Characterizing viscoelastic materials via ensemble-based data assimilation of bubble collapse observations

Viscoelastic material properties at high strain rates are needed to model many biological and medical systems. Bubble cavitation can induce such strain rates, and the resulting bubble dynamics are sensitive to the material properties. Thus, in principle, these properties can be inferred via measurem...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of the mechanics and physics of solids Ročník 152; s. 104455
Hlavní autori: Spratt, Jean-Sebastien, Rodriguez, Mauro, Schmidmayer, Kevin, Bryngelson, Spencer H., Yang, Jin, Franck, Christian, Colonius, Tim
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Elsevier Ltd 01.07.2021
Elsevier BV
Elsevier
Predmet:
ISSN:0022-5096, 1873-4782
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Viscoelastic material properties at high strain rates are needed to model many biological and medical systems. Bubble cavitation can induce such strain rates, and the resulting bubble dynamics are sensitive to the material properties. Thus, in principle, these properties can be inferred via measurements of the bubble dynamics. Estrada et al. (2018) demonstrated such bubble-dynamic high-strain-rate rheometry by using least-squares shooting to minimize the difference between simulated and experimental bubble radius histories. We generalize their technique to account for additional uncertainties in the model, initial conditions, and material properties needed to uniquely simulate the bubble dynamics. Ensemble-based data assimilation minimizes the computational expense associated with the bubble cavitation model , providing a more efficient and scalable numerical framework for bubble-collapse rheometry. We test an ensemble Kalman filter (EnKF), an iterative ensemble Kalman smoother (IEnKS), and a hybrid ensemble-based 4D-Var method (En4D-Var) on synthetic data, assessing their estimations of the viscosity and shear modulus of a Kelvin–Voigt material. Results show that En4D-Var and IEnKS provide better moduli estimates than EnKF. Applying these methods to the experimental data of Estrada et al. (2018) yields similar material property estimates to those they obtained, but provides additional information about uncertainties. In particular, the En4D-Var yields lower viscosity estimates for some experiments, and the dynamic estimators reveal a potential mechanism that is unaccounted for in the model, whereby the apparent viscosity is reduced in some cases due to inelastic behavior, possibly in the form of material damage occurring at bubble collapse.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Jean-Sebastien Spratt Conceptualization, Investigation, Methodology – data assimilation and bubble dynamics, Software, Writing – Original Draft, Writing – Review & Editing. Mauro Rodriguez: Methodology – bubble dynamics, Writing – Review & Editing. Kevin Schmidmayer: Conceptualization, Writing – Review & Editing. Spencer H. Bryngelson: Methodology – bubble dynamics, Writing – Review & Editing. Jin Yang: Software, Writing – Review & Editing. Christian Frank: Writing – Review & Editing Supervision. Tim Colonius: Conceptualization, Methodology, Writing – Review & Editing Supervision, Funding acquisition.
Author Statement
ISSN:0022-5096
1873-4782
DOI:10.1016/j.jmps.2021.104455