Improved Anti-Oxidant and Anti-Bacterial Capacities of Skim Milk Fermented by Lactobacillus plantarum
Milk, on account of its abundant protein content, is recognized as a vital source of bioactive substances. In this study, the bioactive ingredients in milk were obtained by a combination of protease hydrolysis and fermentation with Lactobacillus plantarum. The compositions of protease hydrolysate (P...
Uloženo v:
| Vydáno v: | Molecules (Basel, Switzerland) Ročník 29; číslo 16; s. 3800 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
10.08.2024
MDPI |
| Témata: | |
| ISSN: | 1420-3049, 1420-3049 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Milk, on account of its abundant protein content, is recognized as a vital source of bioactive substances. In this study, the bioactive ingredients in milk were obtained by a combination of protease hydrolysis and fermentation with Lactobacillus plantarum. The compositions of protease hydrolysate (PM) and fermentation supernatant (FM) were determined, and their anti-oxidant and anti-bacterial activities were evaluated. Using LC-MS/MS, the molecular weights and sequences of the peptides were characterized, among which a total of 25 bioactive peptides were identified. The DPPH radical scavenging results demonstrated that FM exhibited an enhanced anti-oxidant capacity compared to PM. The bacterial survival rate results revealed that FM had a remarkable anti-bacterial ability compared to PM. Additionally, the anti-bacterial component and potential anti-bacterial mechanisms were determined. The results of cytoplasmic membrane depolarization, cell membrane permeability, and morphological observation indicated that FM could interact with bacterial membranes to achieve its anti-bacterial effect. These findings suggested that FM, as a bioactive substance of natural origin, holds potential applications in the functional food, pharmaceutical, and cosmetic industries. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1420-3049 1420-3049 |
| DOI: | 10.3390/molecules29163800 |