Fast curvature matrix-vector products for second-order gradient descent

We propose a generic method for iteratively approximating various second-order gradient steps - Newton, Gauss-Newton, Levenberg-Marquardt, and natural gradient - in linear time per iteration, using special curvature matrix-vector products that can be computed in O(n). Two recent acceleration techniq...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computation Ročník 14; číslo 7; s. 1723
Hlavní autor: Schraudolph, Nicol N
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.07.2002
Témata:
ISSN:0899-7667
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose a generic method for iteratively approximating various second-order gradient steps - Newton, Gauss-Newton, Levenberg-Marquardt, and natural gradient - in linear time per iteration, using special curvature matrix-vector products that can be computed in O(n). Two recent acceleration techniques for on-line learning, matrix momentum and stochastic meta-descent (SMD), implement this approach. Since both were originally derived by very different routes, this offers fresh insight into their operation, resulting in further improvements to SMD.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0899-7667
DOI:10.1162/08997660260028683