Classifying Intracortical Brain-Machine Interface Signal Disruptions Based on System Performance and Applicable Compensatory Strategies: A Review

Brain-machine interfaces (BMIs) record and translate neural activity into a control signal for assistive or other devices. Intracortical microelectrode arrays (MEAs) enable high degree-of-freedom BMI control for complex tasks by providing fine-resolution neural recording. However, chronically implan...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in neurorobotics Vol. 14; p. 558987
Main Authors: Dunlap, Collin F., Colachis, Samuel C., Meyers, Eric C., Bockbrader, Marcia A., Friedenberg, David A.
Format: Journal Article
Language:English
Published: Switzerland Frontiers Research Foundation 09.10.2020
Frontiers Media S.A
Subjects:
ISSN:1662-5218, 1662-5218
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Brain-machine interfaces (BMIs) record and translate neural activity into a control signal for assistive or other devices. Intracortical microelectrode arrays (MEAs) enable high degree-of-freedom BMI control for complex tasks by providing fine-resolution neural recording. However, chronically implanted MEAs are subject to a dynamic environment where transient or systematic disruptions can interfere with neural recording and degrade BMI performance. Typically, neural implant failure modes have been categorized as biological, material, or mechanical. While this categorization provides insight into a disruption's causal etiology, it is less helpful for understanding degree of impact on BMI function or possible strategies for compensation. Therefore, we propose a complementary classification framework for intracortical recording disruptions that is based on duration of impact on BMI performance and requirement for and responsiveness to interventions: (1) interfere with recordings on the time scale of minutes to hours and can resolve spontaneously; (2) cause persistent interference in recordings but the root cause can be remedied by an appropriate intervention; (3) cause persistent or progressive decline in signal quality, but their effects on BMI performance can be mitigated algorithmically; and (4) cause permanent signal loss that is not amenable to remediation or compensation. This conceptualization of intracortical BMI disruption types is useful for highlighting specific areas for potential hardware improvements and also identifying opportunities for algorithmic interventions. We review recording disruptions that have been reported for MEAs and demonstrate how biological, material, and mechanical mechanisms of disruption can be further categorized according to their impact on signal characteristics. Then we discuss potential compensatory protocols for each of the proposed disruption classes. Specifically, transient disruptions may be minimized by using robust neural decoder features, data augmentation methods, adaptive machine learning models, and specialized signal referencing techniques. Statistical Process Control methods can identify reparable disruptions for rapid intervention. diagnostics such as impedance spectroscopy can inform neural feature selection and decoding models to compensate for irreversible disruptions. Additional compensatory strategies for irreversible disruptions include information salvage techniques, data augmentation during decoder training, and adaptive decoding methods to down-weight damaged channels.
AbstractList Brain-machine interfaces (BMIs) record and translate neural activity into a control signal for assistive or other devices. Intracortical microelectrode arrays (MEAs) enable high degree-of-freedom BMI control for complex tasks by providing fine-resolution neural recording. However, chronically implanted MEAs are subject to a dynamic in vivo environment where transient or systematic disruptions can interfere with neural recording and degrade BMI performance. Typically, neural implant failure modes have been categorized as biological, material, or mechanical. While this categorization provides insight into a disruption's causal etiology, it is less helpful for understanding degree of impact on BMI function or possible strategies for compensation. Therefore, we propose a complementary classification framework for intracortical recording disruptions that is based on duration of impact on BMI performance and requirement for and responsiveness to interventions: (1) Transient disruptions interfere with recordings on the time scale of minutes to hours and can resolve spontaneously; (2) Reversible disruptions cause persistent interference in recordings but the root cause can be remedied by an appropriate intervention; (3) Irreversible compensable disruptions cause persistent or progressive decline in signal quality, but their effects on BMI performance can be mitigated algorithmically; and (4) Irreversible non-compensable disruptions cause permanent signal loss that is not amenable to remediation or compensation. This conceptualization of intracortical BMI disruption types is useful for highlighting specific areas for potential hardware improvements and also identifying opportunities for algorithmic interventions. We review recording disruptions that have been reported for MEAs and demonstrate how biological, material, and mechanical mechanisms of disruption can be further categorized according to their impact on signal characteristics. Then we discuss potential compensatory protocols for each of the proposed disruption classes. Specifically, transient disruptions may be minimized by using robust neural decoder features, data augmentation methods, adaptive machine learning models, and specialized signal referencing techniques. Statistical Process Control methods can identify reparable disruptions for rapid intervention. In-vivo diagnostics such as impedance spectroscopy can inform neural feature selection and decoding models to compensate for irreversible disruptions. Additional compensatory strategies for irreversible disruptions include information salvage techniques, data augmentation during decoder training, and adaptive decoding methods to down-weight damaged channels.Brain-machine interfaces (BMIs) record and translate neural activity into a control signal for assistive or other devices. Intracortical microelectrode arrays (MEAs) enable high degree-of-freedom BMI control for complex tasks by providing fine-resolution neural recording. However, chronically implanted MEAs are subject to a dynamic in vivo environment where transient or systematic disruptions can interfere with neural recording and degrade BMI performance. Typically, neural implant failure modes have been categorized as biological, material, or mechanical. While this categorization provides insight into a disruption's causal etiology, it is less helpful for understanding degree of impact on BMI function or possible strategies for compensation. Therefore, we propose a complementary classification framework for intracortical recording disruptions that is based on duration of impact on BMI performance and requirement for and responsiveness to interventions: (1) Transient disruptions interfere with recordings on the time scale of minutes to hours and can resolve spontaneously; (2) Reversible disruptions cause persistent interference in recordings but the root cause can be remedied by an appropriate intervention; (3) Irreversible compensable disruptions cause persistent or progressive decline in signal quality, but their effects on BMI performance can be mitigated algorithmically; and (4) Irreversible non-compensable disruptions cause permanent signal loss that is not amenable to remediation or compensation. This conceptualization of intracortical BMI disruption types is useful for highlighting specific areas for potential hardware improvements and also identifying opportunities for algorithmic interventions. We review recording disruptions that have been reported for MEAs and demonstrate how biological, material, and mechanical mechanisms of disruption can be further categorized according to their impact on signal characteristics. Then we discuss potential compensatory protocols for each of the proposed disruption classes. Specifically, transient disruptions may be minimized by using robust neural decoder features, data augmentation methods, adaptive machine learning models, and specialized signal referencing techniques. Statistical Process Control methods can identify reparable disruptions for rapid intervention. In-vivo diagnostics such as impedance spectroscopy can inform neural feature selection and decoding models to compensate for irreversible disruptions. Additional compensatory strategies for irreversible disruptions include information salvage techniques, data augmentation during decoder training, and adaptive decoding methods to down-weight damaged channels.
Brain-machine interfaces (BMIs) record and translate neural activity into a control signal for assistive or other devices. Intracortical microelectrode arrays (MEAs) enable high degree-of-freedom BMI control for complex tasks by providing fine-resolution neural recording. However, chronically implanted MEAs are subject to a dynamic in vivo environment where transient or systematic disruptions can interfere with neural recording and degrade BMI performance. Typically, neural implant failure modes have been categorized as biological, material, or mechanical. While this categorization provides insight into a disruption's causal etiology, it is less helpful for understanding degree of impact on BMI function or possible strategies for compensation. Therefore, we propose a complementary classification framework for intracortical recording disruptions that is based on duration of impact on BMI performance and requirement for and responsiveness to interventions: (1) Transient disruptions interfere with recordings on the time scale of minutes to hours and can resolve spontaneously; (2) Reversible disruptions cause persistent interference in recordings but the root cause can be remedied by an appropriate intervention; (3) Irreversible compensable disruptions cause persistent or progressive decline in signal quality, but their effects on BMI performance can be mitigated algorithmically; and (4) Irreversible non-compensable disruptions cause permanent signal loss that is not amenable to remediation or compensation. This conceptualization of intracortical BMI disruption types is useful for highlighting specific areas for potential hardware improvements and also identifying opportunities for algorithmic interventions. We review recording disruptions that have been reported for MEAs and demonstrate how biological, material, and mechanical mechanisms of disruption can be further categorized according to their impact on signal characteristics. Then we discuss potential compensatory protocols for each of the proposed disruption classes. Specifically, transient disruptions may be minimized by using robust neural decoder features, data augmentation methods, adaptive machine learning models, and specialized signal referencing techniques. Statistical Process Control methods can identify reparable disruptions for rapid intervention. In-vivo diagnostics such as impedance spectroscopy can inform neural feature selection and decoding models to compensate for irreversible disruptions. Additional compensatory strategies for irreversible disruptions include information salvage techniques, data augmentation during decoder training, and adaptive decoding methods to down-weight damaged channels.
Brain-machine interfaces (BMIs) record and translate neural activity into a control signal for assistive or other devices. Intracortical microelectrode arrays (MEAs) enable high degree-of-freedom BMI control for complex tasks by providing fine-resolution neural recording. However, chronically implanted MEAs are subject to a dynamic environment where transient or systematic disruptions can interfere with neural recording and degrade BMI performance. Typically, neural implant failure modes have been categorized as biological, material, or mechanical. While this categorization provides insight into a disruption's causal etiology, it is less helpful for understanding degree of impact on BMI function or possible strategies for compensation. Therefore, we propose a complementary classification framework for intracortical recording disruptions that is based on duration of impact on BMI performance and requirement for and responsiveness to interventions: (1) interfere with recordings on the time scale of minutes to hours and can resolve spontaneously; (2) cause persistent interference in recordings but the root cause can be remedied by an appropriate intervention; (3) cause persistent or progressive decline in signal quality, but their effects on BMI performance can be mitigated algorithmically; and (4) cause permanent signal loss that is not amenable to remediation or compensation. This conceptualization of intracortical BMI disruption types is useful for highlighting specific areas for potential hardware improvements and also identifying opportunities for algorithmic interventions. We review recording disruptions that have been reported for MEAs and demonstrate how biological, material, and mechanical mechanisms of disruption can be further categorized according to their impact on signal characteristics. Then we discuss potential compensatory protocols for each of the proposed disruption classes. Specifically, transient disruptions may be minimized by using robust neural decoder features, data augmentation methods, adaptive machine learning models, and specialized signal referencing techniques. Statistical Process Control methods can identify reparable disruptions for rapid intervention. diagnostics such as impedance spectroscopy can inform neural feature selection and decoding models to compensate for irreversible disruptions. Additional compensatory strategies for irreversible disruptions include information salvage techniques, data augmentation during decoder training, and adaptive decoding methods to down-weight damaged channels.
Author Bockbrader, Marcia A.
Dunlap, Collin F.
Friedenberg, David A.
Meyers, Eric C.
Colachis, Samuel C.
AuthorAffiliation 3 Department of Physical Medicine and Rehabilitation, The Ohio State University , Columbus, OH , United States
2 Medical Devices and Neuromodulation, Battelle Memorial Institute , Columbus, OH , United States
4 Advanced Analytics and Health Research, Battelle Memorial Institute , Columbus, OH , United States
1 Department of Biomedical Engineering, The Ohio State University , Columbus, OH , United States
AuthorAffiliation_xml – name: 2 Medical Devices and Neuromodulation, Battelle Memorial Institute , Columbus, OH , United States
– name: 4 Advanced Analytics and Health Research, Battelle Memorial Institute , Columbus, OH , United States
– name: 1 Department of Biomedical Engineering, The Ohio State University , Columbus, OH , United States
– name: 3 Department of Physical Medicine and Rehabilitation, The Ohio State University , Columbus, OH , United States
Author_xml – sequence: 1
  givenname: Collin F.
  surname: Dunlap
  fullname: Dunlap, Collin F.
– sequence: 2
  givenname: Samuel C.
  surname: Colachis
  fullname: Colachis, Samuel C.
– sequence: 3
  givenname: Eric C.
  surname: Meyers
  fullname: Meyers, Eric C.
– sequence: 4
  givenname: Marcia A.
  surname: Bockbrader
  fullname: Bockbrader, Marcia A.
– sequence: 5
  givenname: David A.
  surname: Friedenberg
  fullname: Friedenberg, David A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33162885$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNURD_gB3BBlrhw2cWficMBabt8rVQEYuFsOfZk61Vip3a2aH8G_xinW6q2B062PM-8M555T4sjHzwUxUuC54zJ-m3rmzDOKaZ4LoSsZfWkOCFlSWeCEnl0735cnKa0xbikpZDPimPGSEmlFCfFn2WnU3Lt3vkNWvkxahPi6Izu0HnUzs--anPpPEwxiK02gNZu43P4g0txN4wu-ITOdQKLgkfrfRqhR98zGmKvfca1t2gxDF3WbDpAy9AP4JMeQ9yjda43wsZBeocW6AdcO_j9vHja6i7Bi9vzrPj16ePP5ZfZxbfPq-XiYmZ4zcZZS5m1HFvMdSsYJkwbYoHbxkLbEiJYKStZlayRvMKAsRAgGsIt09ZUldTsrFgddG3QWzVE1-u4V0E7dfMQ4kbpaRIdKArW1txQaqqSgygbI9qyZHXbiIbnDrLW-4PWsGt6sAamQXYPRB9GvLtUm3CtKiGJrEUWeHMrEMPVDtKoepcMdJ32EHZJUZ73W5KK0oy-foRuwy7mjUwUr4UQjE_Uq_sd3bXyb_MZIAfAxJBShPYOIVhN7lI37lKTu9TBXTmnepRj3KgnC-RPue4_mX8B5rTYnQ
CitedBy_id crossref_primary_10_1109_TNSRE_2024_3421551
crossref_primary_10_1016_j_biomaterials_2025_123477
crossref_primary_10_1109_ACCESS_2025_3551294
crossref_primary_10_1080_00222895_2023_2280263
crossref_primary_10_1088_1741_2552_ac1add
crossref_primary_10_1016_j_actbio_2025_02_030
crossref_primary_10_1088_1741_2552_ac3eaf
crossref_primary_10_3390_mi15020286
crossref_primary_10_1088_1741_2552_ad618c
crossref_primary_10_1146_annurev_bioeng_090622_050507
crossref_primary_10_3389_fbioe_2021_759711
crossref_primary_10_1088_2516_1091_ad0b19
crossref_primary_10_1146_annurev_bioeng_110122_121128
crossref_primary_10_1007_s13534_022_00256_6
crossref_primary_10_1002_advs_202302333
crossref_primary_10_1111_jnc_70203
crossref_primary_10_3389_fnins_2022_858377
crossref_primary_10_1016_j_bioadv_2023_213629
Cites_doi 10.1021/mz500743a
10.1682/JRRD.2011.11.0213
10.1088/1741-2560/12/2/026003
10.1016/j.cell.2020.03.054
10.1109/TBME.2013.2248152
10.1126/sciadv.aay2789
10.1016/j.jneumeth.2017.10.002
10.1002/jbm.a.31138
10.3390/s120201211
10.1016/j.neuron.2014.10.024
10.1088/1741-2560/11/4/046007
10.1038/ncomms13749
10.1016/j.neuron.2017.11.028
10.1016/j.biomaterials.2018.01.025
10.1016/j.neuron.2017.05.025
10.1038/s41598-017-06029-x
10.1088/1741-2560/10/3/034001
10.3389/fnins.2018.00763
10.1038/nn1233
10.1016/S0361-9230(99)00072-6
10.1016/j.bios.2018.01.060
10.1016/j.tins.2006.07.004
10.1016/j.biomaterials.2013.07.016
10.1109/MEMB.2006.1705745
10.1016/j.expneurol.2005.04.020
10.1088/1741-2552/aab7a0
10.1088/1741-2560/6/5/055005
10.1162/NECO_a_00207
10.1080/2326263X.2019.1709260
10.1088/1741-2560/12/3/036002
10.1063/1.1755429
10.1088/1741-2552/aa9dae
10.1088/1741-2560/9/6/066001
10.1152/jn.00181.2018
10.1016/j.clinph.2005.05.018
10.1109/TNSRE.2007.909811
10.1016/j.bios.2018.10.032
10.1039/C3TB21453B
10.1016/S0013-4686(99)00094-8
10.1088/1741-2560/11/2/026001
10.1007/s10853-016-9977-5
10.1038/nature24636
10.1101/2020.01.21.20018341
10.1186/s42234-018-0011-x
10.1002/(SICI)1098-1136(199910)28:1<40::AID-GLIA5>3.0.CO
10.1016/j.neuron.2014.08.038
10.1038/s41586-019-1769-z
10.1016/j.biomaterials.2015.02.081
10.1109/TBME.2007.895753
10.1109/TBME.2008.2002155
10.1109/IEMBS.2004.1404155
10.1038/nature04970
10.1016/j.biomaterials.2014.10.040
10.1016/j.cobme.2019.09.002
10.1021/acsami.6b13468
10.1109/TBME.2009.2018457
10.1038/nmeth.2936
10.1088/1741-2560/8/2/025027
10.3389/fneng.2014.00024
10.1080/13554794.2010.532137
10.1038/s41591-018-0171-y
10.1002/adfm.201701269
10.1146/annurev.neuro.23.1.393
10.1016/B978-0-12-812028-6.00028-8
10.1088/1741-2552/aae748
10.1016/j.biomaterials.2009.07.061
10.1101/2020.06.02.20116913
10.1126/science.aaa5417
10.1152/jn.01038.2011
10.1111/ner.13069
10.1523/JNEUROSCI.2339-15.2016
10.1109/MEMB.2005.1511497
10.1016/j.jneumeth.2009.04.014
10.3389/fbioe.2018.00009
10.3389/fneng.2010.00006
10.1088/1741-2560/9/2/026028
10.1109/EMBC.2012.6346042
10.3389/fneng.2014.00002
10.1109/NER.2013.6696035
10.1016/j.jneumeth.2011.03.012
10.1523/JNEUROSCI.5443-09.2010
10.1088/1741-2552/aa8b4f
10.1016/j.biomaterials.2013.05.035
10.1088/1741-2560/13/1/016010
10.1152/jn.90989.2008
10.1038/s41593-019-0555-4
10.1016/j.biomaterials.2010.05.050
10.1088/1741-2560/12/1/011001
10.1016/j.jneumeth.2009.06.026
10.1016/j.biomaterials.2018.09.040
10.1016/S0006-8993(03)03023-3
10.1088/1741-2560/10/2/026007
10.1016/j.neuroscience.2008.07.031
10.1016/S0140-6736(12)61816-9
10.1152/jn.90920.2008
10.1016/S0140-6736(17)30601-3
10.1088/1741-2560/11/5/056014
10.1016/S0165-0270(98)00031-4
10.1038/sc.2016.173
10.1038/s41551-017-0154-1
10.1038/nature11076
10.1088/1741-2552/aa9ee8
10.1088/1741-2560/13/2/026003
10.1016/j.jneumeth.2004.02.019
10.1038/nrn2297
10.1523/JNEUROSCI.3520-13.2014
10.3389/fnins.2018.00208
10.3171/foc.2006.20.5.5
10.3390/mi9110587
10.1016/j.biomaterials.2018.12.031
10.1126/scitranslmed.aaf8083
10.1126/scitranslmed.aac7328
10.1016/j.proeng.2011.12.120
10.1523/JNEUROSCI.2747-15.2015
10.1073/pnas.1934665100
10.1016/j.actbio.2017.02.010
10.1016/j.neuropharm.2014.10.027
10.1016/j.apmr.2018.07.445
10.1109/TNSRE.2009.2029313
10.1152/jn.1995.73.6.2563
10.1109/TBCAS.2019.2943077
10.1109/10.83588
10.1088/1741-2560/2/4/006
10.1088/1741-2560/9/5/056015
10.1088/1741-2560/3/3/002
10.1038/s41598-017-17222-3
10.1088/1741-2560/4/4/007
10.1088/1741-2560/12/1/016011
10.1038/nature17435
10.3390/mi9090430
10.1113/jphysiol.2006.123067
10.1007/978-3-319-64373-1_5
10.7554/eLife.18554
10.1038/s41551-020-0542-9
10.1146/annurev.bioeng.10.061807.160518
10.3389/fnins.2018.00801
10.1088/1741-2560/10/3/036004
10.1088/1741-2560/8/4/045006
10.1016/j.jneumeth.2014.08.004
10.1088/1741-2560/9/4/046020
10.1038/35004588
10.1371/journal.pbio.1000153
10.1088/1741-2560/10/6/066014
10.1021/cn500256e
10.1007/978-981-13-2050-7_1
10.1177/2309499017692712
10.1088/1741-2560/6/5/056003
10.1016/j.biomaterials.2013.03.007
10.1088/1741-2552/aa9ee7
10.1088/1741-2552/aae4b6
ContentType Journal Article
Copyright Copyright © 2020 Dunlap, Colachis, Meyers, Bockbrader and Friedenberg.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2020 Dunlap, Colachis, Meyers, Bockbrader and Friedenberg. 2020 Dunlap, Colachis, Meyers, Bockbrader and Friedenberg
Copyright_xml – notice: Copyright © 2020 Dunlap, Colachis, Meyers, Bockbrader and Friedenberg.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2020 Dunlap, Colachis, Meyers, Bockbrader and Friedenberg. 2020 Dunlap, Colachis, Meyers, Bockbrader and Friedenberg
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnbot.2020.558987
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database (via ProQuest SciTech Premium Collection)
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1662-5218
ExternalDocumentID oai_doaj_org_article_2edd94c22c764e56bc5f6639fb5b4d04
PMC7581895
33162885
10_3389_fnbot_2020_558987
Genre Journal Article
Review
GeographicLocations United States--US
Utah
GeographicLocations_xml – name: United States--US
– name: Utah
GrantInformation_xml – fundername: Defense Advanced Research Projects Agency
  grantid: DARPA-PA-18-02-04-INI-FP-006
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFS
ADBBV
ADDVE
ADMLS
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
TR2
ACXDI
C1A
IPNFZ
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c493t-f23dd40d04af53013ac1de4dbdeff11536878763b8470e0055e5b14d3adc778a3
IEDL.DBID DOA
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000581112100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-5218
IngestDate Fri Oct 03 12:51:06 EDT 2025
Tue Nov 04 01:53:35 EST 2025
Sun Nov 09 12:55:53 EST 2025
Fri Jul 25 11:48:45 EDT 2025
Mon Jul 21 05:52:04 EDT 2025
Sat Nov 29 03:48:45 EST 2025
Tue Nov 18 20:36:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords signal quality
neuroprosthetics
biocompatibility
brain-computer interface
recording disruptions
microelectrode failure
intracortical electrode array
Language English
License Copyright © 2020 Dunlap, Colachis, Meyers, Bockbrader and Friedenberg.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-f23dd40d04af53013ac1de4dbdeff11536878763b8470e0055e5b14d3adc778a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
These authors have contributed equally to this work
Edited by: Loredana Zollo, Campus Bio-Medico University, Italy
Reviewed by: Andrew G. Richardson, University of Pennsylvania, United States; Elisa Castagnola, University of Pittsburgh, United States
OpenAccessLink https://doaj.org/article/2edd94c22c764e56bc5f6639fb5b4d04
PMID 33162885
PQID 2449555342
PQPubID 4424403
ParticipantIDs doaj_primary_oai_doaj_org_article_2edd94c22c764e56bc5f6639fb5b4d04
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7581895
proquest_miscellaneous_2458961722
proquest_journals_2449555342
pubmed_primary_33162885
crossref_primary_10_3389_fnbot_2020_558987
crossref_citationtrail_10_3389_fnbot_2020_558987
PublicationCentury 2000
PublicationDate 2020-10-09
PublicationDateYYYYMMDD 2020-10-09
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-09
  day: 09
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neurorobotics
PublicationTitleAlternate Front Neurorobot
PublicationYear 2020
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Kennedy (B72) 2011; 17
Winslow (B147) 2010; 31
Ravikumar (B113) 2014; 2
Shenoy (B125) 2014; 84
Weiss (B143) 2020; 6
Prasad (B108) 2012; 9
Zhang (B154) 2018; 4
Barrese (B6) 2016; 13
Malaga (B86) 2016; 13
Hochberg (B60) 2006; 25
B152
Simeral (B126) 2011; 8
Bockbrader (B14) 2019; 11
Flint (B48) 2016; 36
Wise (B148) 2005; 24
Jorfi (B67) 2015; 12
Gaire (B50) 2018; 15
Gilgunn (B56) 2013
Leber (B80) 2019
Li (B83) 2011; 23
Eles (B39) 2019; 195
Hassibi (B58) 2004; 96
Perge (B104) 2014; 11
Cogan (B26) 2004; 137
Vezzani (B141) 2015; 96
Williams (B146) 2007; 4
Kao (B70) 2017; 7
Pandarinath (B100) 2017; 6
Saxena (B119) 2013; 34
Kozai (B75); 37
Campbell (B22) 2018; 9
Nicolas-Alonso (B96) 2012; 12
Angotzi (B5) 2019; 126
Colachis (B27) 2018; 12
Ising (B65) 2019; 575
B4
Fawcett (B43) 1999; 49
Fernández (B44) 2014; 7
Campbell (B23) 1991; 38
Ereifej (B40) 2018; 6
Schwemmer (B122) 2018; 24
Schmitt (B120) 1999; 44
Biran (B10) 2007
Sridharan (B129) 2015; 12
Aggarwal (B2) 2013; 109
Jun (B68) 2017; 551
Obaid (B99) 2020; 6
Straka (B131) 2018; 9
Woolley (B150) 2013; 10
Sussillo (B133) 2016; 7
Szarowski (B134) 2003; 983
Hsu (B63) 2009; 56
Roitbak (B114) 1999; 28
Rousche (B115) 1998; 82
Lecomte (B81) 2018; 15
Nolta (B98) 2015; 53
Kane (B69) 2013; 60
Wodlinger (B149) 2015; 12
Hochberg (B61) 2006; 442
Subbaroyan (B132) 2005; 2
Downey (B35) 2017; 7
Purcell (B111) 2009; 183
Degenhart (B32) 2020; 4
Nicolelis (B97) 2003; 100
Du (B38) 2017; 53
Lempka (B82) 2011; 8
Vargas-Irwin (B139) 2010; 30
Bjornsson (B12) 2006; 3
Perge (B103) 2013; 10
Aflalo (B1) 2015; 348
Garcia-Arguello (B55) 2017; 55
Dantzer (B31) 2008; 9
House (B62) 2006; 20
Lebedev (B79) 2006; 29
Patrick (B102) 2011; 198
Potter (B106) 2012; 9
Seymour (B124) 2009; 30
Troyk (B138) 2004
Fang (B42) 2017; 25
Wellman (B144) 2018; 28
Bennett (B8) 2019; 188
Klaes (B74) 2015; 35
Black (B13) 2018; 120
Buzsáki (B20) 2004; 7
Takmakov (B135) 2015; 12
Bockbrader (B15) 2019; 100
Nguyen (B95) 2014; 11
Barrese (B7) 2013; 10
Moffitt (B94) 2005; 116
(B145) 1956
Dobkin (B34) 2007; 579
Downey (B36); 15
Ludwig (B85) 2009; 101
Krüger (B78) 2010; 3
Collinger (B29); 381
Šišková (B127) 2014; 84
Scott (B123) 1995; 73
Bouton (B17) 2016; 533
Hughes (B64) 2020
Lopez (B84) 2012
Cogan (B25) 2008; 10
Fagg (B41) 2009; 17
Mckee (B90) 2015
Downey (B37); 12
Gallego (B52) 2017; 94
Karumbaiah (B71) 2013; 34
Skomrock (B128) 2018; 12
Teeling (B136) 2009; 158
McConnell (B88); 6
Xie (B151) 2011; 25
Cui (B30) 2007; 15
Michelson (B93) 2018; 15
Frere (B49) 2018; 97
Gallego (B51) 2020; 23
Ganguly (B53) 2009; 7
Caldwell (B21) 2018; 293
Schwarz (B121) 2014; 11
Kozai (B77) 2012; 9
Fiáth (B45) 2018; 106
Bullard (B19) 2020; 23
Kozai (B76); 6
Bishop (B11) 2014; 11
Klaes (B73) 2018
Biran (B9) 2005; 195
Collinger (B28); 50
Masse (B87) 2014; 236
Hochberg (B59) 2012; 485
Cody (B24) 2018; 161
Ganzer (B54) 2020
Prasad (B110) 2012; 9
Boehler (B16) 2017; 9
Potter-Baker (B107) 2015; 4
Young (B153) 2018; 15
Paralikar (B101) 2009; 181
Salatino (B116) 2017; 1
Santhanam (B118) 2007; 54
Steinmetz (B130) 2000; 404
Flesher (B47) 2016; 8
Thomas (B137) 2020
Weiss (B142) 2019; 16
Potter (B105) 2013; 34
Sanes (B117) 2000; 23
Jarosiewicz (B66) 2015; 7
Velliste (B140) 2014; 34
Brandman (B18) 2018; 15
McConnell (B89); 6
Mercanzini (B92) 2009; 56
Dickey (B33) 2009; 102
Prasad (B109) 2014; 7
Flesher (B46) 2017
Ajiboye (B3) 2017; 389
McMorland (B91) 2013; 10
Gwon (B57) 2016; 51
Putzeys (B112) 2019; 13
References_xml – volume: 4
  start-page: 275
  year: 2015
  ident: B107
  article-title: Reducing the “Stress”: antioxidative therapeutic and material approaches may prevent intracortical microelectrode failure
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz500743a
– volume: 50
  start-page: 145
  ident: B28
  article-title: Functional priorities, assistive technology, and brain-computer interfaces after spinal cord injury
  publication-title: J. Rehabil. Res. Dev.
  doi: 10.1682/JRRD.2011.11.0213
– volume: 12
  start-page: 026003
  year: 2015
  ident: B135
  article-title: Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/2/026003
– start-page: 763
  year: 2020
  ident: B54
  article-title: Restoring the sense of touch using a sensorimotor demultiplexing neural interface
  publication-title: Cell 181
  doi: 10.1016/j.cell.2020.03.054
– volume: 60
  start-page: 2153
  year: 2013
  ident: B69
  article-title: Electrical performance of penetrating microelectrodes chronically implanted in cat cortex
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2248152
– volume: 6
  start-page: eaay2789
  year: 2020
  ident: B99
  article-title: Massively parallel microwire arrays integrated with CMOS chips for neural recording
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay2789
– volume: 293
  start-page: 210
  year: 2018
  ident: B21
  article-title: Neural electrode resilience against dielectric damage may be improved by use of highly doped silicon as a conductive material
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2017.10.002
– start-page: 169
  year: 2007
  ident: B10
  article-title: The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.31138
– volume: 12
  start-page: 1211
  year: 2012
  ident: B96
  article-title: Brain computer interfaces, a review
  publication-title: Sensors
  doi: 10.3390/s120201211
– volume: 84
  start-page: 1023
  year: 2014
  ident: B127
  article-title: Dendritic structural degeneration is functionally linked to cellular hyperexcitability in a mouse model of alzheimer's disease
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.10.024
– volume: 11
  start-page: 046007
  year: 2014
  ident: B104
  article-title: Reliability of directional information in unsorted spikes and local field potentials recorded in human motor cortex
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/4/046007
– volume: 7
  start-page: 13749
  year: 2016
  ident: B133
  article-title: Making brain–machine interfaces robust to future neural variability
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13749
– volume: 97
  start-page: 32
  year: 2018
  ident: B49
  article-title: Alzheimer's disease: from firing instability to homeostasis network collapse
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.11.028
– volume: 161
  start-page: 117
  year: 2018
  ident: B24
  article-title: Unique electrophysiological and impedance signatures between encapsulation types: An analysis of biological Utah array failure and benefit of a biomimetic coating in a rat model
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.01.025
– volume: 94
  start-page: 978
  year: 2017
  ident: B52
  article-title: Neural manifolds for the control of movement
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.05.025
– volume: 7
  start-page: 7395
  year: 2017
  ident: B70
  article-title: Leveraging neural dynamics to extend functional lifetime of brain-machine interfaces
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-06029-x
– volume: 10
  start-page: 034001
  year: 2013
  ident: B91
  article-title: Baseplate for two-stage cranial mounting of BMI connectors
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/3/034001
– volume: 12
  start-page: 763
  year: 2018
  ident: B128
  article-title: A characterization of brain-computer interface performance trade-offs using support vector machines and deep neural networks to decode movement intent
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00763
– volume: 7
  start-page: 446
  year: 2004
  ident: B20
  article-title: Large-scale recording of neuronal ensembles
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1233
– volume: 49
  start-page: 377
  year: 1999
  ident: B43
  article-title: The glial scar and central nervous system repair
  publication-title: Brain Res. Bull.
  doi: 10.1016/S0361-9230(99)00072-6
– volume: 106
  start-page: 86
  year: 2018
  ident: B45
  article-title: A silicon-based neural probe with densely-packed low-impedance titanium nitride microelectrodes for ultrahigh-resolution in vivo recordings
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.01.060
– volume: 29
  start-page: 536
  year: 2006
  ident: B79
  article-title: Brain–machine interfaces: past, present and future
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2006.07.004
– volume: 34
  start-page: 8061
  year: 2013
  ident: B71
  article-title: Relationship between intracortical electrode design and chronic recording function
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.07.016
– volume: 25
  start-page: 32
  year: 2006
  ident: B60
  article-title: Sensors for brain-computer interfaces
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/MEMB.2006.1705745
– volume: 195
  start-page: 115
  year: 2005
  ident: B9
  article-title: Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2005.04.020
– volume: 15
  start-page: 046016
  ident: B36
  article-title: Intracortical recording stability in human brain–computer interface users
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aab7a0
– volume: 6
  start-page: 055005
  ident: B88
  article-title: Bioimpedance modeling to monitor astrocytic response to chronically implanted electrodes
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/6/5/055005
– volume: 23
  start-page: 3162
  year: 2011
  ident: B83
  article-title: Adaptive decoding for brain-machine interfaces through bayesian parameter updates
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00207
– volume: 6
  start-page: 106
  year: 2020
  ident: B143
  article-title: Demonstration of a portable intracortical brain-computer interface
  publication-title: Brain-Computer Interfaces
  doi: 10.1080/2326263X.2019.1709260
– volume: 12
  start-page: 036002
  year: 2015
  ident: B129
  article-title: Compliant intracortical implants reduce strains and strain rates in brain tissue in vivo
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/3/036002
– volume: 96
  start-page: 1074
  year: 2004
  ident: B58
  article-title: Comprehensive study of noise processes in electrode electrolyte interfaces
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1755429
– volume: 15
  start-page: 033001
  year: 2018
  ident: B93
  article-title: Multi-scale, multi-modal analysis uncovers complex relationship at the brain tissue-implant neural interface: new emphasis on the biological interface
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa9dae
– volume: 9
  start-page: 066001
  year: 2012
  ident: B77
  article-title: In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/9/6/066001
– volume: 120
  start-page: 2083
  year: 2018
  ident: B13
  article-title: Chronic recording and electrochemical performance of Utah microelectrode arrays implanted in rat motor cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00181.2018
– volume: 116
  start-page: 2240
  year: 2005
  ident: B94
  article-title: Model-based analysis of cortical recording with silicon microelectrodes
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2005.05.018
– volume: 15
  start-page: 502
  year: 2007
  ident: B30
  article-title: Poly (3,4-Ethylenedioxythiophene) for Chronic Neural Stimulation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2007.909811
– volume: 126
  start-page: 355
  year: 2019
  ident: B5
  article-title: SiNAPS: An implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.10.032
– volume: 2
  start-page: 2517
  year: 2014
  ident: B113
  article-title: The effect of residual endotoxin contamination on the neuroinflammatory response to sterilized intracortical microelectrodes
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C3TB21453B
– volume: 44
  start-page: 3865
  year: 1999
  ident: B120
  article-title: Passivation and corrosion of microelectrode arrays
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(99)00094-8
– volume: 11
  start-page: 026001
  year: 2014
  ident: B11
  article-title: Self-recalibrating classifiers for intracortical brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/2/026001
– volume: 51
  start-page: 6897
  year: 2016
  ident: B57
  article-title: Mechanical interlocking to improve metal–polymer adhesion in polymer-based neural electrodes and its impact on device reliability
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-016-9977-5
– volume: 551
  start-page: 232
  year: 2017
  ident: B68
  article-title: Fully integrated silicon probes for high-density recording of neural activity
  publication-title: Nature
  doi: 10.1038/nature24636
– year: 2020
  ident: B64
  article-title: Neural stimulation and recording performance in human somatosensory cortex over 1500 days
  publication-title: medRxiv [Preprint]
  doi: 10.1101/2020.01.21.20018341
– volume: 4
  start-page: 11
  year: 2018
  ident: B154
  article-title: Extracting wavelet based neural features from human intracortical recordings for neuroprosthetics applications
  publication-title: Bioelectron. Med.
  doi: 10.1186/s42234-018-0011-x
– volume: 28
  start-page: 40
  year: 1999
  ident: B114
  article-title: Diffusion barriers evoked in the rat cortex by reactive astrogliosis
  publication-title: Glia
  doi: 10.1002/(SICI)1098-1136(199910)28:1<40::AID-GLIA5>3.0.CO
– volume: 84
  start-page: 665
  year: 2014
  ident: B125
  article-title: Combining decoder design and neural adaptation in brain-machine interfaces
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.08.038
– volume: 575
  start-page: 669
  year: 2019
  ident: B65
  article-title: NLRP3 inflammasome activation drives tau pathology
  publication-title: Nature
  doi: 10.1038/s41586-019-1769-z
– volume: 53
  start-page: 753
  year: 2015
  ident: B98
  article-title: BBB leakage, astrogliosis, and tissue loss correlate with silicon microelectrode array recording performance
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.02.081
– volume: 54
  start-page: 2037
  year: 2007
  ident: B118
  article-title: HermesB: a continuous neural recording system for freely behaving primates
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.895753
– volume: 56
  start-page: 23
  year: 2009
  ident: B63
  article-title: Encapsulation of an integrated neural interface device with parylene C
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2002155
– start-page: 4141
  volume-title: The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
  year: 2004
  ident: B138
  article-title: Safe” charge-injection waveforms for iridium oxide (AIROF) microelectrodes
  doi: 10.1109/IEMBS.2004.1404155
– volume: 442
  start-page: 164
  year: 2006
  ident: B61
  article-title: Neuronal ensemble control of prosthetic devices by a human with tetraplegia
  publication-title: Nature
  doi: 10.1038/nature04970
– volume: 37
  start-page: 25
  ident: B75
  article-title: Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.10.040
– volume: 11
  start-page: 85
  year: 2019
  ident: B14
  article-title: Upper limb sensorimotor restoration through brain–computer interface technology in tetraparesis
  publication-title: Curr. Opin. Biomed. Eng.
  doi: 10.1016/j.cobme.2019.09.002
– volume: 9
  start-page: 189
  year: 2017
  ident: B16
  article-title: Long-term stable adhesion for conducting polymers in biomedical applications: irox and nanostructured platinum solve the chronic challenge
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13468
– volume: 56
  start-page: 1909
  year: 2009
  ident: B92
  article-title: In vivo Electrical impedance spectroscopy of tissue reaction to microelectrode arrays
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2018457
– volume: 11
  start-page: 670
  year: 2014
  ident: B121
  article-title: Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2936
– volume: 8
  start-page: 025027
  year: 2011
  ident: B126
  article-title: Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/2/025027
– volume: 7
  start-page: 1
  year: 2014
  ident: B44
  article-title: Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects
  publication-title: Front. Neuroeng.
  doi: 10.3389/fneng.2014.00024
– volume: 17
  start-page: 381
  year: 2011
  ident: B72
  article-title: Changes in emotional state modulate neuronal firing rates of human speech motor cortex: A case study in long-term recording
  publication-title: Neurocase
  doi: 10.1080/13554794.2010.532137
– volume: 24
  start-page: 1669
  year: 2018
  ident: B122
  article-title: Meeting brain–computer interface user performance expectations using a deep neural network decoding framework
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0171-y
– volume: 28
  start-page: 1701269
  year: 2018
  ident: B144
  article-title: A materials roadmap to functional neural interface design
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201701269
– volume: 23
  start-page: 393
  year: 2000
  ident: B117
  article-title: Plasticity and primary motor cortex
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.23.1.393
– start-page: 527
  volume-title: Handbook of in vivo Neural Plasticity Techniques Handbook of Behavioral Neuroscience
  year: 2018
  ident: B73
  article-title: Invasive brain-computer interfaces and neural recordings from humans
  doi: 10.1016/B978-0-12-812028-6.00028-8
– volume: 16
  start-page: 016002
  year: 2019
  ident: B142
  article-title: Artifact-free recordings in human bidirectional brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aae748
– volume: 30
  start-page: 6158
  year: 2009
  ident: B124
  article-title: The insulation performance of reactive parylene films in implantable electronic devices
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.07.061
– ident: B4
– year: 2020
  ident: B137
  article-title: Simultaneous classification of bilateral hand gestures using bilateral microelectrode recordings in a tetraplegic patient
  publication-title: medRxiv [Preprint]
  doi: 10.1101/2020.06.02.20116913
– volume: 348
  start-page: 906
  year: 2015
  ident: B1
  article-title: Decoding motor imagery from the posterior parietal cortex of a tetraplegic human
  publication-title: Science
  doi: 10.1126/science.aaa5417
– volume: 109
  start-page: 3067
  year: 2013
  ident: B2
  article-title: State-based decoding of hand and finger kinematics using neuronal ensemble and LFP activity during dexterous reach-to-grasp movements
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.01038.2011
– volume: 23
  start-page: 411
  year: 2020
  ident: B19
  article-title: Estimating risk for future intracranial, fully implanted, modular neuroprosthetic systems: a systematic review of hardware complications in clinical deep brain stimulation and experimental human intracortical arrays
  publication-title: Neuromodulation Technol. Neural Interface
  doi: 10.1111/ner.13069
– ident: B152
– volume: 36
  start-page: 3623
  year: 2016
  ident: B48
  article-title: Long-term stability of motor cortical activity: implications for brain machine interfaces and optimal feedback control
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2339-15.2016
– volume: 24
  start-page: 22
  year: 2005
  ident: B148
  article-title: Silicon microsystems for neuroscience and neural prostheses
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/MEMB.2005.1511497
– volume: 181
  start-page: 27
  year: 2009
  ident: B101
  article-title: New approaches to eliminating common-noise artifacts in recordings from intracortical microelectrode arrays: Inter-electrode correlation and virtual referencing
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2009.04.014
– volume: 6
  start-page: 9
  year: 2018
  ident: B40
  article-title: Implantation of neural probes in the brain elicits oxidative stress
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2018.00009
– volume: 3
  start-page: 6
  year: 2010
  ident: B78
  article-title: Seven years of recording from monkey cortex with a chronically implanted multiple microelectrode
  publication-title: Front. Neuroeng.
  doi: 10.3389/fneng.2010.00006
– volume: 9
  start-page: 026028
  year: 2012
  ident: B108
  article-title: Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/9/2/026028
– start-page: 759
  volume-title: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
  year: 2012
  ident: B84
  article-title: Towards a noise prediction model for in vivo neural recording
  doi: 10.1109/EMBC.2012.6346042
– volume: 7
  start-page: 1
  year: 2014
  ident: B109
  article-title: Abiotic-biotic characterization of Pt/Ir microelectrode arrays in chronic implants
  publication-title: Front. Neuroeng.
  doi: 10.3389/fneng.2014.00002
– start-page: 719
  volume-title: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)
  year: 2013
  ident: B56
  article-title: Structural analysis of explanted microelectrode arrays
  doi: 10.1109/NER.2013.6696035
– volume: 198
  start-page: 158
  year: 2011
  ident: B102
  article-title: Corrosion of tungsten microelectrodes used in neural recording applications
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2011.03.012
– volume: 30
  start-page: 9659
  year: 2010
  ident: B139
  article-title: Decoding complete reach and grasp actions from local primary motor cortex populations
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5443-09.2010
– volume: 15
  start-page: 031001
  year: 2018
  ident: B81
  article-title: A review on mechanical considerations for chronically-implanted neural probes
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa8b4f
– volume: 34
  start-page: 7001
  year: 2013
  ident: B105
  article-title: The effect of resveratrol on neurodegeneration and blood brain barrier stability surrounding intracortical microelectrodes
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.05.035
– volume: 13
  start-page: 016010
  year: 2016
  ident: B86
  article-title: Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/13/1/016010
– volume-title: Statistical Quality Control Handbook
  year: 1956
  ident: B145
– volume: 101
  start-page: 1679
  year: 2009
  ident: B85
  article-title: Using a common average reference to improve cortical neuron recordings from microelectrode arrays
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.90989.2008
– volume: 23
  start-page: 260
  year: 2020
  ident: B51
  article-title: Long-term stability of cortical population dynamics underlying consistent behavior
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0555-4
– volume: 31
  start-page: 9163
  year: 2010
  ident: B147
  article-title: A comparison of the tissue response to chronically implanted Parylene-C-coated and uncoated planar silicon microelectrode arrays in rat cortex
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.05.050
– volume: 12
  start-page: 011001
  year: 2015
  ident: B67
  article-title: Progress towards biocompatible intracortical microelectrodes for neural interfacing applications
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/1/011001
– volume: 183
  start-page: 149
  year: 2009
  ident: B111
  article-title: Flavopiridol reduces the impedance of neural prostheses in vivo without affecting recording quality
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2009.06.026
– volume: 188
  start-page: 144
  year: 2019
  ident: B8
  article-title: Neuroinflammation, oxidative stress, and blood-brain barrier (BBB) disruption in acute Utah electrode array implants and the effect of deferoxamine as an iron chelator on acute foreign body response
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.09.040
– volume: 983
  start-page: 23
  year: 2003
  ident: B134
  article-title: Brain responses to micro-machined silicon devices
  publication-title: Brain Res.
  doi: 10.1016/S0006-8993(03)03023-3
– volume: 10
  start-page: 026007
  year: 2013
  ident: B150
  article-title: Chronic intracortical microelectrode arrays induce non-uniform, depth-related tissue responses
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/2/026007
– volume: 158
  start-page: 1062
  year: 2009
  ident: B136
  article-title: Systemic infection and inflammation in acute CNS injury and chronic neurodegeneration: underlying mechanisms
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2008.07.031
– volume: 381
  start-page: 557
  ident: B29
  article-title: High-performance neuroprosthetic control by an individual with tetraplegia
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)61816-9
– volume: 102
  start-page: 1331
  year: 2009
  ident: B33
  article-title: Single-unit stability using chronically implanted multielectrode arrays
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.90920.2008
– volume: 389
  start-page: 1821
  year: 2017
  ident: B3
  article-title: Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)30601-3
– volume: 11
  start-page: 056014
  year: 2014
  ident: B95
  article-title: Mechanically-compliant intracortical implants reduce the neuroinflammatory response
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/5/056014
– volume: 82
  start-page: 1
  year: 1998
  ident: B115
  article-title: Chronic recording capability of the utah intracortical electrode array in cat sensory cortex
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(98)00031-4
– volume: 55
  start-page: 526
  year: 2017
  ident: B55
  article-title: Infections in the spinal cord-injured population: a systematic review
  publication-title: Spinal Cord
  doi: 10.1038/sc.2016.173
– volume: 1
  start-page: 862
  year: 2017
  ident: B116
  article-title: Glial responses to implanted electrodes in the brain
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-017-0154-1
– volume: 485
  start-page: 372
  year: 2012
  ident: B59
  article-title: Reach and grasp by people with tetraplegia using a neurally controlled robotic arm
  publication-title: Nature
  doi: 10.1038/nature11076
– volume: 15
  start-page: 026014
  year: 2018
  ident: B153
  article-title: Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa9ee8
– volume: 13
  start-page: 026003
  year: 2016
  ident: B6
  article-title: Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/13/2/026003
– volume: 137
  start-page: 141
  year: 2004
  ident: B26
  article-title: Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2004.02.019
– volume: 9
  start-page: 46
  year: 2008
  ident: B31
  article-title: From inflammation to sickness and depression: when the immune system subjugates the brain
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2297
– volume: 34
  start-page: 6011
  year: 2014
  ident: B140
  article-title: Motor cortical correlates of arm resting in the context of a reaching task and implications for prosthetic control
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3520-13.2014
– volume: 12
  start-page: 1
  year: 2018
  ident: B27
  article-title: Dexterous control of seven functional hand movements using cortically-controlled transcutaneous muscle stimulation in a person with tetraplegia
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00208
– volume: 20
  start-page: 1
  year: 2006
  ident: B62
  article-title: Acute microelectrode array implantation into human neocortex: preliminary technique and histological considerations
  publication-title: Neurosurg. Focus
  doi: 10.3171/foc.2006.20.5.5
– volume: 9
  start-page: 587
  year: 2018
  ident: B131
  article-title: Characterizing longitudinal changes in the impedance spectra of in-vivo peripheral nerve electrodes
  publication-title: Micromachines
  doi: 10.3390/mi9110587
– volume: 195
  start-page: 111
  year: 2019
  ident: B39
  article-title: Meningeal inflammatory response and fibrous tissue remodeling around intracortical implants: An in vivo two-photon imaging study
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.12.031
– volume: 8
  start-page: 1
  year: 2016
  ident: B47
  article-title: Intracortical microstimulation of human somatosensory cortex
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaf8083
– volume: 7
  start-page: 313r
  year: 2015
  ident: B66
  article-title: Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aac7328
– volume: 25
  start-page: 483
  year: 2011
  ident: B151
  article-title: Long-term in-vivo investigation of parylene-c as encapsulation material for neural interfaces
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2011.12.120
– start-page: 45
  volume-title: Handbook of Clinical Neurology
  year: 2015
  ident: B90
  article-title: The neuropathology of traumatic brain injury
– volume: 35
  start-page: 15466
  year: 2015
  ident: B74
  article-title: Hand shape representations in the human posterior parietal cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2747-15.2015
– volume: 100
  start-page: 11041
  year: 2003
  ident: B97
  article-title: Chronic, multisite, multielectrode recordings in macaque monkeys
  publication-title: Proc. Natl. Acad. Sci U.S.A.
  doi: 10.1073/pnas.1934665100
– volume: 53
  start-page: 46
  year: 2017
  ident: B38
  article-title: Ultrasoft microwire neural electrodes improve chronic tissue integration
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.02.010
– volume: 96
  start-page: 70
  year: 2015
  ident: B141
  article-title: Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2014.10.027
– volume: 100
  start-page: 1201
  year: 2019
  ident: B15
  article-title: Clinically significant gains in skillful grasp coordination by an individual with tetraplegia using an implanted brain-computer interface with forearm transcutaneous muscle stimulation
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2018.07.445
– volume: 17
  start-page: 487
  year: 2009
  ident: B41
  article-title: Kinetic trajectory decoding using motor cortical ensembles
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2009.2029313
– volume: 73
  start-page: 2563
  year: 1995
  ident: B123
  article-title: Changes in motor cortex activity during reaching movements with similar hand paths but different arm postures
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1995.73.6.2563
– volume: 13
  start-page: 1635
  year: 2019
  ident: B112
  article-title: Neuropixels data-acquisition system: a scalable platform for parallel recording of 10 000+ electrophysiological signals
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2019.2943077
– volume: 38
  start-page: 758
  year: 1991
  ident: B23
  article-title: A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.83588
– volume: 2
  start-page: 103
  year: 2005
  ident: B132
  article-title: A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/2/4/006
– volume: 9
  start-page: 056015
  year: 2012
  ident: B110
  article-title: Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/9/5/056015
– volume: 3
  start-page: 196
  year: 2006
  ident: B12
  article-title: Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/3/3/002
– volume: 7
  start-page: 16947
  year: 2017
  ident: B35
  article-title: Motor cortical activity changes during neuroprosthetic-controlled object interaction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17222-3
– volume: 4
  start-page: 410
  year: 2007
  ident: B146
  article-title: Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/4/4/007
– volume: 12
  start-page: 016011
  year: 2015
  ident: B149
  article-title: Ten-dimensional anthropomorphic arm control in a human brain–machine interface: difficulties, solutions, and limitations
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/1/016011
– volume: 533
  start-page: 247
  year: 2016
  ident: B17
  article-title: Restoring cortical control of functional movement in a human with quadriplegia
  publication-title: Nature
  doi: 10.1038/nature17435
– volume: 9
  start-page: 430
  year: 2018
  ident: B22
  article-title: Chronically implanted intracranial electrodes: tissue reaction and electrical changes
  publication-title: Micromachines
  doi: 10.3390/mi9090430
– volume: 579
  start-page: 637
  year: 2007
  ident: B34
  article-title: Brain-computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2006.123067
– start-page: 43
  volume-title: Brain-Computer Interface Research: A State-of-the-Art Summary 6
  year: 2017
  ident: B46
  article-title: Intracortical microstimulation as a feedback source for brain-computer interface users
  doi: 10.1007/978-3-319-64373-1_5
– volume: 6
  start-page: 1
  year: 2017
  ident: B100
  article-title: High performance communication by people with paralysis using an intracortical brain-computer interface
  publication-title: Elife
  doi: 10.7554/eLife.18554
– volume: 4
  start-page: 672
  year: 2020
  ident: B32
  article-title: Stabilization of a brain–computer interface via the alignment of low-dimensional spaces of neural activity
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-020-0542-9
– volume: 10
  start-page: 275
  year: 2008
  ident: B25
  article-title: Neural stimulation and recording electrodes
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.10.061807.160518
– volume: 12
  start-page: 1
  ident: B37
  article-title: Implicit grasp force representation in human motor cortical recordings
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00801
– volume: 10
  start-page: 036004
  year: 2013
  ident: B103
  article-title: Intra-day signal instabilities affect decoding performance in an intracortical neural interface system
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/3/036004
– volume: 8
  start-page: 045006
  year: 2011
  ident: B82
  article-title: Theoretical analysis of intracortical microelectrode recordings
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/4/045006
– volume: 236
  start-page: 58
  year: 2014
  ident: B87
  article-title: Non-causal spike filtering improves decoding of movement intention for intracortical BCIs
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2014.08.004
– volume: 9
  start-page: 046020
  year: 2012
  ident: B106
  article-title: Stab injury and device implantation within the brain results in inversely multiphasic neuroinflammatory and neurodegenerative responses
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/9/4/046020
– volume: 404
  start-page: 187
  year: 2000
  ident: B130
  article-title: Attention modulates synchronized neuronal firing in primate somatosensory cortex
  publication-title: Nature
  doi: 10.1038/35004588
– volume: 7
  start-page: e1000153
  year: 2009
  ident: B53
  article-title: Emergence of a stable cortical map for neuroprosthetic control
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000153
– volume: 10
  start-page: 066014
  year: 2013
  ident: B7
  article-title: Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/6/066014
– volume: 6
  start-page: 48
  ident: B76
  article-title: Brain tissue responses to neural implants impact signal sensitivity and intervention strategies
  publication-title: ACS Chem. Neurosci.
  doi: 10.1021/cn500256e
– start-page: 1
  volume-title: Neural Interface: Frontiers and Applications
  year: 2019
  ident: B80
  article-title: Advances in penetrating multichannel microelectrodes based on the utah array platform
  doi: 10.1007/978-981-13-2050-7_1
– volume: 25
  start-page: 230949901769271
  year: 2017
  ident: B42
  article-title: Infection after fracture osteosynthesis – Part I
  publication-title: J. Orthop. Surg.
  doi: 10.1177/2309499017692712
– volume: 6
  start-page: 056003
  ident: B89
  article-title: Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/6/5/056003
– volume: 34
  start-page: 4703
  year: 2013
  ident: B119
  article-title: The impact of chronic blood–brain barrier breach on intracortical electrode function
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.03.007
– volume: 15
  start-page: 026007
  year: 2018
  ident: B18
  article-title: Rapid calibration of an intracortical brain–computer interface for people with tetraplegia
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa9ee7
– volume: 15
  start-page: 066027
  year: 2018
  ident: B50
  article-title: The role of inflammation on the functionality of intracortical microelectrodes
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aae4b6
SSID ssj0062658
Score 2.2911031
SecondaryResourceType review_article
Snippet Brain-machine interfaces (BMIs) record and translate neural activity into a control signal for assistive or other devices. Intracortical microelectrode arrays...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 558987
SubjectTerms Algorithms
Arrays
biocompatibility
brain-computer interface
Electrodes
Etiology
Interfaces
intracortical electrode array
Learning algorithms
Machine learning
microelectrode failure
Neural coding
neuroprosthetics
Neuroscience
recording disruptions
Regulatory approval
Scanning electron microscopy
Spectroscopy
Statistical analysis
Transplants & implants
Usability
SummonAdditionalLinks – databaseName: Science Database (via ProQuest SciTech Premium Collection)
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtRAEG1B4AAHdoghoEbihGRi92Y3FzQDRHBINBIg5Wb1GkaK7GQW_oM_pqptT2YQyoWr3bZKrupausrvEfKGm6CYVSGPtdK5YIXLjeUsV9YY47TjysRENlGdnNSnp3o2HLgth7HK0ScmR-07h2fkhxCGtJSSC_bh4jJH1ijsrg4UGjfJLchsShzpOmaz0RNDri7rvpMJhZg-jK3tcHySFe-krDVO0W3FogTZ_6888-9xya34c3T_fyV_QO4NmSed9KbykNwI7SNydwuP8DH5nSgy5-nXJ_oVxYDaNB120ylSSeTHafQy0HSOGI0L9Nv8DN_6ab5crPv5GDqFwOhp19IeDZ3Orv5NoKb1dNL3zO15oOiNoI5OnX46AuWG5Xs6oX3T4gn5cfT5-8cv-cDZkDuh-SqPjHsvCl8IEyU4D25c6YPw1ocYQUdc1RWC4FmIikVABLAgbSk8N95VVW34U7LXdm3YJ7TyiHOqGNiMFaVxNSSXDLIbhbS9hRUZKUbtNW4ANEdejfMGChtUeJMU3qDCm17hGXm7eeSiR_O4bvEUTWKzEIG404VucdYM-7phwXstHGOuUiJIZZ2MkMTpaKUV8BUycjAaRTN4h2VzZREZeb25DfsamzWmDd0a14AQmF7Cmme9_W0k4bxElmiZkWrHMndE3b3Tzn8m7HAoD8tay-fXi_WC3MEPkYYW9QHZWy3W4SW57X6twJpepU32B2VlNZo
  priority: 102
  providerName: ProQuest
Title Classifying Intracortical Brain-Machine Interface Signal Disruptions Based on System Performance and Applicable Compensatory Strategies: A Review
URI https://www.ncbi.nlm.nih.gov/pubmed/33162885
https://www.proquest.com/docview/2449555342
https://www.proquest.com/docview/2458961722
https://pubmed.ncbi.nlm.nih.gov/PMC7581895
https://doaj.org/article/2edd94c22c764e56bc5f6639fb5b4d04
Volume 14
WOSCitedRecordID wos000581112100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5218
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062658
  issn: 1662-5218
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5218
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062658
  issn: 1662-5218
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-5218
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062658
  issn: 1662-5218
  databaseCode: M7P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-5218
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062658
  issn: 1662-5218
  databaseCode: BENPR
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1662-5218
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062658
  issn: 1662-5218
  databaseCode: PIMPY
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-5218
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062658
  issn: 1662-5218
  databaseCode: M2P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4QAHxJvCUhmJE1LYxK_E3Froij20inhI5RT5Fai0StG23eP-B_4xM3ZaWoTgwsWHeBI5nrFnxjP-hpCX3ATFrApZWymdCZa7zFjOMmWNMU47rkwbi02Us1k1n-t6r9QX5oQleOA0cScseK-FY8yVSgSprJMtaEndWmmFT0igeam3zlTag8FKl1WKYYILpk_azi4xcZLlr6WsNObP7WmhCNb_Jwvz90TJPc1zepfc6U1GOkpDvUeuhe4-ub0HJPiA_Ii1LRfxzhI9w6-AUxlPqekYa0Bk05gzGWg8AGyNC_Tj4it-9d1idbFJiS10DBrN02VHE4w5rX9dKqCm83SUgt32PFDcRsABjiF6ukW4Das3dERTtOEh-Xw6-fT2fdYXW8ic0HydtYx7L3KYUdNKWPXcuMIH4a0PbQtmI1dVieh1FtRZHhC6K0hbCM-Nd2VZGf6IHHXLLjwhtPQIUKoYMNuKwrgKrEIGZonCeru5FQOSbye_cT0SORbEOG_AI0F-NZFfDfKrSfwakFe7V74nGI6_EY-RoztCRNCOD0Cuml6umn_J1YAcb-Wh6Zf1qgFbSEspuWAD8mLXDQsSoyymC8sN0sAg0C4EmsdJfHYj4bzA8s5yQMoDwToY6mFPt_gWQb_BrysqLZ_-j397Rm7hdMWcRH1MjtYXm_Cc3HSXa5C5IblezqshuTGezOoPw7iuoJ2yGtsytlcT6K_PpvWXn_cbL14
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQAIeuDMKA4wEL0hhiS9JjIRQy5hWbasqMaS9Zb5lqzQloxcQP4M_wm_kHKfpWoT2tgdeGzdy3c_H59ifv4-Q11z7lJnUR2Weqkiw2EbacBalRmttleWpLoPZRDYY5EdHarhGfrd3YZBW2cbEEKhdbXGPfAuWISWl5IJ9PP8WoWsUnq62FhoNLPb8zx9Qsk0-9Lfh_33D2M7nw0-70dxVILJC8WlUMu6ciF0sdCkB3lzbxHnhjPNlCfkRT_MMZdoMxO3Yo0aVlyYRjmtnsyzXHN57jVwXqCyGVEE2bCM_1AYyb05OofBTW2VlaqRrsvidlLlC1t7S2hcsAv6V1_5Nz1xa73bu_m8jdY_cmWfWtNtMhftkzVcPyO0lvcWH5FewAB2Fq120jz8bau-wmU97aJURHQRqqadhn7TU1tMvoxN86_ZoMp41_B_ag4Xf0bqijdo7HV7cvaC6crTbcALMmacYbX01CUwG2goB-8l72qXNocwj8vVKxuQxWa_qyj8hNHOo45oymBNGJNrmkDwzyN5StCWOjeiQuEVLYeeC7egbclZA4YYAKwLACgRY0QCsQ94uvnLeqJVc1riHEFw0RKHx8EE9Pinmcatg3jklLGM2S4WXqbGyhCRVlUYaAaPQIZstCIt59JsUFwjskFeLxxC38DBKV76eYRvoBKbP0GajwfuiJ5wn6IItOyRbmQkrXV19Uo1OgzY6lL9JruTTy7v1ktzcPTzYL_b7g71n5BYOSiBoqk2yPh3P_HNyw36fArJehAlOyfFVz5M_gmCSlA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JjtNAEG0NGYTgwL4EBmgkuCCZOL14QUIoIUREw0SWAGk4md48RBrZQxYQn8Hv8HVUte1MgtDc5sA17lit8qvqqu7Xrwh5ypWLmI5cUCRRGggWmkBpzoJIK6VManikCt9sIp5Ok8PDNNshv9u7MEirbGOiD9S2MrhH3oNlKJVScsF6RUOLyEbj1yffAuwghSetbTuNGiL77ucPKN8WryYj-NbPGBu__fjmXdB0GAiMSPkyKBi3VoQ2FKqQAHWuTN86YbV1RQG5Eo-SGCXbNMTw0KFelZO6LyxX1sRxoji89wLZhZRcsA7ZzSYH2ed2HYBKQSb1OSqUgWmvKHWF5E0WvpAySZHDt7ES-oYB_8py_yZrbqx-42v_s92uk6tNzk0HtZPcIDuuvEmubCgx3iK_fHPQmb_0RSdoAqjK_TY_HWITjeDAk04d9TuohTKOfpgd4VtHs8V8VTOD6BBSAkurktY68DQ7vZVBVWnpoGYL6GNHMQ67cuE5DrSVCHaLl3RA6-Oa2-TTudjkDumUVenuERpbVHiNGHiLFn1lEkirGeR1ETYsDrXokrBFTm4aKXfsKHKcQ0mHYMs92HIEW16DrUuer_9yUuuYnDV4iHBcD0QJcv9DNT_Km4iWM2dtKgxjJo6Ek5E2soD0NS201AKs0CV7LSDzJi4u8lM0dsmT9WOIaHhMpUpXrXAMTAITaxhzt8b-eiac97E_tuySeMsrtqa6_aScffWq6VAY95NU3j97Wo_JJXCP_P1kuv-AXEabeOZmukc6y_nKPSQXzfclAOtR4-2UfDlvR_kD3Kec3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classifying+Intracortical+Brain-Machine+Interface+Signal+Disruptions+Based+on+System+Performance+and+Applicable+Compensatory+Strategies%3A+A+Review&rft.jtitle=Frontiers+in+neurorobotics&rft.au=Collin+F.+Dunlap&rft.au=Collin+F.+Dunlap&rft.au=Samuel+C.+Colachis&rft.au=Eric+C.+Meyers&rft.date=2020-10-09&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5218&rft.volume=14&rft_id=info:doi/10.3389%2Ffnbot.2020.558987&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2edd94c22c764e56bc5f6639fb5b4d04
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5218&client=summon