Classifying Intracortical Brain-Machine Interface Signal Disruptions Based on System Performance and Applicable Compensatory Strategies: A Review
Brain-machine interfaces (BMIs) record and translate neural activity into a control signal for assistive or other devices. Intracortical microelectrode arrays (MEAs) enable high degree-of-freedom BMI control for complex tasks by providing fine-resolution neural recording. However, chronically implan...
Saved in:
| Published in: | Frontiers in neurorobotics Vol. 14; p. 558987 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
Frontiers Research Foundation
09.10.2020
Frontiers Media S.A |
| Subjects: | |
| ISSN: | 1662-5218, 1662-5218 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Brain-machine interfaces (BMIs) record and translate neural activity into a control signal for assistive or other devices. Intracortical microelectrode arrays (MEAs) enable high degree-of-freedom BMI control for complex tasks by providing fine-resolution neural recording. However, chronically implanted MEAs are subject to a dynamic
environment where transient or systematic disruptions can interfere with neural recording and degrade BMI performance. Typically, neural implant failure modes have been categorized as biological, material, or mechanical. While this categorization provides insight into a disruption's causal etiology, it is less helpful for understanding degree of impact on BMI function or possible strategies for compensation. Therefore, we propose a complementary classification framework for intracortical recording disruptions that is based on duration of impact on BMI performance and requirement for and responsiveness to interventions: (1)
interfere with recordings on the time scale of minutes to hours and can resolve spontaneously; (2)
cause persistent interference in recordings but the root cause can be remedied by an appropriate intervention; (3)
cause persistent or progressive decline in signal quality, but their effects on BMI performance can be mitigated algorithmically; and (4)
cause permanent signal loss that is not amenable to remediation or compensation. This conceptualization of intracortical BMI disruption types is useful for highlighting specific areas for potential hardware improvements and also identifying opportunities for algorithmic interventions. We review recording disruptions that have been reported for MEAs and demonstrate how biological, material, and mechanical mechanisms of disruption can be further categorized according to their impact on signal characteristics. Then we discuss potential compensatory protocols for each of the proposed disruption classes. Specifically, transient disruptions may be minimized by using robust neural decoder features, data augmentation methods, adaptive machine learning models, and specialized signal referencing techniques. Statistical Process Control methods can identify reparable disruptions for rapid intervention.
diagnostics such as impedance spectroscopy can inform neural feature selection and decoding models to compensate for irreversible disruptions. Additional compensatory strategies for irreversible disruptions include information salvage techniques, data augmentation during decoder training, and adaptive decoding methods to down-weight damaged channels. |
|---|---|
| AbstractList | Brain-machine interfaces (BMIs) record and translate neural activity into a control signal for assistive or other devices. Intracortical microelectrode arrays (MEAs) enable high degree-of-freedom BMI control for complex tasks by providing fine-resolution neural recording. However, chronically implanted MEAs are subject to a dynamic in vivo environment where transient or systematic disruptions can interfere with neural recording and degrade BMI performance. Typically, neural implant failure modes have been categorized as biological, material, or mechanical. While this categorization provides insight into a disruption's causal etiology, it is less helpful for understanding degree of impact on BMI function or possible strategies for compensation. Therefore, we propose a complementary classification framework for intracortical recording disruptions that is based on duration of impact on BMI performance and requirement for and responsiveness to interventions: (1) Transient disruptions interfere with recordings on the time scale of minutes to hours and can resolve spontaneously; (2) Reversible disruptions cause persistent interference in recordings but the root cause can be remedied by an appropriate intervention; (3) Irreversible compensable disruptions cause persistent or progressive decline in signal quality, but their effects on BMI performance can be mitigated algorithmically; and (4) Irreversible non-compensable disruptions cause permanent signal loss that is not amenable to remediation or compensation. This conceptualization of intracortical BMI disruption types is useful for highlighting specific areas for potential hardware improvements and also identifying opportunities for algorithmic interventions. We review recording disruptions that have been reported for MEAs and demonstrate how biological, material, and mechanical mechanisms of disruption can be further categorized according to their impact on signal characteristics. Then we discuss potential compensatory protocols for each of the proposed disruption classes. Specifically, transient disruptions may be minimized by using robust neural decoder features, data augmentation methods, adaptive machine learning models, and specialized signal referencing techniques. Statistical Process Control methods can identify reparable disruptions for rapid intervention. In-vivo diagnostics such as impedance spectroscopy can inform neural feature selection and decoding models to compensate for irreversible disruptions. Additional compensatory strategies for irreversible disruptions include information salvage techniques, data augmentation during decoder training, and adaptive decoding methods to down-weight damaged channels.Brain-machine interfaces (BMIs) record and translate neural activity into a control signal for assistive or other devices. Intracortical microelectrode arrays (MEAs) enable high degree-of-freedom BMI control for complex tasks by providing fine-resolution neural recording. However, chronically implanted MEAs are subject to a dynamic in vivo environment where transient or systematic disruptions can interfere with neural recording and degrade BMI performance. Typically, neural implant failure modes have been categorized as biological, material, or mechanical. While this categorization provides insight into a disruption's causal etiology, it is less helpful for understanding degree of impact on BMI function or possible strategies for compensation. Therefore, we propose a complementary classification framework for intracortical recording disruptions that is based on duration of impact on BMI performance and requirement for and responsiveness to interventions: (1) Transient disruptions interfere with recordings on the time scale of minutes to hours and can resolve spontaneously; (2) Reversible disruptions cause persistent interference in recordings but the root cause can be remedied by an appropriate intervention; (3) Irreversible compensable disruptions cause persistent or progressive decline in signal quality, but their effects on BMI performance can be mitigated algorithmically; and (4) Irreversible non-compensable disruptions cause permanent signal loss that is not amenable to remediation or compensation. This conceptualization of intracortical BMI disruption types is useful for highlighting specific areas for potential hardware improvements and also identifying opportunities for algorithmic interventions. We review recording disruptions that have been reported for MEAs and demonstrate how biological, material, and mechanical mechanisms of disruption can be further categorized according to their impact on signal characteristics. Then we discuss potential compensatory protocols for each of the proposed disruption classes. Specifically, transient disruptions may be minimized by using robust neural decoder features, data augmentation methods, adaptive machine learning models, and specialized signal referencing techniques. Statistical Process Control methods can identify reparable disruptions for rapid intervention. In-vivo diagnostics such as impedance spectroscopy can inform neural feature selection and decoding models to compensate for irreversible disruptions. Additional compensatory strategies for irreversible disruptions include information salvage techniques, data augmentation during decoder training, and adaptive decoding methods to down-weight damaged channels. Brain-machine interfaces (BMIs) record and translate neural activity into a control signal for assistive or other devices. Intracortical microelectrode arrays (MEAs) enable high degree-of-freedom BMI control for complex tasks by providing fine-resolution neural recording. However, chronically implanted MEAs are subject to a dynamic in vivo environment where transient or systematic disruptions can interfere with neural recording and degrade BMI performance. Typically, neural implant failure modes have been categorized as biological, material, or mechanical. While this categorization provides insight into a disruption's causal etiology, it is less helpful for understanding degree of impact on BMI function or possible strategies for compensation. Therefore, we propose a complementary classification framework for intracortical recording disruptions that is based on duration of impact on BMI performance and requirement for and responsiveness to interventions: (1) Transient disruptions interfere with recordings on the time scale of minutes to hours and can resolve spontaneously; (2) Reversible disruptions cause persistent interference in recordings but the root cause can be remedied by an appropriate intervention; (3) Irreversible compensable disruptions cause persistent or progressive decline in signal quality, but their effects on BMI performance can be mitigated algorithmically; and (4) Irreversible non-compensable disruptions cause permanent signal loss that is not amenable to remediation or compensation. This conceptualization of intracortical BMI disruption types is useful for highlighting specific areas for potential hardware improvements and also identifying opportunities for algorithmic interventions. We review recording disruptions that have been reported for MEAs and demonstrate how biological, material, and mechanical mechanisms of disruption can be further categorized according to their impact on signal characteristics. Then we discuss potential compensatory protocols for each of the proposed disruption classes. Specifically, transient disruptions may be minimized by using robust neural decoder features, data augmentation methods, adaptive machine learning models, and specialized signal referencing techniques. Statistical Process Control methods can identify reparable disruptions for rapid intervention. In-vivo diagnostics such as impedance spectroscopy can inform neural feature selection and decoding models to compensate for irreversible disruptions. Additional compensatory strategies for irreversible disruptions include information salvage techniques, data augmentation during decoder training, and adaptive decoding methods to down-weight damaged channels. Brain-machine interfaces (BMIs) record and translate neural activity into a control signal for assistive or other devices. Intracortical microelectrode arrays (MEAs) enable high degree-of-freedom BMI control for complex tasks by providing fine-resolution neural recording. However, chronically implanted MEAs are subject to a dynamic environment where transient or systematic disruptions can interfere with neural recording and degrade BMI performance. Typically, neural implant failure modes have been categorized as biological, material, or mechanical. While this categorization provides insight into a disruption's causal etiology, it is less helpful for understanding degree of impact on BMI function or possible strategies for compensation. Therefore, we propose a complementary classification framework for intracortical recording disruptions that is based on duration of impact on BMI performance and requirement for and responsiveness to interventions: (1) interfere with recordings on the time scale of minutes to hours and can resolve spontaneously; (2) cause persistent interference in recordings but the root cause can be remedied by an appropriate intervention; (3) cause persistent or progressive decline in signal quality, but their effects on BMI performance can be mitigated algorithmically; and (4) cause permanent signal loss that is not amenable to remediation or compensation. This conceptualization of intracortical BMI disruption types is useful for highlighting specific areas for potential hardware improvements and also identifying opportunities for algorithmic interventions. We review recording disruptions that have been reported for MEAs and demonstrate how biological, material, and mechanical mechanisms of disruption can be further categorized according to their impact on signal characteristics. Then we discuss potential compensatory protocols for each of the proposed disruption classes. Specifically, transient disruptions may be minimized by using robust neural decoder features, data augmentation methods, adaptive machine learning models, and specialized signal referencing techniques. Statistical Process Control methods can identify reparable disruptions for rapid intervention. diagnostics such as impedance spectroscopy can inform neural feature selection and decoding models to compensate for irreversible disruptions. Additional compensatory strategies for irreversible disruptions include information salvage techniques, data augmentation during decoder training, and adaptive decoding methods to down-weight damaged channels. |
| Author | Bockbrader, Marcia A. Dunlap, Collin F. Friedenberg, David A. Meyers, Eric C. Colachis, Samuel C. |
| AuthorAffiliation | 3 Department of Physical Medicine and Rehabilitation, The Ohio State University , Columbus, OH , United States 2 Medical Devices and Neuromodulation, Battelle Memorial Institute , Columbus, OH , United States 4 Advanced Analytics and Health Research, Battelle Memorial Institute , Columbus, OH , United States 1 Department of Biomedical Engineering, The Ohio State University , Columbus, OH , United States |
| AuthorAffiliation_xml | – name: 2 Medical Devices and Neuromodulation, Battelle Memorial Institute , Columbus, OH , United States – name: 4 Advanced Analytics and Health Research, Battelle Memorial Institute , Columbus, OH , United States – name: 1 Department of Biomedical Engineering, The Ohio State University , Columbus, OH , United States – name: 3 Department of Physical Medicine and Rehabilitation, The Ohio State University , Columbus, OH , United States |
| Author_xml | – sequence: 1 givenname: Collin F. surname: Dunlap fullname: Dunlap, Collin F. – sequence: 2 givenname: Samuel C. surname: Colachis fullname: Colachis, Samuel C. – sequence: 3 givenname: Eric C. surname: Meyers fullname: Meyers, Eric C. – sequence: 4 givenname: Marcia A. surname: Bockbrader fullname: Bockbrader, Marcia A. – sequence: 5 givenname: David A. surname: Friedenberg fullname: Friedenberg, David A. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33162885$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1v1DAQhiNURD_gB3BBlrhw2cWficMBabt8rVQEYuFsOfZk61Vip3a2aH8G_xinW6q2B062PM-8M555T4sjHzwUxUuC54zJ-m3rmzDOKaZ4LoSsZfWkOCFlSWeCEnl0735cnKa0xbikpZDPimPGSEmlFCfFn2WnU3Lt3vkNWvkxahPi6Izu0HnUzs--anPpPEwxiK02gNZu43P4g0txN4wu-ITOdQKLgkfrfRqhR98zGmKvfca1t2gxDF3WbDpAy9AP4JMeQ9yjda43wsZBeocW6AdcO_j9vHja6i7Bi9vzrPj16ePP5ZfZxbfPq-XiYmZ4zcZZS5m1HFvMdSsYJkwbYoHbxkLbEiJYKStZlayRvMKAsRAgGsIt09ZUldTsrFgddG3QWzVE1-u4V0E7dfMQ4kbpaRIdKArW1txQaqqSgygbI9qyZHXbiIbnDrLW-4PWsGt6sAamQXYPRB9GvLtUm3CtKiGJrEUWeHMrEMPVDtKoepcMdJ32EHZJUZ73W5KK0oy-foRuwy7mjUwUr4UQjE_Uq_sd3bXyb_MZIAfAxJBShPYOIVhN7lI37lKTu9TBXTmnepRj3KgnC-RPue4_mX8B5rTYnQ |
| CitedBy_id | crossref_primary_10_1109_TNSRE_2024_3421551 crossref_primary_10_1016_j_biomaterials_2025_123477 crossref_primary_10_1109_ACCESS_2025_3551294 crossref_primary_10_1080_00222895_2023_2280263 crossref_primary_10_1088_1741_2552_ac1add crossref_primary_10_1016_j_actbio_2025_02_030 crossref_primary_10_1088_1741_2552_ac3eaf crossref_primary_10_3390_mi15020286 crossref_primary_10_1088_1741_2552_ad618c crossref_primary_10_1146_annurev_bioeng_090622_050507 crossref_primary_10_3389_fbioe_2021_759711 crossref_primary_10_1088_2516_1091_ad0b19 crossref_primary_10_1146_annurev_bioeng_110122_121128 crossref_primary_10_1007_s13534_022_00256_6 crossref_primary_10_1002_advs_202302333 crossref_primary_10_1111_jnc_70203 crossref_primary_10_3389_fnins_2022_858377 crossref_primary_10_1016_j_bioadv_2023_213629 |
| Cites_doi | 10.1021/mz500743a 10.1682/JRRD.2011.11.0213 10.1088/1741-2560/12/2/026003 10.1016/j.cell.2020.03.054 10.1109/TBME.2013.2248152 10.1126/sciadv.aay2789 10.1016/j.jneumeth.2017.10.002 10.1002/jbm.a.31138 10.3390/s120201211 10.1016/j.neuron.2014.10.024 10.1088/1741-2560/11/4/046007 10.1038/ncomms13749 10.1016/j.neuron.2017.11.028 10.1016/j.biomaterials.2018.01.025 10.1016/j.neuron.2017.05.025 10.1038/s41598-017-06029-x 10.1088/1741-2560/10/3/034001 10.3389/fnins.2018.00763 10.1038/nn1233 10.1016/S0361-9230(99)00072-6 10.1016/j.bios.2018.01.060 10.1016/j.tins.2006.07.004 10.1016/j.biomaterials.2013.07.016 10.1109/MEMB.2006.1705745 10.1016/j.expneurol.2005.04.020 10.1088/1741-2552/aab7a0 10.1088/1741-2560/6/5/055005 10.1162/NECO_a_00207 10.1080/2326263X.2019.1709260 10.1088/1741-2560/12/3/036002 10.1063/1.1755429 10.1088/1741-2552/aa9dae 10.1088/1741-2560/9/6/066001 10.1152/jn.00181.2018 10.1016/j.clinph.2005.05.018 10.1109/TNSRE.2007.909811 10.1016/j.bios.2018.10.032 10.1039/C3TB21453B 10.1016/S0013-4686(99)00094-8 10.1088/1741-2560/11/2/026001 10.1007/s10853-016-9977-5 10.1038/nature24636 10.1101/2020.01.21.20018341 10.1186/s42234-018-0011-x 10.1002/(SICI)1098-1136(199910)28:1<40::AID-GLIA5>3.0.CO 10.1016/j.neuron.2014.08.038 10.1038/s41586-019-1769-z 10.1016/j.biomaterials.2015.02.081 10.1109/TBME.2007.895753 10.1109/TBME.2008.2002155 10.1109/IEMBS.2004.1404155 10.1038/nature04970 10.1016/j.biomaterials.2014.10.040 10.1016/j.cobme.2019.09.002 10.1021/acsami.6b13468 10.1109/TBME.2009.2018457 10.1038/nmeth.2936 10.1088/1741-2560/8/2/025027 10.3389/fneng.2014.00024 10.1080/13554794.2010.532137 10.1038/s41591-018-0171-y 10.1002/adfm.201701269 10.1146/annurev.neuro.23.1.393 10.1016/B978-0-12-812028-6.00028-8 10.1088/1741-2552/aae748 10.1016/j.biomaterials.2009.07.061 10.1101/2020.06.02.20116913 10.1126/science.aaa5417 10.1152/jn.01038.2011 10.1111/ner.13069 10.1523/JNEUROSCI.2339-15.2016 10.1109/MEMB.2005.1511497 10.1016/j.jneumeth.2009.04.014 10.3389/fbioe.2018.00009 10.3389/fneng.2010.00006 10.1088/1741-2560/9/2/026028 10.1109/EMBC.2012.6346042 10.3389/fneng.2014.00002 10.1109/NER.2013.6696035 10.1016/j.jneumeth.2011.03.012 10.1523/JNEUROSCI.5443-09.2010 10.1088/1741-2552/aa8b4f 10.1016/j.biomaterials.2013.05.035 10.1088/1741-2560/13/1/016010 10.1152/jn.90989.2008 10.1038/s41593-019-0555-4 10.1016/j.biomaterials.2010.05.050 10.1088/1741-2560/12/1/011001 10.1016/j.jneumeth.2009.06.026 10.1016/j.biomaterials.2018.09.040 10.1016/S0006-8993(03)03023-3 10.1088/1741-2560/10/2/026007 10.1016/j.neuroscience.2008.07.031 10.1016/S0140-6736(12)61816-9 10.1152/jn.90920.2008 10.1016/S0140-6736(17)30601-3 10.1088/1741-2560/11/5/056014 10.1016/S0165-0270(98)00031-4 10.1038/sc.2016.173 10.1038/s41551-017-0154-1 10.1038/nature11076 10.1088/1741-2552/aa9ee8 10.1088/1741-2560/13/2/026003 10.1016/j.jneumeth.2004.02.019 10.1038/nrn2297 10.1523/JNEUROSCI.3520-13.2014 10.3389/fnins.2018.00208 10.3171/foc.2006.20.5.5 10.3390/mi9110587 10.1016/j.biomaterials.2018.12.031 10.1126/scitranslmed.aaf8083 10.1126/scitranslmed.aac7328 10.1016/j.proeng.2011.12.120 10.1523/JNEUROSCI.2747-15.2015 10.1073/pnas.1934665100 10.1016/j.actbio.2017.02.010 10.1016/j.neuropharm.2014.10.027 10.1016/j.apmr.2018.07.445 10.1109/TNSRE.2009.2029313 10.1152/jn.1995.73.6.2563 10.1109/TBCAS.2019.2943077 10.1109/10.83588 10.1088/1741-2560/2/4/006 10.1088/1741-2560/9/5/056015 10.1088/1741-2560/3/3/002 10.1038/s41598-017-17222-3 10.1088/1741-2560/4/4/007 10.1088/1741-2560/12/1/016011 10.1038/nature17435 10.3390/mi9090430 10.1113/jphysiol.2006.123067 10.1007/978-3-319-64373-1_5 10.7554/eLife.18554 10.1038/s41551-020-0542-9 10.1146/annurev.bioeng.10.061807.160518 10.3389/fnins.2018.00801 10.1088/1741-2560/10/3/036004 10.1088/1741-2560/8/4/045006 10.1016/j.jneumeth.2014.08.004 10.1088/1741-2560/9/4/046020 10.1038/35004588 10.1371/journal.pbio.1000153 10.1088/1741-2560/10/6/066014 10.1021/cn500256e 10.1007/978-981-13-2050-7_1 10.1177/2309499017692712 10.1088/1741-2560/6/5/056003 10.1016/j.biomaterials.2013.03.007 10.1088/1741-2552/aa9ee7 10.1088/1741-2552/aae4b6 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 Dunlap, Colachis, Meyers, Bockbrader and Friedenberg. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2020 Dunlap, Colachis, Meyers, Bockbrader and Friedenberg. 2020 Dunlap, Colachis, Meyers, Bockbrader and Friedenberg |
| Copyright_xml | – notice: Copyright © 2020 Dunlap, Colachis, Meyers, Bockbrader and Friedenberg. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2020 Dunlap, Colachis, Meyers, Bockbrader and Friedenberg. 2020 Dunlap, Colachis, Meyers, Bockbrader and Friedenberg |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.3389/fnbot.2020.558987 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection (via ProQuest) Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1662-5218 |
| ExternalDocumentID | oai_doaj_org_article_2edd94c22c764e56bc5f6639fb5b4d04 PMC7581895 33162885 10_3389_fnbot_2020_558987 |
| Genre | Journal Article Review |
| GeographicLocations | United States--US Utah |
| GeographicLocations_xml | – name: United States--US – name: Utah |
| GrantInformation_xml | – fundername: Defense Advanced Research Projects Agency grantid: DARPA-PA-18-02-04-INI-FP-006 |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAKPC AAYXX ABUWG ACGFS ADBBV ADDVE ADMLS ADRAZ AEGXH AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RNS RPM TR2 ACXDI C1A IPNFZ NPM RIG 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c493t-f23dd40d04af53013ac1de4dbdeff11536878763b8470e0055e5b14d3adc778a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000581112100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1662-5218 |
| IngestDate | Fri Oct 03 12:51:06 EDT 2025 Tue Nov 04 01:53:35 EST 2025 Sun Nov 09 12:55:53 EST 2025 Fri Jul 25 11:48:45 EDT 2025 Mon Jul 21 05:52:04 EDT 2025 Sat Nov 29 03:48:45 EST 2025 Tue Nov 18 20:36:13 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | signal quality neuroprosthetics biocompatibility brain-computer interface recording disruptions microelectrode failure intracortical electrode array |
| Language | English |
| License | Copyright © 2020 Dunlap, Colachis, Meyers, Bockbrader and Friedenberg. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c493t-f23dd40d04af53013ac1de4dbdeff11536878763b8470e0055e5b14d3adc778a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 These authors have contributed equally to this work Edited by: Loredana Zollo, Campus Bio-Medico University, Italy Reviewed by: Andrew G. Richardson, University of Pennsylvania, United States; Elisa Castagnola, University of Pittsburgh, United States |
| OpenAccessLink | https://doaj.org/article/2edd94c22c764e56bc5f6639fb5b4d04 |
| PMID | 33162885 |
| PQID | 2449555342 |
| PQPubID | 4424403 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2edd94c22c764e56bc5f6639fb5b4d04 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7581895 proquest_miscellaneous_2458961722 proquest_journals_2449555342 pubmed_primary_33162885 crossref_primary_10_3389_fnbot_2020_558987 crossref_citationtrail_10_3389_fnbot_2020_558987 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-09 |
| PublicationDateYYYYMMDD | 2020-10-09 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in neurorobotics |
| PublicationTitleAlternate | Front Neurorobot |
| PublicationYear | 2020 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Kennedy (B72) 2011; 17 Winslow (B147) 2010; 31 Ravikumar (B113) 2014; 2 Shenoy (B125) 2014; 84 Weiss (B143) 2020; 6 Prasad (B108) 2012; 9 Zhang (B154) 2018; 4 Barrese (B6) 2016; 13 Malaga (B86) 2016; 13 Hochberg (B60) 2006; 25 B152 Simeral (B126) 2011; 8 Bockbrader (B14) 2019; 11 Flint (B48) 2016; 36 Wise (B148) 2005; 24 Jorfi (B67) 2015; 12 Gaire (B50) 2018; 15 Gilgunn (B56) 2013 Leber (B80) 2019 Li (B83) 2011; 23 Eles (B39) 2019; 195 Hassibi (B58) 2004; 96 Perge (B104) 2014; 11 Cogan (B26) 2004; 137 Vezzani (B141) 2015; 96 Williams (B146) 2007; 4 Kao (B70) 2017; 7 Pandarinath (B100) 2017; 6 Saxena (B119) 2013; 34 Kozai (B75); 37 Campbell (B22) 2018; 9 Nicolas-Alonso (B96) 2012; 12 Angotzi (B5) 2019; 126 Colachis (B27) 2018; 12 Ising (B65) 2019; 575 B4 Fawcett (B43) 1999; 49 Fernández (B44) 2014; 7 Campbell (B23) 1991; 38 Ereifej (B40) 2018; 6 Schwemmer (B122) 2018; 24 Schmitt (B120) 1999; 44 Biran (B10) 2007 Sridharan (B129) 2015; 12 Aggarwal (B2) 2013; 109 Jun (B68) 2017; 551 Obaid (B99) 2020; 6 Straka (B131) 2018; 9 Woolley (B150) 2013; 10 Sussillo (B133) 2016; 7 Szarowski (B134) 2003; 983 Hsu (B63) 2009; 56 Roitbak (B114) 1999; 28 Rousche (B115) 1998; 82 Lecomte (B81) 2018; 15 Nolta (B98) 2015; 53 Kane (B69) 2013; 60 Wodlinger (B149) 2015; 12 Hochberg (B61) 2006; 442 Subbaroyan (B132) 2005; 2 Downey (B35) 2017; 7 Purcell (B111) 2009; 183 Degenhart (B32) 2020; 4 Nicolelis (B97) 2003; 100 Du (B38) 2017; 53 Lempka (B82) 2011; 8 Vargas-Irwin (B139) 2010; 30 Bjornsson (B12) 2006; 3 Perge (B103) 2013; 10 Aflalo (B1) 2015; 348 Garcia-Arguello (B55) 2017; 55 Dantzer (B31) 2008; 9 House (B62) 2006; 20 Lebedev (B79) 2006; 29 Patrick (B102) 2011; 198 Potter (B106) 2012; 9 Seymour (B124) 2009; 30 Troyk (B138) 2004 Fang (B42) 2017; 25 Wellman (B144) 2018; 28 Bennett (B8) 2019; 188 Klaes (B74) 2015; 35 Black (B13) 2018; 120 Buzsáki (B20) 2004; 7 Takmakov (B135) 2015; 12 Bockbrader (B15) 2019; 100 Nguyen (B95) 2014; 11 Barrese (B7) 2013; 10 Moffitt (B94) 2005; 116 (B145) 1956 Dobkin (B34) 2007; 579 Downey (B36); 15 Ludwig (B85) 2009; 101 Krüger (B78) 2010; 3 Collinger (B29); 381 Šišková (B127) 2014; 84 Scott (B123) 1995; 73 Bouton (B17) 2016; 533 Hughes (B64) 2020 Lopez (B84) 2012 Cogan (B25) 2008; 10 Fagg (B41) 2009; 17 Mckee (B90) 2015 Downey (B37); 12 Gallego (B52) 2017; 94 Karumbaiah (B71) 2013; 34 Skomrock (B128) 2018; 12 Teeling (B136) 2009; 158 McConnell (B88); 6 Xie (B151) 2011; 25 Cui (B30) 2007; 15 Michelson (B93) 2018; 15 Frere (B49) 2018; 97 Gallego (B51) 2020; 23 Ganguly (B53) 2009; 7 Caldwell (B21) 2018; 293 Schwarz (B121) 2014; 11 Kozai (B77) 2012; 9 Fiáth (B45) 2018; 106 Bullard (B19) 2020; 23 Kozai (B76); 6 Bishop (B11) 2014; 11 Klaes (B73) 2018 Biran (B9) 2005; 195 Collinger (B28); 50 Masse (B87) 2014; 236 Hochberg (B59) 2012; 485 Cody (B24) 2018; 161 Ganzer (B54) 2020 Prasad (B110) 2012; 9 Boehler (B16) 2017; 9 Potter-Baker (B107) 2015; 4 Young (B153) 2018; 15 Paralikar (B101) 2009; 181 Salatino (B116) 2017; 1 Santhanam (B118) 2007; 54 Steinmetz (B130) 2000; 404 Flesher (B47) 2016; 8 Thomas (B137) 2020 Weiss (B142) 2019; 16 Potter (B105) 2013; 34 Sanes (B117) 2000; 23 Jarosiewicz (B66) 2015; 7 Velliste (B140) 2014; 34 Brandman (B18) 2018; 15 McConnell (B89); 6 Mercanzini (B92) 2009; 56 Dickey (B33) 2009; 102 Prasad (B109) 2014; 7 Flesher (B46) 2017 Ajiboye (B3) 2017; 389 McMorland (B91) 2013; 10 Gwon (B57) 2016; 51 Putzeys (B112) 2019; 13 |
| References_xml | – volume: 4 start-page: 275 year: 2015 ident: B107 article-title: Reducing the “Stress”: antioxidative therapeutic and material approaches may prevent intracortical microelectrode failure publication-title: ACS Macro Lett. doi: 10.1021/mz500743a – volume: 50 start-page: 145 ident: B28 article-title: Functional priorities, assistive technology, and brain-computer interfaces after spinal cord injury publication-title: J. Rehabil. Res. Dev. doi: 10.1682/JRRD.2011.11.0213 – volume: 12 start-page: 026003 year: 2015 ident: B135 article-title: Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/2/026003 – start-page: 763 year: 2020 ident: B54 article-title: Restoring the sense of touch using a sensorimotor demultiplexing neural interface publication-title: Cell 181 doi: 10.1016/j.cell.2020.03.054 – volume: 60 start-page: 2153 year: 2013 ident: B69 article-title: Electrical performance of penetrating microelectrodes chronically implanted in cat cortex publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2248152 – volume: 6 start-page: eaay2789 year: 2020 ident: B99 article-title: Massively parallel microwire arrays integrated with CMOS chips for neural recording publication-title: Sci. Adv. doi: 10.1126/sciadv.aay2789 – volume: 293 start-page: 210 year: 2018 ident: B21 article-title: Neural electrode resilience against dielectric damage may be improved by use of highly doped silicon as a conductive material publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2017.10.002 – start-page: 169 year: 2007 ident: B10 article-title: The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.31138 – volume: 12 start-page: 1211 year: 2012 ident: B96 article-title: Brain computer interfaces, a review publication-title: Sensors doi: 10.3390/s120201211 – volume: 84 start-page: 1023 year: 2014 ident: B127 article-title: Dendritic structural degeneration is functionally linked to cellular hyperexcitability in a mouse model of alzheimer's disease publication-title: Neuron doi: 10.1016/j.neuron.2014.10.024 – volume: 11 start-page: 046007 year: 2014 ident: B104 article-title: Reliability of directional information in unsorted spikes and local field potentials recorded in human motor cortex publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/4/046007 – volume: 7 start-page: 13749 year: 2016 ident: B133 article-title: Making brain–machine interfaces robust to future neural variability publication-title: Nat. Commun. doi: 10.1038/ncomms13749 – volume: 97 start-page: 32 year: 2018 ident: B49 article-title: Alzheimer's disease: from firing instability to homeostasis network collapse publication-title: Neuron doi: 10.1016/j.neuron.2017.11.028 – volume: 161 start-page: 117 year: 2018 ident: B24 article-title: Unique electrophysiological and impedance signatures between encapsulation types: An analysis of biological Utah array failure and benefit of a biomimetic coating in a rat model publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.01.025 – volume: 94 start-page: 978 year: 2017 ident: B52 article-title: Neural manifolds for the control of movement publication-title: Neuron doi: 10.1016/j.neuron.2017.05.025 – volume: 7 start-page: 7395 year: 2017 ident: B70 article-title: Leveraging neural dynamics to extend functional lifetime of brain-machine interfaces publication-title: Sci. Rep. doi: 10.1038/s41598-017-06029-x – volume: 10 start-page: 034001 year: 2013 ident: B91 article-title: Baseplate for two-stage cranial mounting of BMI connectors publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/3/034001 – volume: 12 start-page: 763 year: 2018 ident: B128 article-title: A characterization of brain-computer interface performance trade-offs using support vector machines and deep neural networks to decode movement intent publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00763 – volume: 7 start-page: 446 year: 2004 ident: B20 article-title: Large-scale recording of neuronal ensembles publication-title: Nat. Neurosci. doi: 10.1038/nn1233 – volume: 49 start-page: 377 year: 1999 ident: B43 article-title: The glial scar and central nervous system repair publication-title: Brain Res. Bull. doi: 10.1016/S0361-9230(99)00072-6 – volume: 106 start-page: 86 year: 2018 ident: B45 article-title: A silicon-based neural probe with densely-packed low-impedance titanium nitride microelectrodes for ultrahigh-resolution in vivo recordings publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.01.060 – volume: 29 start-page: 536 year: 2006 ident: B79 article-title: Brain–machine interfaces: past, present and future publication-title: Trends Neurosci. doi: 10.1016/j.tins.2006.07.004 – volume: 34 start-page: 8061 year: 2013 ident: B71 article-title: Relationship between intracortical electrode design and chronic recording function publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.07.016 – volume: 25 start-page: 32 year: 2006 ident: B60 article-title: Sensors for brain-computer interfaces publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/MEMB.2006.1705745 – volume: 195 start-page: 115 year: 2005 ident: B9 article-title: Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2005.04.020 – volume: 15 start-page: 046016 ident: B36 article-title: Intracortical recording stability in human brain–computer interface users publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aab7a0 – volume: 6 start-page: 055005 ident: B88 article-title: Bioimpedance modeling to monitor astrocytic response to chronically implanted electrodes publication-title: J. Neural Eng. doi: 10.1088/1741-2560/6/5/055005 – volume: 23 start-page: 3162 year: 2011 ident: B83 article-title: Adaptive decoding for brain-machine interfaces through bayesian parameter updates publication-title: Neural Comput. doi: 10.1162/NECO_a_00207 – volume: 6 start-page: 106 year: 2020 ident: B143 article-title: Demonstration of a portable intracortical brain-computer interface publication-title: Brain-Computer Interfaces doi: 10.1080/2326263X.2019.1709260 – volume: 12 start-page: 036002 year: 2015 ident: B129 article-title: Compliant intracortical implants reduce strains and strain rates in brain tissue in vivo publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/3/036002 – volume: 96 start-page: 1074 year: 2004 ident: B58 article-title: Comprehensive study of noise processes in electrode electrolyte interfaces publication-title: J. Appl. Phys. doi: 10.1063/1.1755429 – volume: 15 start-page: 033001 year: 2018 ident: B93 article-title: Multi-scale, multi-modal analysis uncovers complex relationship at the brain tissue-implant neural interface: new emphasis on the biological interface publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa9dae – volume: 9 start-page: 066001 year: 2012 ident: B77 article-title: In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes publication-title: J. Neural Eng. doi: 10.1088/1741-2560/9/6/066001 – volume: 120 start-page: 2083 year: 2018 ident: B13 article-title: Chronic recording and electrochemical performance of Utah microelectrode arrays implanted in rat motor cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.00181.2018 – volume: 116 start-page: 2240 year: 2005 ident: B94 article-title: Model-based analysis of cortical recording with silicon microelectrodes publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2005.05.018 – volume: 15 start-page: 502 year: 2007 ident: B30 article-title: Poly (3,4-Ethylenedioxythiophene) for Chronic Neural Stimulation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2007.909811 – volume: 126 start-page: 355 year: 2019 ident: B5 article-title: SiNAPS: An implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.10.032 – volume: 2 start-page: 2517 year: 2014 ident: B113 article-title: The effect of residual endotoxin contamination on the neuroinflammatory response to sterilized intracortical microelectrodes publication-title: J. Mater. Chem. B doi: 10.1039/C3TB21453B – volume: 44 start-page: 3865 year: 1999 ident: B120 article-title: Passivation and corrosion of microelectrode arrays publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(99)00094-8 – volume: 11 start-page: 026001 year: 2014 ident: B11 article-title: Self-recalibrating classifiers for intracortical brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/2/026001 – volume: 51 start-page: 6897 year: 2016 ident: B57 article-title: Mechanical interlocking to improve metal–polymer adhesion in polymer-based neural electrodes and its impact on device reliability publication-title: J. Mater. Sci. doi: 10.1007/s10853-016-9977-5 – volume: 551 start-page: 232 year: 2017 ident: B68 article-title: Fully integrated silicon probes for high-density recording of neural activity publication-title: Nature doi: 10.1038/nature24636 – year: 2020 ident: B64 article-title: Neural stimulation and recording performance in human somatosensory cortex over 1500 days publication-title: medRxiv [Preprint] doi: 10.1101/2020.01.21.20018341 – volume: 4 start-page: 11 year: 2018 ident: B154 article-title: Extracting wavelet based neural features from human intracortical recordings for neuroprosthetics applications publication-title: Bioelectron. Med. doi: 10.1186/s42234-018-0011-x – volume: 28 start-page: 40 year: 1999 ident: B114 article-title: Diffusion barriers evoked in the rat cortex by reactive astrogliosis publication-title: Glia doi: 10.1002/(SICI)1098-1136(199910)28:1<40::AID-GLIA5>3.0.CO – volume: 84 start-page: 665 year: 2014 ident: B125 article-title: Combining decoder design and neural adaptation in brain-machine interfaces publication-title: Neuron doi: 10.1016/j.neuron.2014.08.038 – volume: 575 start-page: 669 year: 2019 ident: B65 article-title: NLRP3 inflammasome activation drives tau pathology publication-title: Nature doi: 10.1038/s41586-019-1769-z – volume: 53 start-page: 753 year: 2015 ident: B98 article-title: BBB leakage, astrogliosis, and tissue loss correlate with silicon microelectrode array recording performance publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.02.081 – volume: 54 start-page: 2037 year: 2007 ident: B118 article-title: HermesB: a continuous neural recording system for freely behaving primates publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.895753 – volume: 56 start-page: 23 year: 2009 ident: B63 article-title: Encapsulation of an integrated neural interface device with parylene C publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.2002155 – start-page: 4141 volume-title: The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society year: 2004 ident: B138 article-title: Safe” charge-injection waveforms for iridium oxide (AIROF) microelectrodes doi: 10.1109/IEMBS.2004.1404155 – volume: 442 start-page: 164 year: 2006 ident: B61 article-title: Neuronal ensemble control of prosthetic devices by a human with tetraplegia publication-title: Nature doi: 10.1038/nature04970 – volume: 37 start-page: 25 ident: B75 article-title: Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.10.040 – volume: 11 start-page: 85 year: 2019 ident: B14 article-title: Upper limb sensorimotor restoration through brain–computer interface technology in tetraparesis publication-title: Curr. Opin. Biomed. Eng. doi: 10.1016/j.cobme.2019.09.002 – volume: 9 start-page: 189 year: 2017 ident: B16 article-title: Long-term stable adhesion for conducting polymers in biomedical applications: irox and nanostructured platinum solve the chronic challenge publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13468 – volume: 56 start-page: 1909 year: 2009 ident: B92 article-title: In vivo Electrical impedance spectroscopy of tissue reaction to microelectrode arrays publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2018457 – volume: 11 start-page: 670 year: 2014 ident: B121 article-title: Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys publication-title: Nat. Methods doi: 10.1038/nmeth.2936 – volume: 8 start-page: 025027 year: 2011 ident: B126 article-title: Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/2/025027 – volume: 7 start-page: 1 year: 2014 ident: B44 article-title: Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects publication-title: Front. Neuroeng. doi: 10.3389/fneng.2014.00024 – volume: 17 start-page: 381 year: 2011 ident: B72 article-title: Changes in emotional state modulate neuronal firing rates of human speech motor cortex: A case study in long-term recording publication-title: Neurocase doi: 10.1080/13554794.2010.532137 – volume: 24 start-page: 1669 year: 2018 ident: B122 article-title: Meeting brain–computer interface user performance expectations using a deep neural network decoding framework publication-title: Nat. Med. doi: 10.1038/s41591-018-0171-y – volume: 28 start-page: 1701269 year: 2018 ident: B144 article-title: A materials roadmap to functional neural interface design publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201701269 – volume: 23 start-page: 393 year: 2000 ident: B117 article-title: Plasticity and primary motor cortex publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.23.1.393 – start-page: 527 volume-title: Handbook of in vivo Neural Plasticity Techniques Handbook of Behavioral Neuroscience year: 2018 ident: B73 article-title: Invasive brain-computer interfaces and neural recordings from humans doi: 10.1016/B978-0-12-812028-6.00028-8 – volume: 16 start-page: 016002 year: 2019 ident: B142 article-title: Artifact-free recordings in human bidirectional brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aae748 – volume: 30 start-page: 6158 year: 2009 ident: B124 article-title: The insulation performance of reactive parylene films in implantable electronic devices publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.07.061 – ident: B4 – year: 2020 ident: B137 article-title: Simultaneous classification of bilateral hand gestures using bilateral microelectrode recordings in a tetraplegic patient publication-title: medRxiv [Preprint] doi: 10.1101/2020.06.02.20116913 – volume: 348 start-page: 906 year: 2015 ident: B1 article-title: Decoding motor imagery from the posterior parietal cortex of a tetraplegic human publication-title: Science doi: 10.1126/science.aaa5417 – volume: 109 start-page: 3067 year: 2013 ident: B2 article-title: State-based decoding of hand and finger kinematics using neuronal ensemble and LFP activity during dexterous reach-to-grasp movements publication-title: J. Neurophysiol. doi: 10.1152/jn.01038.2011 – volume: 23 start-page: 411 year: 2020 ident: B19 article-title: Estimating risk for future intracranial, fully implanted, modular neuroprosthetic systems: a systematic review of hardware complications in clinical deep brain stimulation and experimental human intracortical arrays publication-title: Neuromodulation Technol. Neural Interface doi: 10.1111/ner.13069 – ident: B152 – volume: 36 start-page: 3623 year: 2016 ident: B48 article-title: Long-term stability of motor cortical activity: implications for brain machine interfaces and optimal feedback control publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2339-15.2016 – volume: 24 start-page: 22 year: 2005 ident: B148 article-title: Silicon microsystems for neuroscience and neural prostheses publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/MEMB.2005.1511497 – volume: 181 start-page: 27 year: 2009 ident: B101 article-title: New approaches to eliminating common-noise artifacts in recordings from intracortical microelectrode arrays: Inter-electrode correlation and virtual referencing publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2009.04.014 – volume: 6 start-page: 9 year: 2018 ident: B40 article-title: Implantation of neural probes in the brain elicits oxidative stress publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2018.00009 – volume: 3 start-page: 6 year: 2010 ident: B78 article-title: Seven years of recording from monkey cortex with a chronically implanted multiple microelectrode publication-title: Front. Neuroeng. doi: 10.3389/fneng.2010.00006 – volume: 9 start-page: 026028 year: 2012 ident: B108 article-title: Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing publication-title: J. Neural Eng. doi: 10.1088/1741-2560/9/2/026028 – start-page: 759 volume-title: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society year: 2012 ident: B84 article-title: Towards a noise prediction model for in vivo neural recording doi: 10.1109/EMBC.2012.6346042 – volume: 7 start-page: 1 year: 2014 ident: B109 article-title: Abiotic-biotic characterization of Pt/Ir microelectrode arrays in chronic implants publication-title: Front. Neuroeng. doi: 10.3389/fneng.2014.00002 – start-page: 719 volume-title: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER) year: 2013 ident: B56 article-title: Structural analysis of explanted microelectrode arrays doi: 10.1109/NER.2013.6696035 – volume: 198 start-page: 158 year: 2011 ident: B102 article-title: Corrosion of tungsten microelectrodes used in neural recording applications publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2011.03.012 – volume: 30 start-page: 9659 year: 2010 ident: B139 article-title: Decoding complete reach and grasp actions from local primary motor cortex populations publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5443-09.2010 – volume: 15 start-page: 031001 year: 2018 ident: B81 article-title: A review on mechanical considerations for chronically-implanted neural probes publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa8b4f – volume: 34 start-page: 7001 year: 2013 ident: B105 article-title: The effect of resveratrol on neurodegeneration and blood brain barrier stability surrounding intracortical microelectrodes publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.05.035 – volume: 13 start-page: 016010 year: 2016 ident: B86 article-title: Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates publication-title: J. Neural Eng. doi: 10.1088/1741-2560/13/1/016010 – volume-title: Statistical Quality Control Handbook year: 1956 ident: B145 – volume: 101 start-page: 1679 year: 2009 ident: B85 article-title: Using a common average reference to improve cortical neuron recordings from microelectrode arrays publication-title: J. Neurophysiol. doi: 10.1152/jn.90989.2008 – volume: 23 start-page: 260 year: 2020 ident: B51 article-title: Long-term stability of cortical population dynamics underlying consistent behavior publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0555-4 – volume: 31 start-page: 9163 year: 2010 ident: B147 article-title: A comparison of the tissue response to chronically implanted Parylene-C-coated and uncoated planar silicon microelectrode arrays in rat cortex publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.05.050 – volume: 12 start-page: 011001 year: 2015 ident: B67 article-title: Progress towards biocompatible intracortical microelectrodes for neural interfacing applications publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/1/011001 – volume: 183 start-page: 149 year: 2009 ident: B111 article-title: Flavopiridol reduces the impedance of neural prostheses in vivo without affecting recording quality publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2009.06.026 – volume: 188 start-page: 144 year: 2019 ident: B8 article-title: Neuroinflammation, oxidative stress, and blood-brain barrier (BBB) disruption in acute Utah electrode array implants and the effect of deferoxamine as an iron chelator on acute foreign body response publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.09.040 – volume: 983 start-page: 23 year: 2003 ident: B134 article-title: Brain responses to micro-machined silicon devices publication-title: Brain Res. doi: 10.1016/S0006-8993(03)03023-3 – volume: 10 start-page: 026007 year: 2013 ident: B150 article-title: Chronic intracortical microelectrode arrays induce non-uniform, depth-related tissue responses publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/2/026007 – volume: 158 start-page: 1062 year: 2009 ident: B136 article-title: Systemic infection and inflammation in acute CNS injury and chronic neurodegeneration: underlying mechanisms publication-title: Neuroscience doi: 10.1016/j.neuroscience.2008.07.031 – volume: 381 start-page: 557 ident: B29 article-title: High-performance neuroprosthetic control by an individual with tetraplegia publication-title: Lancet doi: 10.1016/S0140-6736(12)61816-9 – volume: 102 start-page: 1331 year: 2009 ident: B33 article-title: Single-unit stability using chronically implanted multielectrode arrays publication-title: J. Neurophysiol. doi: 10.1152/jn.90920.2008 – volume: 389 start-page: 1821 year: 2017 ident: B3 article-title: Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration publication-title: Lancet doi: 10.1016/S0140-6736(17)30601-3 – volume: 11 start-page: 056014 year: 2014 ident: B95 article-title: Mechanically-compliant intracortical implants reduce the neuroinflammatory response publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/5/056014 – volume: 82 start-page: 1 year: 1998 ident: B115 article-title: Chronic recording capability of the utah intracortical electrode array in cat sensory cortex publication-title: J. Neurosci. Methods doi: 10.1016/S0165-0270(98)00031-4 – volume: 55 start-page: 526 year: 2017 ident: B55 article-title: Infections in the spinal cord-injured population: a systematic review publication-title: Spinal Cord doi: 10.1038/sc.2016.173 – volume: 1 start-page: 862 year: 2017 ident: B116 article-title: Glial responses to implanted electrodes in the brain publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-017-0154-1 – volume: 485 start-page: 372 year: 2012 ident: B59 article-title: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm publication-title: Nature doi: 10.1038/nature11076 – volume: 15 start-page: 026014 year: 2018 ident: B153 article-title: Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa9ee8 – volume: 13 start-page: 026003 year: 2016 ident: B6 article-title: Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates publication-title: J. Neural Eng. doi: 10.1088/1741-2560/13/2/026003 – volume: 137 start-page: 141 year: 2004 ident: B26 article-title: Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2004.02.019 – volume: 9 start-page: 46 year: 2008 ident: B31 article-title: From inflammation to sickness and depression: when the immune system subjugates the brain publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2297 – volume: 34 start-page: 6011 year: 2014 ident: B140 article-title: Motor cortical correlates of arm resting in the context of a reaching task and implications for prosthetic control publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3520-13.2014 – volume: 12 start-page: 1 year: 2018 ident: B27 article-title: Dexterous control of seven functional hand movements using cortically-controlled transcutaneous muscle stimulation in a person with tetraplegia publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00208 – volume: 20 start-page: 1 year: 2006 ident: B62 article-title: Acute microelectrode array implantation into human neocortex: preliminary technique and histological considerations publication-title: Neurosurg. Focus doi: 10.3171/foc.2006.20.5.5 – volume: 9 start-page: 587 year: 2018 ident: B131 article-title: Characterizing longitudinal changes in the impedance spectra of in-vivo peripheral nerve electrodes publication-title: Micromachines doi: 10.3390/mi9110587 – volume: 195 start-page: 111 year: 2019 ident: B39 article-title: Meningeal inflammatory response and fibrous tissue remodeling around intracortical implants: An in vivo two-photon imaging study publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.12.031 – volume: 8 start-page: 1 year: 2016 ident: B47 article-title: Intracortical microstimulation of human somatosensory cortex publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaf8083 – volume: 7 start-page: 313r year: 2015 ident: B66 article-title: Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aac7328 – volume: 25 start-page: 483 year: 2011 ident: B151 article-title: Long-term in-vivo investigation of parylene-c as encapsulation material for neural interfaces publication-title: Procedia Eng. doi: 10.1016/j.proeng.2011.12.120 – start-page: 45 volume-title: Handbook of Clinical Neurology year: 2015 ident: B90 article-title: The neuropathology of traumatic brain injury – volume: 35 start-page: 15466 year: 2015 ident: B74 article-title: Hand shape representations in the human posterior parietal cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2747-15.2015 – volume: 100 start-page: 11041 year: 2003 ident: B97 article-title: Chronic, multisite, multielectrode recordings in macaque monkeys publication-title: Proc. Natl. Acad. Sci U.S.A. doi: 10.1073/pnas.1934665100 – volume: 53 start-page: 46 year: 2017 ident: B38 article-title: Ultrasoft microwire neural electrodes improve chronic tissue integration publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.02.010 – volume: 96 start-page: 70 year: 2015 ident: B141 article-title: Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2014.10.027 – volume: 100 start-page: 1201 year: 2019 ident: B15 article-title: Clinically significant gains in skillful grasp coordination by an individual with tetraplegia using an implanted brain-computer interface with forearm transcutaneous muscle stimulation publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/j.apmr.2018.07.445 – volume: 17 start-page: 487 year: 2009 ident: B41 article-title: Kinetic trajectory decoding using motor cortical ensembles publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2009.2029313 – volume: 73 start-page: 2563 year: 1995 ident: B123 article-title: Changes in motor cortex activity during reaching movements with similar hand paths but different arm postures publication-title: J. Neurophysiol. doi: 10.1152/jn.1995.73.6.2563 – volume: 13 start-page: 1635 year: 2019 ident: B112 article-title: Neuropixels data-acquisition system: a scalable platform for parallel recording of 10 000+ electrophysiological signals publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2019.2943077 – volume: 38 start-page: 758 year: 1991 ident: B23 article-title: A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.83588 – volume: 2 start-page: 103 year: 2005 ident: B132 article-title: A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex publication-title: J. Neural Eng. doi: 10.1088/1741-2560/2/4/006 – volume: 9 start-page: 056015 year: 2012 ident: B110 article-title: Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants publication-title: J. Neural Eng. doi: 10.1088/1741-2560/9/5/056015 – volume: 3 start-page: 196 year: 2006 ident: B12 article-title: Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion publication-title: J. Neural Eng. doi: 10.1088/1741-2560/3/3/002 – volume: 7 start-page: 16947 year: 2017 ident: B35 article-title: Motor cortical activity changes during neuroprosthetic-controlled object interaction publication-title: Sci. Rep. doi: 10.1038/s41598-017-17222-3 – volume: 4 start-page: 410 year: 2007 ident: B146 article-title: Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants publication-title: J. Neural Eng. doi: 10.1088/1741-2560/4/4/007 – volume: 12 start-page: 016011 year: 2015 ident: B149 article-title: Ten-dimensional anthropomorphic arm control in a human brain–machine interface: difficulties, solutions, and limitations publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/1/016011 – volume: 533 start-page: 247 year: 2016 ident: B17 article-title: Restoring cortical control of functional movement in a human with quadriplegia publication-title: Nature doi: 10.1038/nature17435 – volume: 9 start-page: 430 year: 2018 ident: B22 article-title: Chronically implanted intracranial electrodes: tissue reaction and electrical changes publication-title: Micromachines doi: 10.3390/mi9090430 – volume: 579 start-page: 637 year: 2007 ident: B34 article-title: Brain-computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation publication-title: J. Physiol. doi: 10.1113/jphysiol.2006.123067 – start-page: 43 volume-title: Brain-Computer Interface Research: A State-of-the-Art Summary 6 year: 2017 ident: B46 article-title: Intracortical microstimulation as a feedback source for brain-computer interface users doi: 10.1007/978-3-319-64373-1_5 – volume: 6 start-page: 1 year: 2017 ident: B100 article-title: High performance communication by people with paralysis using an intracortical brain-computer interface publication-title: Elife doi: 10.7554/eLife.18554 – volume: 4 start-page: 672 year: 2020 ident: B32 article-title: Stabilization of a brain–computer interface via the alignment of low-dimensional spaces of neural activity publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-020-0542-9 – volume: 10 start-page: 275 year: 2008 ident: B25 article-title: Neural stimulation and recording electrodes publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.10.061807.160518 – volume: 12 start-page: 1 ident: B37 article-title: Implicit grasp force representation in human motor cortical recordings publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00801 – volume: 10 start-page: 036004 year: 2013 ident: B103 article-title: Intra-day signal instabilities affect decoding performance in an intracortical neural interface system publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/3/036004 – volume: 8 start-page: 045006 year: 2011 ident: B82 article-title: Theoretical analysis of intracortical microelectrode recordings publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/4/045006 – volume: 236 start-page: 58 year: 2014 ident: B87 article-title: Non-causal spike filtering improves decoding of movement intention for intracortical BCIs publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2014.08.004 – volume: 9 start-page: 046020 year: 2012 ident: B106 article-title: Stab injury and device implantation within the brain results in inversely multiphasic neuroinflammatory and neurodegenerative responses publication-title: J. Neural Eng. doi: 10.1088/1741-2560/9/4/046020 – volume: 404 start-page: 187 year: 2000 ident: B130 article-title: Attention modulates synchronized neuronal firing in primate somatosensory cortex publication-title: Nature doi: 10.1038/35004588 – volume: 7 start-page: e1000153 year: 2009 ident: B53 article-title: Emergence of a stable cortical map for neuroprosthetic control publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000153 – volume: 10 start-page: 066014 year: 2013 ident: B7 article-title: Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/6/066014 – volume: 6 start-page: 48 ident: B76 article-title: Brain tissue responses to neural implants impact signal sensitivity and intervention strategies publication-title: ACS Chem. Neurosci. doi: 10.1021/cn500256e – start-page: 1 volume-title: Neural Interface: Frontiers and Applications year: 2019 ident: B80 article-title: Advances in penetrating multichannel microelectrodes based on the utah array platform doi: 10.1007/978-981-13-2050-7_1 – volume: 25 start-page: 230949901769271 year: 2017 ident: B42 article-title: Infection after fracture osteosynthesis – Part I publication-title: J. Orthop. Surg. doi: 10.1177/2309499017692712 – volume: 6 start-page: 056003 ident: B89 article-title: Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration publication-title: J. Neural Eng. doi: 10.1088/1741-2560/6/5/056003 – volume: 34 start-page: 4703 year: 2013 ident: B119 article-title: The impact of chronic blood–brain barrier breach on intracortical electrode function publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.03.007 – volume: 15 start-page: 026007 year: 2018 ident: B18 article-title: Rapid calibration of an intracortical brain–computer interface for people with tetraplegia publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa9ee7 – volume: 15 start-page: 066027 year: 2018 ident: B50 article-title: The role of inflammation on the functionality of intracortical microelectrodes publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aae4b6 |
| SSID | ssj0062658 |
| Score | 2.2911031 |
| SecondaryResourceType | review_article |
| Snippet | Brain-machine interfaces (BMIs) record and translate neural activity into a control signal for assistive or other devices. Intracortical microelectrode arrays... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 558987 |
| SubjectTerms | Algorithms Arrays biocompatibility brain-computer interface Electrodes Etiology Interfaces intracortical electrode array Learning algorithms Machine learning microelectrode failure Neural coding neuroprosthetics Neuroscience recording disruptions Regulatory approval Scanning electron microscopy Spectroscopy Statistical analysis Transplants & implants Usability |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIAD70egICNxQgp1Yjt2uKBdoAKJVivxUG-Rn2WlKin74H_wj5lxku0uQr1wjSfRKDOeh2f8DSEveayijFbnqtSQoPiyyI3jPmeGBWZ0FVnCKfj-WR0f65OTejYcuC2HtsrRJiZD7TuHZ-QH4IZqKSUX5dvznzlOjcLq6jBC4yq5BpFNgS1dR-VstMQQq0vdVzIhEasPYms7bJ8s2WspdY1ddFu-KEH2_yvO_Ltdcsv_HN7-X87vkFtD5EknvarcJVdCe4_c3MIjvE9-pxGZ83T1iX5CNiA3TYfddIqjJPKj1HoZaDpHjMYF-mV-il99P18u1n1_DJ2CY_S0a2mPhk5nF3cTqGk9nfQ1c3sWKFojyKNTpZ-OQLlh-YZOaF-0eEC-HX74-u5jPsxsyJ2o-SqPJfdeMM-EiRKMBzeu8EF460OMICNeaYUgeBa8ImgDkzJIWwjPjXdKacMfkr22a8NjQqWCWMcYpaO3iAJnBdAEryzOC1LGZYSN0mvcAGiOczXOGkhsUOBNEniDAm96gWfk1eaV8x7N4zLiKarEhhCBuNODbnHaDPu6KYP3tXBl6VQlgqyskxGCuDpaaQX8hYzsj0rRDNZh2VxoREZebJZhX2OxxrShWyMNMIHhJdA86vVvwwnnBU6JlhlRO5q5w-ruSjv_kbDDIT0sdC2fXM7WU3IDf0RqWqz3yd5qsQ7PyHX3awXa9Dxtsj-DFzYY priority: 102 providerName: ProQuest |
| Title | Classifying Intracortical Brain-Machine Interface Signal Disruptions Based on System Performance and Applicable Compensatory Strategies: A Review |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33162885 https://www.proquest.com/docview/2449555342 https://www.proquest.com/docview/2458961722 https://pubmed.ncbi.nlm.nih.gov/PMC7581895 https://doaj.org/article/2edd94c22c764e56bc5f6639fb5b4d04 |
| Volume | 14 |
| WOSCitedRecordID | wos000581112100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-5218 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062658 issn: 1662-5218 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1662-5218 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062658 issn: 1662-5218 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1662-5218 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062658 issn: 1662-5218 databaseCode: M7P dateStart: 20071102 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1662-5218 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062658 issn: 1662-5218 databaseCode: BENPR dateStart: 20071102 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1662-5218 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062658 issn: 1662-5218 databaseCode: PIMPY dateStart: 20071102 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1662-5218 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062658 issn: 1662-5218 databaseCode: M2P dateStart: 20071102 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4QAHxJvAUhmJE1LYJI5jm1sLXbESrSJeKqfIT6i0StG25ch_4B8zY7elRQguXHyIJ5HjGXtmPONvCHnKQhN4MDIXlQQHxVVlri1zeaELX2jZhCLiFHx8I6ZTOZupdq_UF-aEJXjgNHEnlXdO1baqrGhqzxtjeQAtqYLhpnYJCbQQautMpT0YrHQuUwwTXDB1EnqzwMTJqnjOuVSYP7enhSJY_58szN8TJfc0z-lNcmNjMtJhGuotcsn3t8n1PSDBO-RHrG05j3eW6Bl-BZzKeEpNR1gDIp_EnElP4wFg0NbTd_PP-NVX8-XFOiW20BFoNEcXPU0w5rT9damA6t7RYQp2m3NPcRsBBziG6OkW4dYvX9AhTdGGu-TD6fj9y9f5pthCbmvFVnmomHN1ATOqA4dVz7Qtna-dcT4EMBtZIwWi1xlQZ8DGgnPPTVk7pp0VQmp2jxz1i94_IJQLMFK0FjI4g_BtpgYa74TBQj9C24wU28nv7AaJHAtinHfgkSC_usivDvnVJX5l5Nnula8JhuNvxCPk6I4QEbTjA5CrbiNX3b_kKiPHW3noNst62YEtpDjnrK4y8mTXDQsSoyy694s10sAg0C4EmvtJfHYjYazE8s48I-JAsA6GetjTz79E0G_w60qp-MP_8W-PyDWcrpiTqI7J0epi7R-Tq_bbCmRuQC6LmRyQK6PxtH07iOsK2knVYiti-30M_e3ZpP30E26PL9w |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbhMxELVKQQIeuF8CBYwEL0hLN77Eu0gIJZSqUdMoEgX1bfG1RKp2Sy4gPoMf4RuZ8WbTBKG-9YHX7GQ1cY7HM_bxGUJe8NAJMpgsUSyDAsWxdqItd0mqU5_qrBPSqFPweaCGw-zoKB9tkN_NXRikVTYxMQZqV1ncI9-GZSiXUnLB3p1-S7BrFJ6uNi00aljs-58_oGSbvu3vwP_7krHdD4fv95JFV4HEipzPksC4cyJ1qdBBAry5tm3nhTPOhwD5Ee9kCmXaDMRt8DeV0kvTFo5rZ5XKNIf3XiKXBSqLIVWQjZrID7WBzOqTUyj88u1Qmgrpmix9LWWWI2tvZe2LLQL-ldf-Tc9cWe92b_5vI3WL3Fhk1rRbT4XbZMOXd8j1Fb3Fu-RXbAE6jle7aB9_NtTecTOf9rBVRnIQqaWexn3SoK2nH8fH-Nad8XQyr_k_tAcLv6NVSWu1dzo6u3tBdelot-YEmBNPMdr6chqZDLQRAvbTN7RL60OZe-TThYzJfbJZVqV_SKhUkMtprbLgDKrcGQE23imD_ZCUti2SNmgp7EKwHfuGnBRQuCHAigiwAgFW1ABrkVfLr5zWaiXnGfcQgktDFBqPH1ST42IRtwrmncuFZcyqjvCyY6wMkKTmwUgjYBRaZKsBYbGIftPiDIEt8nz5GOIWHkbp0ldztAEnMH0Gmwc13peecN7GLtiyRdTaTFhzdf1JOf4atdGh_G1nuXx0vlvPyNW9w4NBMegP9x-TazgokaCZb5HN2WTun5Ar9vsMkPU0TnBKvlz0PPkDNNSTEg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEF6VFCF44D4CBRYJXpBMnD1iGwmhhFARtY0icag8mT1LpMouOUD8DP4Ov46ZtZ0mCPWtD7zGE2s0_mZ2Znf2G0Kect_z0us0SlgKBYpl3UgZbqNYxS5Wac_Hgafg034yHqeHh9lki_xu7sJgW2UTE0OgtqXBPfIOLEOZlJIL1vF1W8RkuPv65FuEE6TwpLUZp1FBZM_9_AHl2_zVaAjf-hlju28_vHkX1RMGIiMyvog849aK2MZCeQlQ58p0rRNWW-c95Eq8lyZI2aYhhoPusZRO6q6wXFmTJKni8N4LZBtScsFaZHsyOph8btYBqBRkWp2jQhmYdXyhS2zeZPELKdMMe_jWVsIwMOBfWe7fzZprq9_utf_ZbtfJ1Trnpv3KSW6QLVfcJFfWmBhvkV9hOOg0XPqiIzQBVOVhm58OcIhGdBCaTh0NO6heGUffT4_wrcPpfLasOoPoAFICS8uCVjzwdHJ6K4OqwtJ-1S2gjx3FOOyKeehxoA1FsJu_pH1aHdfcJh_PxSZ3SKsoC3ePUJlAlqdUknqrkf9OC5BxNtE4KSlRpk3iBjm5qanccaLIcQ4lHYItD2DLEWx5BbY2eb76y0nFY3KW8ADhuBJECvLwQzk7yuuIljNnbSYMYybpCSd72kgP6WvmtdQCrNAmOw0g8zouzvNTNLbJk9VjiGh4TKUKVy5RBpTAxBpk7lbYX2nCeRfnY8s2STa8YkPVzSfF9GtgTYfCuJtm8v7Zaj0ml8A98v3ReO8BuYw2CZ2b2Q5pLWZL95BcNN8XAKxHtbdT8uW8HeUPfM-dWw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classifying+Intracortical+Brain-Machine+Interface+Signal+Disruptions+Based+on+System+Performance+and+Applicable+Compensatory+Strategies%3A+A+Review&rft.jtitle=Frontiers+in+neurorobotics&rft.au=Dunlap%2C+Collin+F.&rft.au=Colachis%2C+Samuel+C.&rft.au=Meyers%2C+Eric+C.&rft.au=Bockbrader%2C+Marcia+A.&rft.date=2020-10-09&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5218&rft.volume=14&rft_id=info:doi/10.3389%2Ffnbot.2020.558987&rft_id=info%3Apmid%2F33162885&rft.externalDocID=PMC7581895 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5218&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5218&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5218&client=summon |