Boundary-Preserved Deep Denoising of Stochastic Resonance Enhanced Multiphoton Images

Objective: With the rapid growth of high-speed deep-tissue imaging in biomedical research, there is an urgent need to develop a robust and effective denoising method to retain morphological features for further texture analysis and segmentation. Conventional denoising filters and models can easily s...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of translational engineering in health and medicine Vol. 10; p. 1
Main Authors: Niu, Sheng-Yong, Guo, Lun-Zhang, Li, Yue, Zhang, Zhiming, Wang, Tzung-Dau, Liu, Kai-Chun, Li, You-Jin, Tsao, Yu, Liu, Tzu-Ming
Format: Journal Article
Language:English
Published: New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2168-2372, 2168-2372
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Objective: With the rapid growth of high-speed deep-tissue imaging in biomedical research, there is an urgent need to develop a robust and effective denoising method to retain morphological features for further texture analysis and segmentation. Conventional denoising filters and models can easily suppress the perturbative noise in high-contrast images; however, for low photon budget multiphoton images, a high detector gain will not only boost the signals but also bring significant background noise. In such a stochastic resonance imaging regime, subthreshold signals may be detectable with the help of noise, meaning that a denoising filter capable of removing noise without sacrificing important cellular features, such as cell boundaries, is desirable. Method: We propose a convolutional neural network-based denoising autoencoder method - a fully convolutional deep denoising autoencoder (DDAE) - to improve the quality of three-photon fluorescence (3PF) and third-harmonic generation (THG) microscopy images. Results: The average of 200 acquired images of a given location served as the low-noise answer for the DDAE training. Compared with other conventional denoising methods, our DDAE model shows a better signal-to-noise ratio (28.86 and 21.66 for 3PF and THG, respectively), structural similarity (0.89 and 0.70 for 3PF and THG, respectively), and preservation of the nuclear or cellular boundaries (F1-score of 0.662 and 0.736 for 3PF and THG, respectively). It shows that DDAE is a better trade-off approach between structural similarity and preserving signal regions. Conclusions: The results of this study validate the effectiveness of the DDAE system in boundary-preserved image denoising. Clinical Impact: The proposed deep denoising system can enhance the quality of microscopic images and effectively support clinical evaluation and assessment.
AbstractList Objective: With the rapid growth of high-speed deep-tissue imaging in biomedical research, there is an urgent need to develop a robust and effective denoising method to retain morphological features for further texture analysis and segmentation. Conventional denoising filters and models can easily suppress the perturbative noise in high-contrast images; however, for low photon budget multiphoton images, a high detector gain will not only boost the signals but also bring significant background noise. In such a stochastic resonance imaging regime, subthreshold signals may be detectable with the help of noise, meaning that a denoising filter capable of removing noise without sacrificing important cellular features, such as cell boundaries, is desirable. Method: We propose a convolutional neural network-based denoising autoencoder method - a fully convolutional deep denoising autoencoder (DDAE) - to improve the quality of three-photon fluorescence (3PF) and third-harmonic generation (THG) microscopy images. Results: The average of 200 acquired images of a given location served as the low-noise answer for the DDAE training. Compared with other conventional denoising methods, our DDAE model shows a better signal-to-noise ratio (28.86 and 21.66 for 3PF and THG, respectively), structural similarity (0.89 and 0.70 for 3PF and THG, respectively), and preservation of the nuclear or cellular boundaries (F1-score of 0.662 and 0.736 for 3PF and THG, respectively). It shows that DDAE is a better trade-off approach between structural similarity and preserving signal regions. Conclusions: The results of this study validate the effectiveness of the DDAE system in boundary-preserved image denoising. Clinical Impact: The proposed deep denoising system can enhance the quality of microscopic images and effectively support clinical evaluation and assessment.
With the rapid growth of high-speed deep-tissue imaging in biomedical research, there is an urgent need to develop a robust and effective denoising method to retain morphological features for further texture analysis and segmentation. Conventional denoising filters and models can easily suppress the perturbative noise in high-contrast images; however, for low photon budget multiphoton images, a high detector gain will not only boost the signals but also bring significant background noise. In such a stochastic resonance imaging regime, subthreshold signals may be detectable with the help of noise, meaning that a denoising filter capable of removing noise without sacrificing important cellular features, such as cell boundaries, is desirable.OBJECTIVEWith the rapid growth of high-speed deep-tissue imaging in biomedical research, there is an urgent need to develop a robust and effective denoising method to retain morphological features for further texture analysis and segmentation. Conventional denoising filters and models can easily suppress the perturbative noise in high-contrast images; however, for low photon budget multiphoton images, a high detector gain will not only boost the signals but also bring significant background noise. In such a stochastic resonance imaging regime, subthreshold signals may be detectable with the help of noise, meaning that a denoising filter capable of removing noise without sacrificing important cellular features, such as cell boundaries, is desirable.We propose a convolutional neural network-based denoising autoencoder method - a fully convolutional deep denoising autoencoder (DDAE) - to improve the quality of three-photon fluorescence (3PF) and third-harmonic generation (THG) microscopy images.METHODWe propose a convolutional neural network-based denoising autoencoder method - a fully convolutional deep denoising autoencoder (DDAE) - to improve the quality of three-photon fluorescence (3PF) and third-harmonic generation (THG) microscopy images.The average of 200 acquired images of a given location served as the low-noise answer for the DDAE training. Compared with other conventional denoising methods, our DDAE model shows a better signal-to-noise ratio (28.86 and 21.66 for 3PF and THG, respectively), structural similarity (0.89 and 0.70 for 3PF and THG, respectively), and preservation of the nuclear or cellular boundaries (F1-score of 0.662 and 0.736 for 3PF and THG, respectively). It shows that DDAE is a better trade-off approach between structural similarity and preserving signal regions.RESULTSThe average of 200 acquired images of a given location served as the low-noise answer for the DDAE training. Compared with other conventional denoising methods, our DDAE model shows a better signal-to-noise ratio (28.86 and 21.66 for 3PF and THG, respectively), structural similarity (0.89 and 0.70 for 3PF and THG, respectively), and preservation of the nuclear or cellular boundaries (F1-score of 0.662 and 0.736 for 3PF and THG, respectively). It shows that DDAE is a better trade-off approach between structural similarity and preserving signal regions.The results of this study validate the effectiveness of the DDAE system in boundary-preserved image denoising.CONCLUSIONSThe results of this study validate the effectiveness of the DDAE system in boundary-preserved image denoising.The proposed deep denoising system can enhance the quality of microscopic images and effectively support clinical evaluation and assessment.CLINICAL IMPACTThe proposed deep denoising system can enhance the quality of microscopic images and effectively support clinical evaluation and assessment.
Author Guo, Lun-Zhang
Zhang, Zhiming
Liu, Kai-Chun
Li, You-Jin
Liu, Tzu-Ming
Niu, Sheng-Yong
Li, Yue
Tsao, Yu
Wang, Tzung-Dau
AuthorAffiliation Department of Electrical Engineering Chung Yuan Christian University 34900 Taoyuan 32023 Taiwan
Institute of Translational Medicine, Faculty of Health Sciences & Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa 59193 Macau China
Research Center for Information Technology Innovation (CITI) Academia Sinica 38017 Taipei 11529 Taiwan
Cardiovascular Center and Division of Cardiology Department of Internal Medicine College of Medicine, National Taiwan University Hospital 38006 Taipei 10002 Taiwan
Department of Computer Science and Engineering University of California San Diego 8784 San Diego CA 92093 USA
Department of Biomedical Engineering National Taiwan University 33561 Taipei 10617 Taiwan
AuthorAffiliation_xml – name: Department of Biomedical Engineering National Taiwan University 33561 Taipei 10617 Taiwan
– name: Department of Electrical Engineering Chung Yuan Christian University 34900 Taoyuan 32023 Taiwan
– name: Cardiovascular Center and Division of Cardiology Department of Internal Medicine College of Medicine, National Taiwan University Hospital 38006 Taipei 10002 Taiwan
– name: Department of Computer Science and Engineering University of California San Diego 8784 San Diego CA 92093 USA
– name: Institute of Translational Medicine, Faculty of Health Sciences & Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa 59193 Macau China
– name: Research Center for Information Technology Innovation (CITI) Academia Sinica 38017 Taipei 11529 Taiwan
Author_xml – sequence: 1
  givenname: Sheng-Yong
  surname: Niu
  fullname: Niu, Sheng-Yong
  organization: Research Center for Information Technology Innovation (CITI), Academia Sinica, Taipei, Taiwan
– sequence: 2
  givenname: Lun-Zhang
  surname: Guo
  fullname: Guo, Lun-Zhang
  organization: Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 3
  givenname: Yue
  surname: Li
  fullname: Li, Yue
  organization: Faculty of Health Sciences & Ministry of Education Frontiers Science Center for Precision Oncology, Institute of Translational Medicine, University of Macau, Macao SAR, China
– sequence: 4
  givenname: Zhiming
  surname: Zhang
  fullname: Zhang, Zhiming
  organization: Faculty of Health Sciences & Ministry of Education Frontiers Science Center for Precision Oncology, Institute of Translational Medicine, University of Macau, Macao SAR, China
– sequence: 5
  givenname: Tzung-Dau
  orcidid: 0000-0002-7180-3607
  surname: Wang
  fullname: Wang, Tzung-Dau
  organization: Department of Internal Medicine, Cardiovascular Center and Division of Cardiology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
– sequence: 6
  givenname: Kai-Chun
  orcidid: 0000-0001-7867-4716
  surname: Liu
  fullname: Liu, Kai-Chun
  organization: Research Center for Information Technology Innovation (CITI), Academia Sinica, Taipei, Taiwan
– sequence: 7
  givenname: You-Jin
  surname: Li
  fullname: Li, You-Jin
  organization: Research Center for Information Technology Innovation (CITI), Academia Sinica, Taipei, Taiwan
– sequence: 8
  givenname: Yu
  orcidid: 0000-0001-6956-0418
  surname: Tsao
  fullname: Tsao, Yu
  organization: Research Center for Information Technology Innovation (CITI), Academia Sinica, Taipei, Taiwan
– sequence: 9
  givenname: Tzu-Ming
  surname: Liu
  fullname: Liu, Tzu-Ming
  organization: Faculty of Health Sciences & Ministry of Education Frontiers Science Center for Precision Oncology, Institute of Translational Medicine, University of Macau, Macao SAR, China
BookMark eNp9UU1vEzEUtFCRKKF_AC4rceGS4K_98AUJStoGtQJBe7be2s-Jo40d7N1K_Ht2m4BoD_jgZz3PjN94XpKTEAMS8prRBWNUvf9yu7y6WXDK-UJwWsmmeUZOOauaORc1P_nn_IKc5byl42pYpbg6JXef4hAspF_zbwkzpnu0xWfE_biF6LMP6yK64kcfzQZy703xHXMMEAwWy7CZqi1uhq73-03sYyhWO1hjfkWeO-gynh3rjNxdLG_Pr-bXXy9X5x-v50Yq0c-No4rauq0sb01TybJi0DrBleQWRGWFEQiydMKqEoC1wjVGMGcrpzjImosZWR10bYSt3ie_G53oCF4_NGJaa0jj1B1qWwNthRKyda1UyFpHpSxBudoYIYwdtT4ctPZDu0NrMPQJukeij2-C3-h1vNeqVJyOfmbk3VEgxZ8D5l7vfDbYdRAwDlnzWlDBWM0n6Nsn0G0cUhi_akRxXkqlqsldc0CZFHNO6LTxPfQ-Tu_7TjOqp_z1Q_56yl8f8x-p_An1j4__kt4cSB4R_xJU06iaMvEb40O_Rg
CODEN IJTEBN
CitedBy_id crossref_primary_10_1088_1361_6420_ad3c67
Cites_doi 10.1038/srep37210
10.1038/s41467-020-14929-2
10.1109/TIP.2003.819861
10.1038/sj.cgt.7700244
10.1364/OE.11.003093
10.1364/OL.26.001909
10.1016/j.optcom.2017.09.041
10.1117/12.643267
10.1109/TIP.2010.2056693
10.1038/s41592-018-0216-7
10.1364/BOE.3.001455
10.1242/jcs.152272
10.1111/jmi.12270
10.1242/jcs.033837
10.1073/pnas.1018743108
10.1117/3.353798
10.1109/ACCESS.2019.2912036
10.1364/BOE.7.002671
10.1038/nature06293
10.1038/s41467-017-02481-5
10.1109/CLEOE-IQEC.2013.6801501
10.1109/ICASSP.2014.6854807
10.1109/TIP.2017.2662206
10.1186/1471-2105-11-558
10.1016/j.cell.2018.08.028
10.1109/CVPR.2019.01198
10.1109/TASLP.2018.2821903
10.1158/2159-8290.CD-15-0012
10.1007/978-3-319-24574-4_28
10.1109/TIP.2010.2073477
10.1002/sca.4950100403
10.1103/PhysRevLett.78.1186
10.5120/8295-1830
10.1038/nature12354
10.1016/b978-0-12-668330-1.50007-7
10.1126/science.2321027
10.1364/BOE.3.002860
10.1016/j.bpj.2009.10.035
10.1038/nprot.2010.168
10.1038/s41598-019-51093-0
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
2022 Author
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
– notice: 2022 Author
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
8FD
F28
FR3
K9.
7X8
5PM
DOA
DOI 10.1109/JTEHM.2022.3206488
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals (WRLC)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2372
EndPage 1
ExternalDocumentID oai_doaj_org_article_d7a0b3934bfb49e1bf0445a9f7cc33cd
PMC9592049
10_1109_JTEHM_2022_3206488
9889701
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology
  grantid: MOST 107-2314-B-002-262-MY2
  funderid: 10.13039/100007225
– fundername: Academia Sinica
  grantid: AS-GC-111-M01
  funderid: 10.13039/501100001869
– fundername: The Science and Technology Development Fund, Macau SAR
  grantid: 122/2016/A3, 018/2017/A1, 0011/2019/AKP, 0120/2020
– fundername: ;
– fundername: ;
  grantid: MOST 107-2314-B-002-262-MY2
– fundername: ;
  grantid: 122/2016/A3; 018/2017/A1; 0011/2019/AKP; 0120/2020/A3; 0026/2021/A
– fundername: ;
  grantid: AS-GC-111-M01
GroupedDBID 0R~
53G
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
ADRAZ
AGSQL
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DIK
EBS
EJD
ESBDL
GROUPED_DOAJ
HYE
IPLJI
JAVBF
KQ8
M43
M48
M~E
O9-
OCL
OK1
PGMZT
RIA
RIE
RPM
AAYXX
CITATION
8FD
ABAZT
F28
FR3
K9.
7X8
5PM
ID FETCH-LOGICAL-c493t-cf090d7b6d2bc864561abf32942da36d3c3ea45f3d95aa1b3f8c31fd6f92a4723
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000865085100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2372
IngestDate Fri Oct 03 12:39:09 EDT 2025
Thu Aug 21 18:38:59 EDT 2025
Sun Nov 09 09:22:10 EST 2025
Tue Oct 07 06:58:31 EDT 2025
Tue Nov 18 22:41:19 EST 2025
Sat Nov 29 03:57:10 EST 2025
Tue Nov 25 14:44:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-cf090d7b6d2bc864561abf32942da36d3c3ea45f3d95aa1b3f8c31fd6f92a4723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7180-3607
0000-0001-6956-0418
0000-0001-7867-4716
OpenAccessLink https://ieeexplore.ieee.org/document/9889701
PQID 2722549962
PQPubID 4437232
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_JTEHM_2022_3206488
proquest_miscellaneous_2730311729
crossref_primary_10_1109_JTEHM_2022_3206488
proquest_journals_2722549962
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9592049
doaj_primary_oai_doaj_org_article_d7a0b3934bfb49e1bf0445a9f7cc33cd
ieee_primary_9889701
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of translational engineering in health and medicine
PublicationTitleAbbrev JTEHM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Tsai (ref22)
ref24
ref23
Lehtinen (ref44) 2018
ref26
ref25
ref20
ref42
ref41
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Krizhevsky (ref30); 25
References_xml – ident: ref12
  doi: 10.1038/srep37210
– ident: ref14
  doi: 10.1038/s41467-020-14929-2
– ident: ref38
  doi: 10.1109/TIP.2003.819861
– ident: ref4
  doi: 10.1038/sj.cgt.7700244
– ident: ref20
  doi: 10.1364/OE.11.003093
– ident: ref17
  doi: 10.1364/OL.26.001909
– ident: ref9
  doi: 10.1016/j.optcom.2017.09.041
– ident: ref26
  doi: 10.1117/12.643267
– ident: ref25
  doi: 10.1109/TIP.2010.2056693
– ident: ref33
  doi: 10.1038/s41592-018-0216-7
– ident: ref13
  doi: 10.1364/BOE.3.001455
– ident: ref23
  doi: 10.1242/jcs.152272
– ident: ref29
  doi: 10.1111/jmi.12270
– ident: ref2
  doi: 10.1242/jcs.033837
– ident: ref21
  doi: 10.1073/pnas.1018743108
– ident: ref37
  doi: 10.1117/3.353798
– ident: ref36
  doi: 10.1109/ACCESS.2019.2912036
– ident: ref40
  doi: 10.1364/BOE.7.002671
– ident: ref7
  doi: 10.1038/nature06293
– ident: ref5
  doi: 10.1038/s41467-017-02481-5
– ident: ref18
  doi: 10.1109/CLEOE-IQEC.2013.6801501
– ident: ref34
  doi: 10.1109/ICASSP.2014.6854807
– start-page: 2317
  volume-title: Proc. OSA
  ident: ref22
  article-title: In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy
– ident: ref32
  doi: 10.1109/TIP.2017.2662206
– ident: ref43
  doi: 10.1186/1471-2105-11-558
– ident: ref10
  doi: 10.1016/j.cell.2018.08.028
– ident: ref39
  doi: 10.1109/CVPR.2019.01198
– ident: ref35
  doi: 10.1109/TASLP.2018.2821903
– ident: ref19
  doi: 10.1038/srep37210
– year: 2018
  ident: ref44
  article-title: Noise2Noise: Learning image restoration without clean data
  publication-title: arXiv:1803.04189
– ident: ref6
  doi: 10.1158/2159-8290.CD-15-0012
– ident: ref31
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref41
  doi: 10.1109/TIP.2010.2073477
– ident: ref15
  doi: 10.1002/sca.4950100403
– ident: ref24
  doi: 10.1103/PhysRevLett.78.1186
– ident: ref27
  doi: 10.5120/8295-1830
– ident: ref8
  doi: 10.1038/nature12354
– volume: 25
  start-page: 1097
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS)
  ident: ref30
  article-title: ImageNet classification with deep convolutional neural networks
– ident: ref42
  doi: 10.1016/b978-0-12-668330-1.50007-7
– ident: ref1
  doi: 10.1126/science.2321027
– ident: ref11
  doi: 10.1364/BOE.3.002860
– ident: ref16
  doi: 10.1016/j.bpj.2009.10.035
– ident: ref3
  doi: 10.1038/nprot.2010.168
– ident: ref28
  doi: 10.1038/s41598-019-51093-0
SSID ssj0000816929
Score 2.2139802
Snippet Objective: With the rapid growth of high-speed deep-tissue imaging in biomedical research, there is an urgent need to develop a robust and effective denoising...
With the rapid growth of high-speed deep-tissue imaging in biomedical research, there is an urgent need to develop a robust and effective denoising method to...
SourceID doaj
pubmedcentral
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Background noise
Boundaries
Deep Denoising Autoencoder
Fluorescence
Harmonic generations
Image acquisition
Image contrast
Image enhancement
Image quality
Image segmentation
Imaging
Microprocessors
Microscopy
Noise reduction
Optical filters
Photonics
Photons
Signal to noise ratio
Similarity
Stochastic resonance
Third harmonic generation
Three-photon fluorescence
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOCCiIQEFG4oZCHT9iz5HCVgVBhUSLerP81K4EyWp3i9R_X9vJLpsLXLjkEDuRMx57Hhl_H0JvQDkrhPN1FNHVHAyprQBXk5C8A9NSEgpp348v8vxcXV3Btz2qr1wTNsADD4I79tIQy4BxGy2H0NhIOBcGonSOMefz7ksk7AVTZQ9WTZsM__aUDIHjzxezs68pHqT0HaPJDheqlT-WqAD2jwwrE2dzWiq5Z3tOH6IHo9OI3w-DfYTuhO4xur8HJXiILk8KP9Lqps5FFbmM0eOPISzTpesXOSGA-4i_b3o3NxmaGee8fQbbCHjWzUsZAC6HcZfzPrmD-NOvtNGsn6DL09nFh7N6pEyoHQe2qV0kQLy0rafWqTZ7R8ZGRoFTb1jrmWPBcBGZB2FMY1lUjjXRtxGo4ZKyp-ig67vwDGGIURgmXYqXFG9CipQpDa0PqjGQcb0q1GzFp92IJ55pLX7qElcQ0EXkOotcjyKv0NvdM8sBTeOvvU_yrOx6ZiTsciPphx71Q_9LPyp0mOd09xJQCiRpKnS0nWM9rtq1ppKWeLmlFXq9a07rLf9EMV3or3OfZPSb5PYlAciJbkzGOW3pFvOC3A0CaArJnv-PD3uB7mVhDemgI3SwWV2Hl-iu-71ZrFevynK4BXAqD_8
  priority: 102
  providerName: Directory of Open Access Journals
Title Boundary-Preserved Deep Denoising of Stochastic Resonance Enhanced Multiphoton Images
URI https://ieeexplore.ieee.org/document/9889701
https://www.proquest.com/docview/2722549962
https://www.proquest.com/docview/2730311729
https://pubmed.ncbi.nlm.nih.gov/PMC9592049
https://doaj.org/article/d7a0b3934bfb49e1bf0445a9f7cc33cd
Volume 10
WOSCitedRecordID wos000865085100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2168-2372
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816929
  issn: 2168-2372
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2168-2372
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816929
  issn: 2168-2372
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKxQEO5VEQKWUVJG6QNrGdOHNsYauCaIVEi_Zm-aldiSarfVTiwm-vx5sNjYSQuFhR7ESOx5N5eOYbQt5BbXRZGpv50puMg8ozXYLJche0A1XR3MWifT--isvLejKBbzvkQ58L45yLwWfuCC_jWb5tzRpdZcdQ1yAwWeuBENUmV6v3p2ABiSDqt3kxORx_uRqfXwQLkNIjRoPkjcVV_sieCNHf1VQZqJfD4Mh70ubsyf_N8ynZ67TK9GSzDZ6RHdc8J4_vYQ3uk-vTWEBp8SvDqAuMc7TpJ-fmoWnaGXoM0tan31etmSrEbk7RsY9oHC4dN9MYJ5DGbN35tA36Yvr5JvyJli_I9dn46uN51tVUyAwHtsqMzyG3QleWalNXqD4p7RkFTq1ilWWGOcVLzyyUShWa-dqwwtvKA1VcUPaS7DZt416RFLwvFRMmGFQ1L1wwpSl1lXV1oQCBvxJSbFdbmg5wHOte_JTR8MhBRgpJpJDsKJSQ9_0z8w3cxj9HnyIR-5EIlR1vBGrIjvOkFSrXDBjXXnNwhfY556UCL4xhzNiE7CMF-5d0xEvI4XZLyI6tl5IKGg3qiibkbd8dGBJPWVTj2jWOCVpBEfTCsABisJUG8xz2NLNphPaGEmiw2Q7-PqfX5BF-_sYDdEh2V4u1e0MemtvVbLkYBa6Y1KPoVAjtxe_xKHLIHR4cDxE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ra9RAEF9KFbQffNVitGoEv2nazT6SzEerV656PQSv0m9hn9yBTY57CP737uzlYg9E8EsI2U0YdnYyj535DSFvoTJaSmMzL73JBCiaaQkmoy5YB6pg1MWmfd9H5XhcXV_D1z3yvq-Fcc7F5DN3grfxLN-2Zo2hslOoKiixWOuOFILRTbVWH1HBFhJB2W8rYyicfp4MhpfBB2TshLOge2N7lT_aJ4L0d11VdgzM3fTIW_rm_OH_UfqIPOjsyvTDZiM8JnuueUIObqENHpKrs9hCafErw7wLzHS06Sfn5uHStDOMGaStT7-tWjNViN6cYmgf8ThcOmimMVMgjfW682kbLMb04ib8i5ZPydX5YPJxmHVdFTIjgK8y4ylQW-rCMm2qAg0opT1nIJhVvLDccKeE9NyCVCrX3FeG594WHpgSJeNHZL9pG_eMpOC9VLw0waWqRO6CM82YK6yrcgUI_ZWQfLvatekgx7HzxY86uh4U6sihGjlUdxxKyLv-nfkGcOOfs8-Qif1MBMuODwI36k72alsqqjlwob0W4HLtqRBSgS-N4dzYhBwiB_uPdMxLyPF2S9SdYC9rVrLoUhcsIW_64SCSeM6iGteucU6wC_JgGYYFKHe20g6duyPNbBrBvUECC17b87_T9JrcG04uR_XoYvzlBbmPS7GJBx2T_dVi7V6Su-bnarZcvIqy8Rs1Uw9K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boundary-Preserved+Deep+Denoising+of+Stochastic+Resonance+Enhanced+Multiphoton+Images&rft.jtitle=IEEE+journal+of+translational+engineering+in+health+and+medicine&rft.date=2022-01-01&rft.pub=IEEE&rft.eissn=2168-2372&rft.volume=10&rft_id=info:doi/10.1109%2FJTEHM.2022.3206488&rft.externalDocID=PMC9592049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2372&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2372&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2372&client=summon