Fast curvature matrix-vector products for second-order gradient descent
We propose a generic method for iteratively approximating various second-order gradient steps - Newton, Gauss-Newton, Levenberg-Marquardt, and natural gradient - in linear time per iteration, using special curvature matrix-vector products that can be computed in O(n). Two recent acceleration techniq...
Gespeichert in:
| Veröffentlicht in: | Neural computation Jg. 14; H. 7; S. 1723 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
01.07.2002
|
| Schlagworte: | |
| ISSN: | 0899-7667 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We propose a generic method for iteratively approximating various second-order gradient steps - Newton, Gauss-Newton, Levenberg-Marquardt, and natural gradient - in linear time per iteration, using special curvature matrix-vector products that can be computed in O(n). Two recent acceleration techniques for on-line learning, matrix momentum and stochastic meta-descent (SMD), implement this approach. Since both were originally derived by very different routes, this offers fresh insight into their operation, resulting in further improvements to SMD. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0899-7667 |
| DOI: | 10.1162/08997660260028683 |