Designing Hydrogen‐Bonded Organic Frameworks (HOFs) with Permanent Porosity

Designing organic components that can be used to construct porous materials enables the preparation of tailored functionalized materials. Research into porous materials has seen a resurgence in the past decade as a result of finding of self‐standing porous molecular crystals (PMCs). Particularly, a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Angewandte Chemie International Edition Ročník 58; číslo 33; s. 11160 - 11170
Hlavní autori: Hisaki, Ichiro, Xin, Chen, Takahashi, Kiyonori, Nakamura, Takayoshi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany Wiley Subscription Services, Inc 12.08.2019
Vydanie:International ed. in English
Predmet:
ISSN:1433-7851, 1521-3773, 1521-3773
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Designing organic components that can be used to construct porous materials enables the preparation of tailored functionalized materials. Research into porous materials has seen a resurgence in the past decade as a result of finding of self‐standing porous molecular crystals (PMCs). Particularly, a number of crystalline systems with permanent porosity that are formed by self‐assembly through hydrogen bonding (H‐bonding) have been developed. Such systems are called hydrogen‐bonded organic frameworks (HOFs). Herein we systematically describe H‐bonding patterns (supramolecular synthons) and molecular structures (tectons) that have been used to achieve thermal and chemical durability, a large surface area, and functions, such as selective gas sorption and separation, which can provide design principles for constructing HOFs with permanent porosity. HOF the shelf: Hydrogen‐bonded organic frameworks (HOFs) are described systematically based on hydrogen‐bonding patterns (supramolecular synthons) and molecular structures (tectons). HOFs can show thermal and chemical durability, a large surface area, and permanent porosity.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.201902147