Predicting CaO activity in multiple slag system using improved whale optimization algorithm and categorical boosting

The activity of slag components is one of the primary factors influencing the thermodynamic properties of slag. In this study, a feasible model was established to predict the a (CaO) using improved whale optimization algorithm (IWOA) and Categorical Boosting (CatBoost). The effects of other variable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 9533 - 11
Hauptverfasser: Xin, Zi-cheng, Zhang, Jiang-shan, Liu, Qing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 19.03.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The activity of slag components is one of the primary factors influencing the thermodynamic properties of slag. In this study, a feasible model was established to predict the a (CaO) using improved whale optimization algorithm (IWOA) and Categorical Boosting (CatBoost). The effects of other variables on a (CaO) were listed in descending order of influence as follows: w (CaO), w (SiO 2 ), temperature, w (MgO), and w (Al 2 O 3 ). And the IWOA-CatBoost model achieved the highest R 2 value of 0.9200, lowest RMSE of 0.0042, and lowest MAE of 0.0030 in predicting the a (CaO). The performance of the optimal IWOA-CatBoost model was evaluated and compared with that of known models. The results demonstrate that the IWOA-CatBoost model outperformed existing models and methods, such as the Factsage, ion and molecule coexistence theory, and genetic algorithm—backpropagation neural network. The accurate calculation of slag component activity is of great significance to the analysis of the thermodynamic properties of slag. Meanwhile, the approach and algorithm used to develop the a(CaO) prediction model can also be applied to predicting the activity of other slag components or other metallurgical applications (e.g., predicting molten steel temperature, steel composition, and alloy yield).
AbstractList The activity of slag components is one of the primary factors influencing the thermodynamic properties of slag. In this study, a feasible model was established to predict the a(CaO) using improved whale optimization algorithm (IWOA) and Categorical Boosting (CatBoost). The effects of other variables on a(CaO) were listed in descending order of influence as follows: w(CaO), w(SiO ), temperature, w(MgO), and w(Al O ). And the IWOA-CatBoost model achieved the highest R value of 0.9200, lowest RMSE of 0.0042, and lowest MAE of 0.0030 in predicting the a(CaO). The performance of the optimal IWOA-CatBoost model was evaluated and compared with that of known models. The results demonstrate that the IWOA-CatBoost model outperformed existing models and methods, such as the Factsage, ion and molecule coexistence theory, and genetic algorithm-backpropagation neural network. The accurate calculation of slag component activity is of great significance to the analysis of the thermodynamic properties of slag. Meanwhile, the approach and algorithm used to develop the a(CaO) prediction model can also be applied to predicting the activity of other slag components or other metallurgical applications (e.g., predicting molten steel temperature, steel composition, and alloy yield).
Abstract The activity of slag components is one of the primary factors influencing the thermodynamic properties of slag. In this study, a feasible model was established to predict the a(CaO) using improved whale optimization algorithm (IWOA) and Categorical Boosting (CatBoost). The effects of other variables on a(CaO) were listed in descending order of influence as follows: w(CaO), w(SiO2), temperature, w(MgO), and w(Al2O3). And the IWOA-CatBoost model achieved the highest R2 value of 0.9200, lowest RMSE of 0.0042, and lowest MAE of 0.0030 in predicting the a(CaO). The performance of the optimal IWOA-CatBoost model was evaluated and compared with that of known models. The results demonstrate that the IWOA-CatBoost model outperformed existing models and methods, such as the Factsage, ion and molecule coexistence theory, and genetic algorithm—backpropagation neural network. The accurate calculation of slag component activity is of great significance to the analysis of the thermodynamic properties of slag. Meanwhile, the approach and algorithm used to develop the a(CaO) prediction model can also be applied to predicting the activity of other slag components or other metallurgical applications (e.g., predicting molten steel temperature, steel composition, and alloy yield).
The activity of slag components is one of the primary factors influencing the thermodynamic properties of slag. In this study, a feasible model was established to predict the a(CaO) using improved whale optimization algorithm (IWOA) and Categorical Boosting (CatBoost). The effects of other variables on a(CaO) were listed in descending order of influence as follows: w(CaO), w(SiO2), temperature, w(MgO), and w(Al2O3). And the IWOA-CatBoost model achieved the highest R2 value of 0.9200, lowest RMSE of 0.0042, and lowest MAE of 0.0030 in predicting the a(CaO). The performance of the optimal IWOA-CatBoost model was evaluated and compared with that of known models. The results demonstrate that the IWOA-CatBoost model outperformed existing models and methods, such as the Factsage, ion and molecule coexistence theory, and genetic algorithm—backpropagation neural network. The accurate calculation of slag component activity is of great significance to the analysis of the thermodynamic properties of slag. Meanwhile, the approach and algorithm used to develop the a(CaO) prediction model can also be applied to predicting the activity of other slag components or other metallurgical applications (e.g., predicting molten steel temperature, steel composition, and alloy yield).
The activity of slag components is one of the primary factors influencing the thermodynamic properties of slag. In this study, a feasible model was established to predict the a (CaO) using improved whale optimization algorithm (IWOA) and Categorical Boosting (CatBoost). The effects of other variables on a (CaO) were listed in descending order of influence as follows: w (CaO), w (SiO 2 ), temperature, w (MgO), and w (Al 2 O 3 ). And the IWOA-CatBoost model achieved the highest R 2 value of 0.9200, lowest RMSE of 0.0042, and lowest MAE of 0.0030 in predicting the a (CaO). The performance of the optimal IWOA-CatBoost model was evaluated and compared with that of known models. The results demonstrate that the IWOA-CatBoost model outperformed existing models and methods, such as the Factsage, ion and molecule coexistence theory, and genetic algorithm—backpropagation neural network. The accurate calculation of slag component activity is of great significance to the analysis of the thermodynamic properties of slag. Meanwhile, the approach and algorithm used to develop the a(CaO) prediction model can also be applied to predicting the activity of other slag components or other metallurgical applications (e.g., predicting molten steel temperature, steel composition, and alloy yield).
The activity of slag components is one of the primary factors influencing the thermodynamic properties of slag. In this study, a feasible model was established to predict the a (CaO) using improved whale optimization algorithm (IWOA) and Categorical Boosting (CatBoost). The effects of other variables on a (CaO) were listed in descending order of influence as follows: w (CaO), w (SiO 2 ), temperature, w (MgO), and w (Al 2 O 3 ). And the IWOA-CatBoost model achieved the highest R 2 value of 0.9200, lowest RMSE of 0.0042, and lowest MAE of 0.0030 in predicting the a (CaO). The performance of the optimal IWOA-CatBoost model was evaluated and compared with that of known models. The results demonstrate that the IWOA-CatBoost model outperformed existing models and methods, such as the Factsage, ion and molecule coexistence theory, and genetic algorithm—backpropagation neural network. The accurate calculation of slag component activity is of great significance to the analysis of the thermodynamic properties of slag. Meanwhile, the approach and algorithm used to develop the a(CaO) prediction model can also be applied to predicting the activity of other slag components or other metallurgical applications (e.g., predicting molten steel temperature, steel composition, and alloy yield).
The activity of slag components is one of the primary factors influencing the thermodynamic properties of slag. In this study, a feasible model was established to predict the a(CaO) using improved whale optimization algorithm (IWOA) and Categorical Boosting (CatBoost). The effects of other variables on a(CaO) were listed in descending order of influence as follows: w(CaO), w(SiO2), temperature, w(MgO), and w(Al2O3). And the IWOA-CatBoost model achieved the highest R2 value of 0.9200, lowest RMSE of 0.0042, and lowest MAE of 0.0030 in predicting the a(CaO). The performance of the optimal IWOA-CatBoost model was evaluated and compared with that of known models. The results demonstrate that the IWOA-CatBoost model outperformed existing models and methods, such as the Factsage, ion and molecule coexistence theory, and genetic algorithm-backpropagation neural network. The accurate calculation of slag component activity is of great significance to the analysis of the thermodynamic properties of slag. Meanwhile, the approach and algorithm used to develop the a(CaO) prediction model can also be applied to predicting the activity of other slag components or other metallurgical applications (e.g., predicting molten steel temperature, steel composition, and alloy yield).The activity of slag components is one of the primary factors influencing the thermodynamic properties of slag. In this study, a feasible model was established to predict the a(CaO) using improved whale optimization algorithm (IWOA) and Categorical Boosting (CatBoost). The effects of other variables on a(CaO) were listed in descending order of influence as follows: w(CaO), w(SiO2), temperature, w(MgO), and w(Al2O3). And the IWOA-CatBoost model achieved the highest R2 value of 0.9200, lowest RMSE of 0.0042, and lowest MAE of 0.0030 in predicting the a(CaO). The performance of the optimal IWOA-CatBoost model was evaluated and compared with that of known models. The results demonstrate that the IWOA-CatBoost model outperformed existing models and methods, such as the Factsage, ion and molecule coexistence theory, and genetic algorithm-backpropagation neural network. The accurate calculation of slag component activity is of great significance to the analysis of the thermodynamic properties of slag. Meanwhile, the approach and algorithm used to develop the a(CaO) prediction model can also be applied to predicting the activity of other slag components or other metallurgical applications (e.g., predicting molten steel temperature, steel composition, and alloy yield).
ArticleNumber 9533
Author Liu, Qing
Xin, Zi-cheng
Zhang, Jiang-shan
Author_xml – sequence: 1
  givenname: Zi-cheng
  surname: Xin
  fullname: Xin, Zi-cheng
  organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, School of Automation and Electrical Engineering, University of Science and Technology Beijing
– sequence: 2
  givenname: Jiang-shan
  surname: Zhang
  fullname: Zhang, Jiang-shan
  email: zjsustb@163.com
  organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing
– sequence: 3
  givenname: Qing
  surname: Liu
  fullname: Liu, Qing
  email: qliu@ustb.edu.cn
  organization: State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40108361$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNURMvSP8ABWeLCJeDP2DkhtOKjUqVygLM1sZ2sV0m82M6i5dfj7ZbScsAHe2w_887Ifp9XZ3OYXVW9JPgtwUy9S5yIVtWYirplrcJ1-6S6oJiLmjJKzx7E59VlSltchqAtJ-2z6pxjghVryEWVv0Znvcl-HtAabhCUcO_zAfkZTcuY_W50KI0woHRI2U1oSUfUT7sY9s6inxsoQNhlP_lfkH2YEYxDiD5vJgSzRQayO-4NjKgLIR0rvaie9jAmd3m3rqrvnz5-W3-pr28-X60_XNeGtzzX1Nkes4ZRSwgXEoS0FoDzHiulGgcS2x6sMNArJmTfGIoloxw4tZLKjrFVdXXStQG2ehf9BPGgA3h9exDioCFmb0aniWmcsF1vMZVcYdGRjmGHG9ebDqTkRev9SWu3dJOzxs05wvhI9PHN7Dd6CHtNSEsZa0RReHOnEMOPxaWsJ5-MG0eYXViSZkS2lAvVqIK-_gfdhiXO5a2OlGoVU4IW6tXDlu57-fO7BaAnwMSQUnT9PUKwPrpIn1yki4v0rYvKvKrYKSkVeB5c_Fv7P1m_ARuWy9s
Cites_doi 10.1080/03019233.2021.1935143
10.1007/s11663-023-02753-0
10.2355/isijinternational.40.561
10.1080/03019233.2020.1771892
10.1007/s11663-011-9547-9
10.2355/isijinternational.ISIJINT-2017-735
10.1038/s41598-024-77058-6
10.1016/j.advengsoft.2016.01.008
10.1007/s12613-024-2950-4
10.48550/arXiv.1810.11363
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-93980-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Database
ProQuest Central
ProQuest Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Science Database
Biological Science Database
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

Publicly Available Content Database

CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_1c6e5dbfd0274805b1b30e06efcba774
PMC11923365
40108361
10_1038_s41598_025_93980_9
Genre Journal Article
GrantInformation_xml – fundername: Youth Science and Technology Innovation Fund of Jianlong Group-University of Science and Technology Beijing
  grantid: 20231235
– fundername: National Natural Science Foundation of China
  grantid: 52374321
– fundername: Funding of State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing
  grantid: 41621005
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
UKHRP
AAYXX
AFFHD
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
SNYQT
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c494t-2edf03632d11457a57ddaa44f08886ea70dfad5caf8357f6c207324a42d727b33
IEDL.DBID M2P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001449572100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 19:05:40 EDT 2025
Tue Nov 04 02:03:36 EST 2025
Thu Sep 04 19:39:53 EDT 2025
Tue Oct 07 07:55:38 EDT 2025
Thu Apr 03 07:01:42 EDT 2025
Sat Nov 29 08:09:08 EST 2025
Thu Mar 20 02:10:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CaO
FactSage
Improved whale optimization algorithm
Categorical boosting
Multiple slag system
Ion and molecule coexistence theory
a(CaO)
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-2edf03632d11457a57ddaa44f08886ea70dfad5caf8357f6c207324a42d727b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3178983852?pq-origsite=%requestingapplication%
PMID 40108361
PQID 3178983852
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_1c6e5dbfd0274805b1b30e06efcba774
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11923365
proquest_miscellaneous_3179245868
proquest_journals_3178983852
pubmed_primary_40108361
crossref_primary_10_1038_s41598_025_93980_9
springer_journals_10_1038_s41598_025_93980_9
PublicationCentury 2000
PublicationDate 2025-03-19
PublicationDateYYYYMMDD 2025-03-19
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References XM Yang (93980_CR4) 2011; 42
ZC Xin (93980_CR2) 2021; 48
93980_CR5
CY Gu (93980_CR16) 2023; 47
93980_CR34
DJ Li (93980_CR25) 2018; 39
93980_CR32
BH Guo (93980_CR14) 2020
K Wu (93980_CR24) 2001; 37
S Mirjalili (93980_CR28) 2016; 95
QL Wen (93980_CR27) 2018; 58
NN Lu (93980_CR17) 2013; 34
ZC Xin (93980_CR33) 2024; 31
GZ Tang (93980_CR10) 2016; 37
H Xu (93980_CR22) 2015; 2
FM Qin (93980_CR38) 2024; 47
ZC Xin (93980_CR3) 2021; 48
KC Chou (93980_CR7) 1997; 33
GL Zhou (93980_CR30) 2024; 43
B Zhao (93980_CR19) 2022; 32
CY Jin (93980_CR15) 2023; 44
ZQ Huang (93980_CR20) 1987; 4
93980_CR21
JM Prausntiz (93980_CR6) 1986
RY Yin (93980_CR1) 2021; 56
YC Guo (93980_CR11) 2021; 42
M Li (93980_CR23) 2018; 40
CY Dai (93980_CR29) 2024; 46
ZC Xin (93980_CR13) 2023; 54
ZD Qu (93980_CR18) 2020; 36
L Wu (93980_CR12) 2008; 29
93980_CR8
S Li (93980_CR35) 2020; 44
ZB Yu (93980_CR36) 2024; 47
SL Li (93980_CR37) 2024; 39
ZY Chang (93980_CR9) 2018; 28
K Kume (93980_CR26) 2000; 40
Y Cai (93980_CR31) 2024; 14
References_xml – volume: 29
  start-page: 1725
  year: 2008
  ident: 93980_CR12
  publication-title: J. Northeast. Univ. (Nat. Sci.)
– ident: 93980_CR21
– volume: 48
  start-page: 1123
  year: 2021
  ident: 93980_CR3
  publication-title: Ironmak. Steelmak.
  doi: 10.1080/03019233.2021.1935143
– volume: 47
  start-page: 105
  year: 2023
  ident: 93980_CR16
  publication-title: Autom. Electr. Power Syst.
– volume: 4
  start-page: 426
  year: 1987
  ident: 93980_CR20
  publication-title: J. Northeast. Univ. Technol.
– volume: 37
  start-page: 127
  year: 2016
  ident: 93980_CR10
  publication-title: Iron Steel Vanadium Titanium
– volume: 2
  start-page: 42
  year: 2015
  ident: 93980_CR22
  publication-title: Metall. Eng.
– volume: 44
  start-page: 540
  year: 2020
  ident: 93980_CR35
  publication-title: Chin. J. Rare Metals
– ident: 93980_CR34
– volume: 54
  start-page: 1181
  year: 2023
  ident: 93980_CR13
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-023-02753-0
– volume: 39
  start-page: 60
  year: 2024
  ident: 93980_CR37
  publication-title: Autom. Instrum.
– ident: 93980_CR8
– volume: 44
  start-page: 1743
  year: 2023
  ident: 93980_CR15
  publication-title: J. Northeast. Univ. (Nat. Sci.)
– volume: 40
  start-page: 561
  year: 2000
  ident: 93980_CR26
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.40.561
– volume: 42
  start-page: 652
  year: 2021
  ident: 93980_CR11
  publication-title: J. Northeast. Univ. (Nat. Sci.)
– volume: 48
  start-page: 275
  year: 2021
  ident: 93980_CR2
  publication-title: Ironmak. Steelmak.
  doi: 10.1080/03019233.2020.1771892
– volume: 28
  start-page: 6
  year: 2018
  ident: 93980_CR9
  publication-title: China Metall.
– volume-title: ECG Identification Based on Gradient Enhancement Machine Learning Algorithm
  year: 2020
  ident: 93980_CR14
– volume: 32
  start-page: 49
  year: 2022
  ident: 93980_CR19
  publication-title: China Metall.
– start-page: 193
  volume-title: Molecular Thermodynamics of Fluid-Phase Equilibria
  year: 1986
  ident: 93980_CR6
– volume: 42
  start-page: 1150
  year: 2011
  ident: 93980_CR4
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-011-9547-9
– volume: 37
  start-page: 1069
  year: 2001
  ident: 93980_CR24
  publication-title: ACTA Metall. Sin.
– volume: 58
  start-page: 792
  year: 2018
  ident: 93980_CR27
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.ISIJINT-2017-735
– volume: 33
  start-page: 126
  year: 1997
  ident: 93980_CR7
  publication-title: Acta Metall. Sin.
– volume: 14
  start-page: 25727
  year: 2024
  ident: 93980_CR31
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-77058-6
– volume: 47
  start-page: 8
  year: 2024
  ident: 93980_CR38
  publication-title: Guangxi Electr. Power
– volume: 46
  start-page: 1635
  year: 2024
  ident: 93980_CR29
  publication-title: Comput. Eng. Sci.
– volume: 43
  start-page: 806
  year: 2024
  ident: 93980_CR30
  publication-title: Mar. Environ. Sci.
– volume: 36
  start-page: 76
  year: 2020
  ident: 93980_CR18
  publication-title: Steelmaking
– volume: 56
  start-page: 4
  year: 2021
  ident: 93980_CR1
  publication-title: Iron Steel
– volume: 95
  start-page: 51
  year: 2016
  ident: 93980_CR28
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 31
  start-page: 2657
  year: 2024
  ident: 93980_CR33
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-024-2950-4
– ident: 93980_CR5
– volume: 34
  start-page: 1743
  year: 2013
  ident: 93980_CR17
  publication-title: J. Northeast. Univ. Nat. Sci.
– ident: 93980_CR32
  doi: 10.48550/arXiv.1810.11363
– volume: 39
  start-page: 32
  year: 2018
  ident: 93980_CR25
  publication-title: Special Steel
– volume: 40
  start-page: 31
  year: 2018
  ident: 93980_CR23
  publication-title: Chin. J. Eng.
– volume: 47
  start-page: 7
  year: 2024
  ident: 93980_CR36
  publication-title: J. Univ. Sci. Technol. Liaoning
SSID ssj0000529419
Score 2.4447656
Snippet The activity of slag components is one of the primary factors influencing the thermodynamic properties of slag. In this study, a feasible model was established...
Abstract The activity of slag components is one of the primary factors influencing the thermodynamic properties of slag. In this study, a feasible model was...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 9533
SubjectTerms 639/166
639/705
a(CaO)
Algorithms
Aluminum oxide
Categorical boosting
FactSage
Humanities and Social Sciences
Improved whale optimization algorithm
Ion and molecule coexistence theory
Molecules
multidisciplinary
Multiple slag system
Neural networks
Optimization algorithms
Prediction models
Science
Science (multidisciplinary)
Silicon dioxide
Slag
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuqOUZaJGRuEHUbGwn9rFUrTgVDiD1ZtmxnY1Es2h3C-q_Z8bOLl0e4sIlh9iKrZmx_U088w3AaxWqztq2KVHX5KCIunQ84KN2AT0uLYKNqdhEe3GhLi_1x1ulvigmLNMDZ8Edz7omSO-iJ_9JVdLNHK9C1YTYOYvYhXbfqtW3nKnM6l3j2HrKkqm4Ol7hSUXZZLUsNdeqKvXOSZQI-_-EMn8PlvzlxjQdROf78GBCkOwkz_wA7oTxIdzLNSVvHgGRMnnK8xh7dmo_MEpcoPoQbBjZJnqQoR30LJM4M4p879mQfi4Ez77P8chgC9xJrqYUTWa_9IvlsJ5fMTt6RiFUfWYWYQjRVzTSY_h8fvbp9H05lVYoO6HFuqyDj3SFW3v0h2RrZeu9tUJE3HRUE2xb-Wi97GxEhNbGpkMZI_SyovYIeBznT2BvXIzhGTDPo2xFJ4PVjVDRIaDkTggdhMMP6ljAm42YzdfMoGHSzTdXJivFoFJMUorRBbwjTWx7Evt1eoE2YSabMP-yiQION3o005JcGQRKSiuuZF3Aq20zLia6IbFjWFynPuiPStWoAp5mtW9ngo4oMXnPClA7BrEz1d2WcZgnwu4ZwWjeyALebmzn57z-Lovn_0MWL-B-TUZPIYj6EPbWy-twBHe7b-thtXyZVs0PmS8dzw
  priority: 102
  providerName: Directory of Open Access Journals
Title Predicting CaO activity in multiple slag system using improved whale optimization algorithm and categorical boosting
URI https://link.springer.com/article/10.1038/s41598-025-93980-9
https://www.ncbi.nlm.nih.gov/pubmed/40108361
https://www.proquest.com/docview/3178983852
https://www.proquest.com/docview/3179245868
https://pubmed.ncbi.nlm.nih.gov/PMC11923365
https://doaj.org/article/1c6e5dbfd0274805b1b30e06efcba774
Volume 15
WOSCitedRecordID wos001449572100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3JbtNA9Ik2IHFhXwwlGiRuYNWexZ45IVq1gkNDhEAKJ2vsGTuRqF2SFMTf897YSRW2C5c52JY947fvAC-0Typr8yxGWJOBInlcCo8LLz1aXEZ6W4dhE_lkomczMx0cbqshrXLDEwOjdl1FPvJDlHPaaKEVf33xNaapURRdHUZo7MEINZuUUrrO-HTrY6EolkzNUCuTCH24QnlFNWVcxUYYncRmRx6Ftv1_0jV_T5n8JW4axNHp7f89yB24NSii7E2POXfhmm_vwY1-NOWP-0C9nRyVi7QNO7bvGdU_0JgJtmjZJgmRITo1rO8FzSiBvmGL4KPwjn2fo-RhHTKk86HSk9kvDe5jPT9ntnWMMrGavkEJQ01_RV96AJ9OTz4ev42HCQ1xJY1cx9y7miLB3KFZpXKrcueslbJG3qUzb_PE1dapytao6OV1VnHkKFxayR3qTaUQD2G_7Vr_GJgTtcplpbw1mdR1iXqpKKU0Xpb4QlNH8HIDp-Kib8RRhAC60EUP1QKhWgSoFiaCIwLl9klqoh0udMumGGiySKvMK1fWjkxznagyLUXik8zXVWlRLY7gYAPBYqDsVXEFvgieb28jTVKgxba-uwzPoFmrdKYjeNTjzXYnaM9SQ_A0Ar2DUTtb3b3TLuah73dK2rjIVASvNsh3ta-__4sn_z7GU7jJiR4oR9EcwP56eemfwfXq23qxWo5hL5_lYdVjGB2dTKYfxsFvMQ6kRmuO62j67mz6-SfYPzJH
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH6qCggu7NBAASPBCaJmHDuxDwhBoWrVMvRQpN6MEzuZkdpMmZlS9U_xG3nPSaYatlsPXHJIosROvrdvAC-UT0pr8yzGf00GiuBxkXo88MKjxaWFt1UYNpEPh-rwUO-vwI--FobSKnueGBi1m5TkI99AOae0SpXkb0--xTQ1iqKr_QiNFha7_vwMTbbZm50P-H9fcr718WBzO-6mCsSl0GIec-8qil5yh6aAzK3MnbNWiArpTWXe5omrrJOlrVA5yaus5EgFXFjBHcr6ghygyPKvCOosRqmCfH_h06GomRjorjYnSdXGDOUj1bBxGetUqyTWS_IvjAn4k277e4rmL3HaIP62bv1vH-423OwUbfaupYw7sOKbu3CtHb15fg-od5WjcpimZpv2M6P6DhqjwcYN65MsGZJLzdpe14wKBGo2Dj4Y79jZCCUrmyDDPe4qWZk9qnHf89Exs41jlGlWtw1YGFoyM3rTffhyKVt-AKvNpPFrwFxayVyU0ludCVUVqHenhRDaiwIfqKsIXvW4MCdtoxETEgRSZVoUGUSRCSgyOoL3BJ3FndQkPJyYTGvT8RwzKDMvXVE5cj2oRBaDIk18kvmqLCyq_RGs94gxHeeamQu4RPB8cRl5DgWSbOMnp-EeNNulylQED1ucLlaC9jo1PB9EoJYQvLTU5SvNeBT6mg_I2kgzGcHrHuwX6_r7t3j07208g-vbB5_2zN7OcPcx3OBEi5SPqddhdT499U_gavl9Pp5NnwZiZvD1songJyDph80
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH6qUkBc2BdDgUGCE1hxxmN75oAQtEREhZADSOU0jD0zTiTqlCSl6l_j1_Gel1Rhu_XAxQfbsmfs7-0bwBPposKYLA3xX5OBIniYxw4PPHdocSnhjK-HTWTjsTw4UJMt-NHVwlBaZccTa0Zt5wX5yPso56SSsUx437dpEZO94cujbyFNkKJIazdOo4HIvjs9QfNt-WK0h__6KefDNx9334bthIGwEEqsQu6sp0gmt2gWJJlJMmuNEcIj7cnUmSyy3tikMB4VlcynBUeK4MIIblHu5-QMRfa_jSq54D3YnozeTz6vPTwUQxMD1VbqRLHsL1FaUkUbT0IVKxmFakMa1kMD_qTp_p6w-UvUthaGw6v_82e8BldaFZy9amjmOmy56gZcbIZynt4E6mplqVCmKtmu-cCo8oMGbLBZxbr0S4aEVLKmCzaj0oGSzWrvjLPsZIoyl82RFR-2Na7MfC1x36vpITOVZZSDVjatWRjaOEt60y34dC5bvg29al65u8Bs7JNMFIkzKhXS56iRx7kQyokcH6h8AM86jOijpgWJrlMHYqkbRGlElK4RpVUArwlG6zupfXh9Yr4odcuN9KBIXWJzb8kpIaMkH-Rx5KLU-SI3aBAEsNOhR7c8banPoBPA4_Vl5EYUYjKVmx_X96BBn8hUBnCnwex6JWjJUyv0QQByA80bS928Us2mdcfzAdkhcZoE8LwD_tm6_v4t7v17G4_gEmJfvxuN9-_DZU5kSYmaagd6q8WxewAXiu-r2XLxsKVsBl_Omwp-An0KkhY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+CaO+activity+in+multiple+slag+system+using+improved+whale+optimization+algorithm+and+categorical+boosting&rft.jtitle=Scientific+reports&rft.au=Xin%2C+Zi-cheng&rft.au=Zhang%2C+Jiang-shan&rft.au=Liu%2C+Qing&rft.date=2025-03-19&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-93980-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_93980_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon