A two stage multi object tracking algorithm with transformer and attention mechanism

In the field of engineering safety, multi-object tracking encounters difficulties in effectively conducting object detection due to occlusion, as well as the issue of experiencing frequent switching of target identity ID switches (IDs). In response to the issues above, this paper proposes a multi-ob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 31414 - 14
Hauptverfasser: Hou, Mingxing, Wu, Yiming, Shi, Hong, Mu, Xiaofang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 26.08.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the field of engineering safety, multi-object tracking encounters difficulties in effectively conducting object detection due to occlusion, as well as the issue of experiencing frequent switching of target identity ID switches (IDs). In response to the issues above, this paper proposes a multi-object tracking model that integrates improved You Only Look Once Version 8 (YOLOv8) and High-Performance Multi-Object Tracking by Tracking Bytes (ByteTrack). The model architecture is based on the paradigm of tracking-by-detection. In the detection stage, we combine the coordinate attention mechanism to propose the Coordinate Attention Spatial Pyramid Pooling - Fast Conv (CASPPFC) module, and combine it with improved Efficient Vision Transformer (EfficientViT) to enhance the YOLOv8 backbone network, effectively reducing false positives and false negatives caused by occlusion. In the first stage of tracking association, we propose the Omni-Scale Network-Coordinate Attention (OSNet-CA) network as the Re-identification (Re-ID) feature extraction method to capture target information more effectively. In the second stage of association, we adopt the Efficient Intersection over Union (EIoU) improvement method to comprehensively consider the positional relationships between targets. The effectiveness of the improved model is validated on the Multi-Object Tracking 2017 (MOT17) and Multi-Object Tracking 2020 (MOT20) datasets. The results indicate that our tracking model achieved 80.5% Multiple Object Tracking Accuracy (MOTA), 79.3% Identification F1 Score (IDF1), and 64.2% Higher Order Tracking Accuracy (HOTA) on the MOT17 test set, and 77.8% MOTA, 76.9% IDF1, and 62.4% HOTA on the MOT20 test set. This tracking model can achieve high-precision pedestrian tracking, effectively reducing ID switches and enhancing tracking robustness, timely detection of hazardous events in the engineering safety field to ensure personnel safety.
AbstractList In the field of engineering safety, multi-object tracking encounters difficulties in effectively conducting object detection due to occlusion, as well as the issue of experiencing frequent switching of target identity ID switches (IDs). In response to the issues above, this paper proposes a multi-object tracking model that integrates improved You Only Look Once Version 8 (YOLOv8) and High-Performance Multi-Object Tracking by Tracking Bytes (ByteTrack). The model architecture is based on the paradigm of tracking-by-detection. In the detection stage, we combine the coordinate attention mechanism to propose the Coordinate Attention Spatial Pyramid Pooling - Fast Conv (CASPPFC) module, and combine it with improved Efficient Vision Transformer (EfficientViT) to enhance the YOLOv8 backbone network, effectively reducing false positives and false negatives caused by occlusion. In the first stage of tracking association, we propose the Omni-Scale Network-Coordinate Attention (OSNet-CA) network as the Re-identification (Re-ID) feature extraction method to capture target information more effectively. In the second stage of association, we adopt the Efficient Intersection over Union (EIoU) improvement method to comprehensively consider the positional relationships between targets. The effectiveness of the improved model is validated on the Multi-Object Tracking 2017 (MOT17) and Multi-Object Tracking 2020 (MOT20) datasets. The results indicate that our tracking model achieved 80.5% Multiple Object Tracking Accuracy (MOTA), 79.3% Identification F1 Score (IDF1), and 64.2% Higher Order Tracking Accuracy (HOTA) on the MOT17 test set, and 77.8% MOTA, 76.9% IDF1, and 62.4% HOTA on the MOT20 test set. This tracking model can achieve high-precision pedestrian tracking, effectively reducing ID switches and enhancing tracking robustness, timely detection of hazardous events in the engineering safety field to ensure personnel safety.
In the field of engineering safety, multi-object tracking encounters difficulties in effectively conducting object detection due to occlusion, as well as the issue of experiencing frequent switching of target identity ID switches (IDs). In response to the issues above, this paper proposes a multi-object tracking model that integrates improved You Only Look Once Version 8 (YOLOv8) and High-Performance Multi-Object Tracking by Tracking Bytes (ByteTrack). The model architecture is based on the paradigm of tracking-by-detection. In the detection stage, we combine the coordinate attention mechanism to propose the Coordinate Attention Spatial Pyramid Pooling - Fast Conv (CASPPFC) module, and combine it with improved Efficient Vision Transformer (EfficientViT) to enhance the YOLOv8 backbone network, effectively reducing false positives and false negatives caused by occlusion. In the first stage of tracking association, we propose the Omni-Scale Network-Coordinate Attention (OSNet-CA) network as the Re-identification (Re-ID) feature extraction method to capture target information more effectively. In the second stage of association, we adopt the Efficient Intersection over Union (EIoU) improvement method to comprehensively consider the positional relationships between targets. The effectiveness of the improved model is validated on the Multi-Object Tracking 2017 (MOT17) and Multi-Object Tracking 2020 (MOT20) datasets. The results indicate that our tracking model achieved 80.5% Multiple Object Tracking Accuracy (MOTA), 79.3% Identification F1 Score (IDF1), and 64.2% Higher Order Tracking Accuracy (HOTA) on the MOT17 test set, and 77.8% MOTA, 76.9% IDF1, and 62.4% HOTA on the MOT20 test set. This tracking model can achieve high-precision pedestrian tracking, effectively reducing ID switches and enhancing tracking robustness, timely detection of hazardous events in the engineering safety field to ensure personnel safety.In the field of engineering safety, multi-object tracking encounters difficulties in effectively conducting object detection due to occlusion, as well as the issue of experiencing frequent switching of target identity ID switches (IDs). In response to the issues above, this paper proposes a multi-object tracking model that integrates improved You Only Look Once Version 8 (YOLOv8) and High-Performance Multi-Object Tracking by Tracking Bytes (ByteTrack). The model architecture is based on the paradigm of tracking-by-detection. In the detection stage, we combine the coordinate attention mechanism to propose the Coordinate Attention Spatial Pyramid Pooling - Fast Conv (CASPPFC) module, and combine it with improved Efficient Vision Transformer (EfficientViT) to enhance the YOLOv8 backbone network, effectively reducing false positives and false negatives caused by occlusion. In the first stage of tracking association, we propose the Omni-Scale Network-Coordinate Attention (OSNet-CA) network as the Re-identification (Re-ID) feature extraction method to capture target information more effectively. In the second stage of association, we adopt the Efficient Intersection over Union (EIoU) improvement method to comprehensively consider the positional relationships between targets. The effectiveness of the improved model is validated on the Multi-Object Tracking 2017 (MOT17) and Multi-Object Tracking 2020 (MOT20) datasets. The results indicate that our tracking model achieved 80.5% Multiple Object Tracking Accuracy (MOTA), 79.3% Identification F1 Score (IDF1), and 64.2% Higher Order Tracking Accuracy (HOTA) on the MOT17 test set, and 77.8% MOTA, 76.9% IDF1, and 62.4% HOTA on the MOT20 test set. This tracking model can achieve high-precision pedestrian tracking, effectively reducing ID switches and enhancing tracking robustness, timely detection of hazardous events in the engineering safety field to ensure personnel safety.
Abstract In the field of engineering safety, multi-object tracking encounters difficulties in effectively conducting object detection due to occlusion, as well as the issue of experiencing frequent switching of target identity ID switches (IDs). In response to the issues above, this paper proposes a multi-object tracking model that integrates improved You Only Look Once Version 8 (YOLOv8) and High-Performance Multi-Object Tracking by Tracking Bytes (ByteTrack). The model architecture is based on the paradigm of tracking-by-detection. In the detection stage, we combine the coordinate attention mechanism to propose the Coordinate Attention Spatial Pyramid Pooling - Fast Conv (CASPPFC) module, and combine it with improved Efficient Vision Transformer (EfficientViT) to enhance the YOLOv8 backbone network, effectively reducing false positives and false negatives caused by occlusion. In the first stage of tracking association, we propose the Omni-Scale Network-Coordinate Attention (OSNet-CA) network as the Re-identification (Re-ID) feature extraction method to capture target information more effectively. In the second stage of association, we adopt the Efficient Intersection over Union (EIoU) improvement method to comprehensively consider the positional relationships between targets. The effectiveness of the improved model is validated on the Multi-Object Tracking 2017 (MOT17) and Multi-Object Tracking 2020 (MOT20) datasets. The results indicate that our tracking model achieved 80.5% Multiple Object Tracking Accuracy (MOTA), 79.3% Identification F1 Score (IDF1), and 64.2% Higher Order Tracking Accuracy (HOTA) on the MOT17 test set, and 77.8% MOTA, 76.9% IDF1, and 62.4% HOTA on the MOT20 test set. This tracking model can achieve high-precision pedestrian tracking, effectively reducing ID switches and enhancing tracking robustness, timely detection of hazardous events in the engineering safety field to ensure personnel safety.
ArticleNumber 31414
Author Shi, Hong
Hou, Mingxing
Wu, Yiming
Mu, Xiaofang
Author_xml – sequence: 1
  givenname: Mingxing
  surname: Hou
  fullname: Hou, Mingxing
  organization: School of Computer Science and Technology, Taiyuan Normal University
– sequence: 2
  givenname: Yiming
  surname: Wu
  fullname: Wu, Yiming
  organization: School of Computer Science and Technology, Taiyuan Normal University
– sequence: 3
  givenname: Hong
  surname: Shi
  fullname: Shi, Hong
  organization: School of Computer Science and Technology, Taiyuan Normal University
– sequence: 4
  givenname: Xiaofang
  surname: Mu
  fullname: Mu, Xiaofang
  email: mu_xiao_fang@163.com
  organization: Shanxi Institute of Energy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40858785$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1vFSEUhompsfXaP-DCTOLGzSifM7AyTeNHkyZu6powzGEu1xmowLTx38vtrbV1IQsgh-e8HDjvS3QUYgCEXhP8nmAmP2ROhJItpqIlHZOq5c_QCcVctJRRevRof4xOc97hOgRVnKgX6JhjKWQvxQm6OmvKbWxyMRM0yzoX38RhB7Y0JRn7w4epMfMUky_bpbmt8z4esotpgdSYMDamFAjFx9AsYLcm-Ly8Qs-dmTOc3q8b9P3zp6vzr-3lty8X52eXreWKl1aoTg18NLhn3BkYDB8FiM510nYKCHGGjN2ADR2kYICZsiMZOsUrKTlXA9ugi4PuGM1OXye_mPRLR-P1XSCmSZtUvJ1BM9UTwJgOoBTvuJIcu1EZ56hzXAhXtT4etK7XYYHR1jclMz8RfXoS_FZP8UYTyiQhvagK7-4VUvy5Qi568dnCPJsAcc2aUV4bxaTYo2__QXdxTaH-1Z5iEtO-NnmD3jwu6aGWP92rAD0ANsWcE7gHhGC9d4k-uERXl-g7l2hek9ghKVc4TJD-3v2frN_ePb-E
Cites_doi 10.1038/s41598-024-58800-6
10.1109/CVPR.2018.00129
10.1109/CVPR.2018.00248
10.1016/j.neucom.2022.07.042
10.1109/CVPR52729.2023.00934
10.3390/s24196495
10.1109/CVPR.2018.00562
10.1007/s11263-021-01513-4
10.1109/CVPR.2018.00159
10.1109/ICIP.2016.7533003
10.1007/978-3-319-10602-1_48
10.1177/03611981241258753
10.1007/s11263-020-01375-2
10.1109/CVPR52729.2023.00721
10.1007/978-3-030-01264-9_48
10.1109/CVPR.2008.4587583
10.1109/CVPR46437.2021.01350
10.1007/978-3-319-48881-3_2
10.1115/1.3662552
10.1609/aaai.v34i07.6999
10.1109/WACVW54805.2022.00019
10.1109/ICCV.2015.133
10.1609/aaai.v38i7.28493
10.1109/ICCV.2019.00380
10.1007/978-3-030-01234-2_1
10.1109/TPAMI.2015.2389824
10.1007/978-3-030-58548-8_28
10.1109/CVPR.2019.00075
10.1109/ICIP.2017.8296962
10.1016/j.displa.2024.102814
10.1109/WACV56688.2023.00485
10.1002/nav.3800020109
10.1007/978-3-031-20047-2_1
10.1109/ICCV48922.2021.00295
10.1016/j.knosys.2025.113539
10.1109/CVPR.2018.00745
10.1109/TMM.2023.3240881
10.1109/CVPR.2018.00720
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-16389-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest - Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database (subscription)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_3971e002be994649840fd9aff2ff455f
PMC12381175
40858785
10_1038_s41598_025_16389_4
Genre Journal Article
GrantInformation_xml – fundername: Technology Innovation Program for Higher Education Institutions in Shanxi Province
  grantid: 2022L403
– fundername: the Shanxi Province Basic Research Program
  grantid: 202303021211187
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c494t-5969b4da0734faeba4d5e56f68c69e11fa1d6b0a2b853e039cd1b694eba8449b3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001559641800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 19:09:16 EDT 2025
Tue Nov 04 02:05:40 EST 2025
Sat Nov 01 14:08:15 EDT 2025
Sat Nov 01 15:08:06 EDT 2025
Thu Sep 04 05:00:40 EDT 2025
Sat Nov 29 07:35:24 EST 2025
Wed Aug 27 01:34:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Two-stage association
Attention mechanism
Multi-object tracking
Re-identification
You Only Look Once Version 8
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-5969b4da0734faeba4d5e56f68c69e11fa1d6b0a2b853e039cd1b694eba8449b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/3971e002be994649840fd9aff2ff455f
PMID 40858785
PQID 3243802710
PQPubID 2041939
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_3971e002be994649840fd9aff2ff455f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12381175
proquest_miscellaneous_3246383855
proquest_journals_3243802710
pubmed_primary_40858785
crossref_primary_10_1038_s41598_025_16389_4
springer_journals_10_1038_s41598_025_16389_4
PublicationCentury 2000
PublicationDate 2025-08-26
PublicationDateYYYYMMDD 2025-08-26
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-26
  day: 26
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References X Dong (16389_CR16) 2024; 84
16389_CR52
Y Liu (16389_CR20) 2024; 14
16389_CR10
A Vaswani (16389_CR30) 2017; 30
16389_CR51
Y Du (16389_CR11) 2023; 25
J Luiten (16389_CR49) 2021; 129
K He (16389_CR32) 2015; 37
16389_CR46
16389_CR45
16389_CR48
16389_CR47
A Wang (16389_CR50) 2024; 37
Y Zhang (16389_CR2) 2021; 129
16389_CR22
16389_CR21
16389_CR19
16389_CR18
16389_CR12
16389_CR4
16389_CR3
X Dong (16389_CR17) 2025; 2679
16389_CR6
16389_CR5
16389_CR1
HW Kuhn (16389_CR14) 1955; 2
16389_CR31
16389_CR33
16389_CR8
16389_CR7
16389_CR9
16389_CR27
RE Kalman (16389_CR13) 1960; 82
16389_CR29
16389_CR24
16389_CR23
16389_CR26
16389_CR25
P Shi (16389_CR15) 2025; 318
16389_CR42
16389_CR41
16389_CR44
16389_CR43
16389_CR40
16389_CR39
16389_CR38
16389_CR35
Y-F Zhang (16389_CR28) 2022; 506
16389_CR34
16389_CR37
16389_CR36
References_xml – volume: 14
  start-page: 8768
  year: 2024
  ident: 16389_CR20
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-58800-6
– ident: 16389_CR40
  doi: 10.1109/CVPR.2018.00129
– volume: 30
  start-page: 526
  year: 2017
  ident: 16389_CR30
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 16389_CR38
  doi: 10.1109/CVPR.2018.00248
– volume: 506
  start-page: 146
  year: 2022
  ident: 16389_CR28
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.07.042
– ident: 16389_CR9
  doi: 10.1109/CVPR52729.2023.00934
– ident: 16389_CR24
  doi: 10.3390/s24196495
– ident: 16389_CR39
  doi: 10.1109/CVPR.2018.00562
– volume: 37
  start-page: 107984
  year: 2024
  ident: 16389_CR50
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 129
  start-page: 3069
  year: 2021
  ident: 16389_CR2
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-021-01513-4
– ident: 16389_CR36
  doi: 10.1109/CVPR.2018.00159
– ident: 16389_CR18
– ident: 16389_CR43
– ident: 16389_CR7
  doi: 10.1109/ICIP.2016.7533003
– ident: 16389_CR44
  doi: 10.1007/978-3-319-10602-1_48
– ident: 16389_CR4
– volume: 2679
  start-page: 1947
  year: 2025
  ident: 16389_CR17
  publication-title: Transp. Res. Rec.
  doi: 10.1177/03611981241258753
– ident: 16389_CR34
– volume: 129
  start-page: 548
  year: 2021
  ident: 16389_CR49
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-020-01375-2
– ident: 16389_CR23
  doi: 10.1109/CVPR52729.2023.00721
– ident: 16389_CR47
  doi: 10.1007/978-3-030-01264-9_48
– ident: 16389_CR12
  doi: 10.1109/CVPR.2008.4587583
– ident: 16389_CR25
  doi: 10.1109/CVPR46437.2021.01350
– ident: 16389_CR48
  doi: 10.1007/978-3-319-48881-3_2
– ident: 16389_CR51
– volume: 82
  start-page: 35
  year: 1960
  ident: 16389_CR13
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3662552
– ident: 16389_CR42
  doi: 10.1609/aaai.v34i07.6999
– ident: 16389_CR5
  doi: 10.1109/WACVW54805.2022.00019
– ident: 16389_CR45
  doi: 10.1109/ICCV.2015.133
– ident: 16389_CR29
– ident: 16389_CR52
  doi: 10.1609/aaai.v38i7.28493
– ident: 16389_CR27
  doi: 10.1109/ICCV.2019.00380
– ident: 16389_CR35
  doi: 10.1007/978-3-030-01234-2_1
– ident: 16389_CR22
– volume: 37
  start-page: 1904
  year: 2015
  ident: 16389_CR32
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– ident: 16389_CR1
  doi: 10.1007/978-3-030-58548-8_28
– ident: 16389_CR41
  doi: 10.1109/CVPR.2019.00075
– ident: 16389_CR31
– ident: 16389_CR8
  doi: 10.1109/ICIP.2017.8296962
– volume: 84
  start-page: 102814
  year: 2024
  ident: 16389_CR16
  publication-title: Displays
  doi: 10.1016/j.displa.2024.102814
– ident: 16389_CR26
– ident: 16389_CR3
  doi: 10.1109/WACV56688.2023.00485
– ident: 16389_CR46
– ident: 16389_CR21
– volume: 2
  start-page: 83
  year: 1955
  ident: 16389_CR14
  publication-title: Naval Res. Logist. Q.
  doi: 10.1002/nav.3800020109
– ident: 16389_CR10
  doi: 10.1007/978-3-031-20047-2_1
– ident: 16389_CR19
– ident: 16389_CR6
  doi: 10.1109/ICCV48922.2021.00295
– volume: 318
  start-page: 113539
  year: 2025
  ident: 16389_CR15
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2025.113539
– ident: 16389_CR33
  doi: 10.1109/CVPR.2018.00745
– volume: 25
  start-page: 8725
  year: 2023
  ident: 16389_CR11
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2023.3240881
– ident: 16389_CR37
  doi: 10.1109/CVPR.2018.00720
SSID ssj0000529419
Score 2.457618
Snippet In the field of engineering safety, multi-object tracking encounters difficulties in effectively conducting object detection due to occlusion, as well as the...
Abstract In the field of engineering safety, multi-object tracking encounters difficulties in effectively conducting object detection due to occlusion, as well...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 31414
SubjectTerms 639/166
639/705
639/705/117
Accuracy
Algorithms
Attention mechanism
Boxes
Deep learning
Design
Humanities and Social Sciences
Localization
Multi-object tracking
multidisciplinary
Neural networks
Occlusion
Re-identification
Safety engineering
Science
Science (multidisciplinary)
Two-stage association
You Only Look Once Version 8
SummonAdditionalLinks – databaseName: ProQuest - Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgCxIX3tBAQUbiBtHmMXbtEyqICiSo9lBQOVl-bldik3aTgvj3jJ3sVsvrxNW2onHm4c8z4xlCnoMoPWi8lpggqxw0s6hzjOeO68JYHNSpJcvnD_tHR-LkRM7G59HdmFa5tonJUA_VnmPeNhrhqWtt9JhPEQbUAm9UZfHq7DyPPaRirHVsqHGV7MTCW8WE7Mzef5x92fhcYlQLSjm-nSlqMe3w_IpvzCqWR2Aic9g6n1IZ_z9hz99TKH-Jo6bj6fDW_93YbXJzhKn0YJCrO-SKb-6S60Pjyh_3yPEB7b-3FJHl3NOUk0hbEz06FMm00ftO9dc5frc_XdLo6o3jA0D2K6obR2NZz5RoSZc-Pj5edMv75NPh2-M37_KxP0NuQUKfM8mlAafRSkDQ3mhwzDMeuLBc-rIMunTcFLoyiAl8UUvrSsMl4EoBIE39gEyatvG7hBbOcbDCmUobCM4bGaCwhoPXCIhYnZEXa66os6EMh0rh81qogYcKeagSDxVk5HVk3GZlLKGdBtrVXI0aqRCIlR7PA-OlBA4Sb7rBSR1CFQIwFjKyt-aXGvW6U5fsycizzTRqZAyz6Ma3F2kNklELxjLycJCSDSWxnpzYFzgjtuRni9TtmWZxmqp-lxFcIdjLyMu1qF3S9fd_8ejf23hMblRR-gu0l3yPTPrVhX9Crtlv_aJbPR0V6CdCgCxJ
  priority: 102
  providerName: ProQuest
Title A two stage multi object tracking algorithm with transformer and attention mechanism
URI https://link.springer.com/article/10.1038/s41598-025-16389-4
https://www.ncbi.nlm.nih.gov/pubmed/40858785
https://www.proquest.com/docview/3243802710
https://www.proquest.com/docview/3246383855
https://pubmed.ncbi.nlm.nih.gov/PMC12381175
https://doaj.org/article/3971e002be994649840fd9aff2ff455f
Volume 15
WOSCitedRecordID wos001559641800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database (subscription)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagBYkL4k2grIzEDaLmMXbsY4tagURXESpoOVl2bLcrsUm1mxbx7xk72aXLQ1y4zMG2otGMJ_ONPZ4h5BWI3IHGsMR4WaSgWYM2x3hquc5Mg4M6tmT5_KGaTsVsJutrrb5CTthQHngQ3D76y9yh2RonJXCQGJB4K7X3hffAmA9_36yS14Kpoap3ISGX4yuZrBT7K_RU4TVZwdIAQWQKW54oFuz_E8r8PVnylxvT6IiO75G7I4KkBwPn98kN1z4gt4eekt8fktMD2n_rKIK-M0djuiDtTDhsofjdJhyMU_31rFvO-_MFDaewYXzArm5JdWtpqLgZcyDpwoV3wfPV4hH5dHx0-vZdOrZOSBuQ0KdMcmnAajRg8NoZDZY5xj0XDZcuz73OLTeZLgy6a5eVsrG54RJwpQCQpnxMdtqudU8Jzazl0AhrCm3AW2ekh6wxHJxGrMLKhLxei1FdDBUyVLzZLoUahK5Q6CoKXUFCDoOkNytDdes4gDpXo87Vv3SekL21ntRociuFyLAUGGTnWUJebqbRWMINiG5ddxnXIBulYCwhTwa1bjgJpd5EJXBGbCl8i9XtmXZ-Hgty5wH3IA5LyJv13vjJ199l8ex_yOI5uVOETZ3hD4_vkZ1-eelekFvNVT9fLSfkZjWrIhUTsnt4NK0_TqKlID0p6kArpLv1-5P6yw-nqRhX
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFH4qBQQX9mVoASPBCUadxXbtQ4XKUrVqiHoIqDfXHttpJDJTkpSqf4rfyLMnkypstx642tbI9nx-77PfBvCSitxRjdcS42WRUs0qPHOMp5brzFTYqGNJli-9zX5fHB7KgxX40cXCBLfKTiZGQW2bKryRb6DiLwXeofLs7cm3NFSNCtbVroRGC4t9d36GV7bp1t4H_L-vimLn4-D9bjqvKpBWVNJZyiSXhlqN2KZeO6OpZY5xz0XFpctzr3PLTaYLg5rMZaWsbG64pDhSUCpNid-9AleRRhRZdBU8WLzpBKsZzeU8NicrxcYU9WOIYStYGoiPTOmS_otlAv7EbX930fzFThvV387t_23j7sCtOdEm2-3JuAsrrr4H19vSm-f3YbBNZmcNQW48dCR6VZLGhDcpghtRBfsB0V-HuI7Z8ZiEx-rQ3lJ8NyG6tiQkJo2uomTsQvj0aDp-AJ8vZUkPYbVuavcYSGYtp5WwptCGeuuM9DSrDKdOI6VjZQKvu_-uTtpEIio6AJRCtShRiBIVUaJoAu8CNBYjQxLw2NBMhmouUxRSydyhRjNOSsqpxLu6t1J7X3hPGfMJrHeIUHPJNFUXcEjgxaIbZUowFOnaNadxDE6jFIwl8KjF4WImISOe2BTYI5YQujTV5Z56dBzzlueBHiJdTeBNB-aLef19L578exnP4cbu4FNP9fb6-2twswhnLUPpz9dhdTY5dU_hWvV9NppOnsXDSuDoskH-E7MEfcE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREX9iVQwEhwgmiyOB77gFChjKhajeZQUG_Gju3pSExSZlKq_jV-Hc9OMtWw3XrgaluR7Xx-77PfBvCC8tRShdcS7UQWU1WUeOYKFhumEl1iowolWT7vD8djfngoJhvwo4-F8W6VvUwMgtrUpX8jH6DizzneodJk4Dq3iMnO6O3xt9hXkPKW1r6cRguRPXt2ite35ZvdHfzXL7Ns9OHg_ce4qzAQl1TQJi4EE5oahTinTlmtqClswRzjJRM2TZ1KDdOJyjRqNZvkojSpZoLiSE6p0Dl-9xJcHvqsWN5tMJus3ne8BY2moovTSXI-WKKu9PFsWRF7EiRiuqYLQ8mAP_Hc3901f7HZBlU4uvk_b-ItuNERcLLdnpjbsGGrO3C1Lcl5dhcOtklzWhPkzFNLgrclqbV_qyK4KaW3KxD1dYrraI7mxD9i-_aW-tsFUZUhPmFpcCElc-vDqmfL-T34dCFLug-bVV3Zh0ASYxgtudGZ0tQZq4WjSakZtQqpXpFH8KrHgDxuE4zI4BiQc9kiRiJiZECMpBG88zBZjfTJwUNDvZjKTtZIpJipRU2nrRCUUYF3eGeEci5zjhaFi2CrR4fsJNZSnkMjguerbpQ13oCkKlufhDE4jZwXRQQPWkyuZuIz5fEhxx6-hta1qa73VLOjkM889bQRaWwEr3tgn8_r73vx6N_LeAbXENtyf3e89xiuZ_7YJagU2BZsNosT-wSulN-b2XLxNJxbAl8uGuM_AQdfhoU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+two+stage+multi+object+tracking+algorithm+with+transformer+and+attention+mechanism&rft.jtitle=Scientific+reports&rft.au=Hou%2C+Mingxing&rft.au=Wu%2C+Yiming&rft.au=Shi%2C+Hong&rft.au=Mu%2C+Xiaofang&rft.date=2025-08-26&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-16389-4&rft_id=info%3Apmid%2F40858785&rft.externalDocID=PMC12381175
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon