QyEzKtFUbwbkbCrEapDRNC5KowI26GcDMBN7OJ4BODtX2TZbLDg7ZbmmnWGWJTJTEkdFbWWta2WBQ-q5Ws6tLrNCkj2J8xMtPc7c01QBG82TbTrONQim18ux7fYRmeREXwbLSMbU-IIhVEyvIIih2b2enqbktzcR6UvVMpc50lSQTvZ_O67tff_8WLfw_jJdyVbPEsB1ruw97Qrf0ruI2Xw0XfvQ5T5ifJ_h9r priority: 102 providerName: ProQuest |
| Title | Enhancing breast cancer classification using a deep sparse wavelet autoencoder approach |
| URI | https://link.springer.com/article/10.1038/s41598-025-11816-y https://www.ncbi.nlm.nih.gov/pubmed/40681757 https://www.proquest.com/docview/3231322894 https://www.proquest.com/docview/3231645903 https://pubmed.ncbi.nlm.nih.gov/PMC12274500 https://doaj.org/article/6359431cda2f42fa868e5f32bf9e4109 |
| Volume | 15 |
| WOSCitedRecordID | wos001531186600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (Proquest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BCxIXxGdJKSsjcYOoie1skiNFW4FEVxGqxHKKnLHT9pKtdrOg_fedsbNLlw9x4eJD4kjWe3ZmRp55A_CGiVZNgzH53nmsW4uxsaaJlSqJ76LRSvtC4c_5dFrMZmV1q9UX54QFeeAA3DEZxJKMHFojWy1bU4wLl7VKNm3pdBpK95K8vBVMBVVvWeq0HKpkElUcL8lScTWZzGKutRzH6x1L5AX7_-Rl_p4s-cuNqTdEp4_g4eBBivdh5Y_hjuuewP3QU3L9FL5OukvW0OguRMMJ571AJnYhkP1kTgzyXAhOeL8QRljnrgX9VhZLJ34YbkPRC7Pq5yxwaemzjej4Mzg_nZx_-BgP3RNi1KXuyW2m2Mga8kcdBUWKQ5-EkG-yFDGx5VhnmdQuQ8zaojXOSOvQSJRaYYsUtz6HvW7euRcgLMcgJk1zNKiVxcYiOQbI_SFk2iqM4O0GyPo6aGTU_m5bFXWAvSbYaw97vY7ghLHezmR9a_-AWK8H1ut_sR7B0Yapejh0y1pJ1qGkCFJH8Hr7mo4L34GYzs1XYQ7r5yQqgoNA7HYl5NsU5E3lERQ7lO8sdfdNd3XpJblTSdF9liQRvNvsjp_r-jsWh_8Di5fwQPK2ZrXP8gj2-sXKvYJ7-L2_Wi5GcDef5X4sRrB_MplWX0b-rNB4Jisecxr3q09n1bcbKTsYOQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFET29lNDgjxaNWqy6qHlejNcsbOtpdkyWap9kfxH5lJNlstr1sPXOMksuPP42_imW8AXvFEqzzHkLj3MNSFw9A6m4dKZTTfaa6VbhOFR8PxOD05yY634EefC8Nhlb1NbA21q5D_ke8qySKD5B7o97NvIVeN4tPVvoRGB4sjvzwnl23-7vAzze9rKff3Jp8OwlVVgRB1phuik-QzOEs8zZOzoNgliKhHeRIjRi4b6CSR2ieISZEW1lvpPFqJUisskPw5eu0VuKpZWIwjBeXx-pcOH5rpOFul5kQq3Z3T9sgpbDIJOcFzEC43tr-2SsCfqO3vEZq_HNO2u9_-7f_su92BWyuaLT506-IubPnyHlzvCm8u78PXvfKUhUbKqcg5Kr8RyOivBbIzwdFTLWAFZwVMhRXO-5kg21vPvTi3XKujEXbRVKwC6uixXpn9AUwuY1APYbusSv8YhGNHzcbxEC1q5TB3SOwJuYiGjAuFAbzpJ97MOiER0wYAqNR0MDEEE9PCxCwD-MjYWN_JIuDthaqempVNMcQVM-J_6KwstCxsOkh9UiiZF5nXcZQFsNNDwqws09xc4CGAl-tmsil8UGRLXy26e1hkKFIBPOqAuO4JEcCUKOcwgHQDohtd3Wwpz05b3fJYyqFOoiiAtz2aL_r192_x5N_DeAE3DiZfRmZ0OD56CjclLzYWPs12YLupF_4ZXMPvzdm8ft6uVgHmklH-E00Qe0I |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFBAX3o-FAkaCE6yya3uT3QNCQBsRtUQ5VKKcLO_Ym_ayCXlQ5afx75jZR6rwuvXAdV_y2p_H39gz3wC85IFWeY4hce9-qAuHoXU2D5XKaLzTXCtdJQof9Uej9OQkG-_AjzYXhsMqW5tYGWo3Rd4j7yrJIoPkHuhu0YRFjPcH72bfQq4gxSetbTmNGiKHfn1O7tvi7XCfxvqVlIOD44-fwqbCQIg600uiluQ_OEuczZPjoNg9iKh1eRIjRi7r6SSR2ieISZEW1lvpPFqJUisskHw7-uwV2CVGrmUHdsfDz-Ovmw0ePkLTcdYk6kQq7S5oseSENpmEnO7ZC9dbi2FVM-BPRPf3eM1fDm2rtXBw6z_uxdtwsyHg4n09Y-7Aji_vwrW6JOf6Hnw5KE9ZgqSciJzj9ZcCeV7MBbKbwXFVFZQF5wtMhBXO-5kgqzxfeHFuuYrHUtjVcsr6oI5eazXb78PxZfzUA-iU09I_AuHYhbNx3EeLWjnMHRKvQi6vIeNCYQCvWxCYWS0xYqrQAJWaGjKGIGMqyJh1AB8YJ5snWR68ujCdT0xjbQyxyIyYITorCy0Lm_ZSnxRK5kXmdRxlAey18DCNzVqYC2wE8GJzm6wNHyHZ0k9X9TMsPxSpAB7WoNy0hKhhSmS0H0C6Bdetpm7fKc9OK0XzWMq-TqIogDctsi_a9fe-ePzv33gO1wnc5mg4OnwCNyTPO1ZEzfags5yv_FO4it-XZ4v5s2bqCjCXDPOfVz6Fiw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+breast+cancer+classification+using+a+deep+sparse+wavelet+autoencoder+approach&rft.jtitle=Scientific+reports&rft.au=Alzakari%2C+Sarah+A&rft.au=Hassairi%2C+Salima&rft.au=Hussan%2C+Amel+Ali+Al&rft.au=Ejbali%2C+Ridha&rft.date=2025-07-19&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=26194&rft_id=info:doi/10.1038%2Fs41598-025-11816-y&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |