A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks
In Content-Centric Networks (CCNs) as a possible future Internet, new kinds of attacks and security challenges – from Denial of Service (DoS) to privacy attacks – will arise. An efficient and effective security mechanism is required to secure content and defense against unknown and new forms of atta...
Saved in:
| Published in: | Neurocomputing (Amsterdam) Vol. 149; pp. 1253 - 1269 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article Publication |
| Language: | English |
| Published: |
Elsevier B.V
03.02.2015
|
| Subjects: | |
| ISSN: | 0925-2312, 1872-8286 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In Content-Centric Networks (CCNs) as a possible future Internet, new kinds of attacks and security challenges – from Denial of Service (DoS) to privacy attacks – will arise. An efficient and effective security mechanism is required to secure content and defense against unknown and new forms of attacks and anomalies. Usually, clustering algorithms would fit the requirements for building a good anomaly detection system. K-means is a popular anomaly detection method to classify data into different categories. However, it suffers from the local convergence and sensitivity to selection of the cluster centroids. In this paper, we present a novel fuzzy anomaly detection system that works in two phases. In the first phase – the training phase – we propose an hybridization of Particle Swarm Optimization (PSO) and K-means algorithm with two simultaneous cost functions as well-separated clusters and local optimization to determine the optimal number of clusters. When the optimal placement of clusters centroids and objects are defined, it starts the second phase. In this phase – the detection phase – we employ a fuzzy approach by the combination of two distance-based methods as classification and outlier to detect anomalies in new monitoring data. Experimental results demonstrate that the proposed algorithm can achieve to the optimal number of clusters, well-separated clusters, as well as increase the high detection rate and decrease the false positive rate at the same time when compared to some other well-known clustering algorithms. |
|---|---|
| AbstractList | In Content-Centric Networks (CCNs) as a possible future Internet, new kinds of attacks and security challenges – from Denial of Service (DoS) to privacy attacks – will arise. An efficient and effective security mechanism is required to secure content and defense against unknown and new forms of attacks and anomalies. Usually, clustering algorithms would fit the requirements for building a good anomaly detection system. K-means is a popular anomaly detection method to classify data into different categories. However, it suffers from the local convergence and sensitivity to selection of the cluster centroids. In this paper, we present a novel fuzzy anomaly detection system that works in two phases. In the first phase – the training phase – we propose an hybridization of Particle Swarm Optimization (PSO) and K-means algorithm with two simultaneous cost functions as well-separated clusters and local optimization to determine the optimal number of clusters. When the optimal placement of clusters centroids and objects are defined, it starts the second phase. In this phase – the detection phase – we employ a fuzzy approach by the combination of two distance-based methods as classification and outlier to detect anomalies in new monitoring data. Experimental results demonstrate that the proposed algorithm can achieve to the optimal number of clusters, well-separated clusters, as well as increase the high detection rate and decrease the false positive rate at the same time when compared to some other well-known clustering algorithms.
Peer Reviewed In Content-Centric Networks (CCNs) as a possible future Internet, new kinds of attacks and security challenges - from Denial of Service (DoS) to privacy attacks - will arise. An efficient and effective security mechanism is required to secure content and defense against unknown and new forms of attacks and anomalies. Usually, clustering algorithms would fit the requirements for building a good anomaly detection system. K-means is a popular anomaly detection method to classify data into different categories. However, it suffers from the local convergence and sensitivity to selection of the cluster centroids. In this paper, we present a novel fuzzy anomaly detection system that works in two phases. In the first phase - the training phase - we propose an hybridization of Particle Swarm Optimization (PSO) and K-means algorithm with two simultaneous cost functions as well-separated clusters and local optimization to determine the optimal number of clusters. When the optimal placement of clusters centroids and objects are defined, it starts the second phase. In this phase - the detection phase - we employ a fuzzy approach by the combination of two distance-based methods as classification and outlier to detect anomalies in new monitoring data. Experimental results demonstrate that the proposed algorithm can achieve to the optimal number of clusters, well-separated clusters, as well as increase the high detection rate and decrease the false positive rate at the same time when compared to some other well-known clustering algorithms. |
| Author | Guerrero-Zapata, Manel Karami, Amin |
| Author_xml | – sequence: 1 givenname: Amin orcidid: 0000-0003-3635-513X surname: Karami fullname: Karami, Amin email: amin@ac.upc.edu organization: Computer Architecture Department (DAC), Universitat Politècnica de Catalunya (UPC), C6-E102 Campus Nord, C. Jordi Girona 1–3, 08034 Barcelona, Spain – sequence: 2 givenname: Manel surname: Guerrero-Zapata fullname: Guerrero-Zapata, Manel email: guerrero@ac.upc.edu organization: Computer Architecture Department (DAC), Universitat Politècnica de Catalunya (UPC), D6-212 Campus Nord, C. Jordi Girona 1–3, 08034 Barcelona, Spain |
| BookMark | eNqFkUuLFTEQhYOM4J3Rf-AiSzfdVh630-1CGAZfODCCug7ppNrJtTsZk7TS8-vN5Q4ILhQqFQ7kO0XqnJOzEAMS8pxBy4B1Lw9twNXGpeXAZAt9CwoekR3rFW963ndnZAcD3zdcMP6EnOd8AGCK8WFHzCWd1vv7jZoQFzNv1GFBW3wMNG-54EJHk9HRqm-3MXlHP32-aT4uaEKmZv4Wky-3C_WB2hgKhtLY2pK3NGD5FdP3_JQ8nsyc8dnDfUG-vn3z5ep9c33z7sPV5XVj5SAq1k3WTEb0Qhkn5ajGsVfCDaKD0QrRGTAoBtZ1KPko96NUtSxjnIGDSTlxQdjJ1-bV6oQWkzVFR-P_iOPhoLjmewa9rMyLE3OX4o8Vc9GLzxbn2QSMa9Z1HMAgOfD69NWDfYo5J5y09cUcF1WS8bNmoI9Z6IM-ZaGPWWjodc2iwvIv-C75xaTtf9jrE4Z1bz89Jp2tx2DR-fqlol30_zb4DbAKqNI |
| CitedBy_id | crossref_primary_10_3390_app121910135 crossref_primary_10_1007_s11277_024_11270_5 crossref_primary_10_1016_j_comnet_2015_01_020 crossref_primary_10_1016_j_neucom_2014_11_003 crossref_primary_10_1016_j_cose_2017_06_005 crossref_primary_10_1016_j_epsr_2016_09_025 crossref_primary_10_1109_ACCESS_2017_2787719 crossref_primary_10_1007_s00500_020_04958_w crossref_primary_10_1016_j_knosys_2017_03_012 crossref_primary_10_3390_fi10040033 crossref_primary_10_1371_journal_pone_0279989 crossref_primary_10_3390_s23198153 crossref_primary_10_1016_j_neucom_2016_06_021 crossref_primary_10_1016_j_jksuci_2019_08_003 crossref_primary_10_1007_s11042_022_13433_7 crossref_primary_10_1016_j_patrec_2016_11_018 crossref_primary_10_1007_s11831_023_10059_2 crossref_primary_10_1002_cpe_7548 crossref_primary_10_1016_j_neucom_2018_09_080 crossref_primary_10_1016_j_jclepro_2020_121017 crossref_primary_10_1016_j_asoc_2017_08_022 crossref_primary_10_1016_j_neucom_2018_05_027 crossref_primary_10_1007_s10586_017_1643_4 crossref_primary_10_1016_j_compbiomed_2019_103348 crossref_primary_10_1016_j_eswa_2021_115017 crossref_primary_10_1109_ACCESS_2020_3029826 crossref_primary_10_1155_2022_5985426 crossref_primary_10_3389_fenrg_2022_861571 crossref_primary_10_1016_j_apor_2021_102681 crossref_primary_10_1016_j_eswa_2021_115054 crossref_primary_10_1155_2016_4606384 crossref_primary_10_55195_jscai_1560068 crossref_primary_10_3390_s16101701 crossref_primary_10_1007_s11235_018_0475_8 crossref_primary_10_1016_j_compeleceng_2017_07_008 crossref_primary_10_1109_TFUZZ_2021_3117441 crossref_primary_10_1155_2018_1578314 crossref_primary_10_1038_s41598_025_90619_7 crossref_primary_10_1134_S2075108720010046 crossref_primary_10_1016_j_swevo_2019_100631 crossref_primary_10_3390_en11112891 crossref_primary_10_1007_s10044_015_0505_z crossref_primary_10_1007_s13369_020_05181_3 crossref_primary_10_1016_j_energy_2018_01_175 crossref_primary_10_1016_j_eswa_2018_04_038 crossref_primary_10_1038_s41598_024_83005_2 crossref_primary_10_1109_ACCESS_2021_3118573 crossref_primary_10_1007_s00500_023_08718_4 crossref_primary_10_1002_spy2_429 crossref_primary_10_1016_j_neucom_2018_06_087 crossref_primary_10_1007_s12652_019_01611_9 crossref_primary_10_1016_j_ifacol_2019_12_743 crossref_primary_10_1109_ACCESS_2018_2878576 crossref_primary_10_4018_IJAMC_2022010110 crossref_primary_10_1016_j_bspc_2022_104209 crossref_primary_10_3233_JIFS_189065 crossref_primary_10_1109_TASE_2016_2603420 crossref_primary_10_1145_3311888 crossref_primary_10_1007_s12046_021_01688_z crossref_primary_10_1007_s42979_025_04352_z crossref_primary_10_1080_02564602_2021_1957029 crossref_primary_10_1002_int_22729 crossref_primary_10_1111_coin_12312 crossref_primary_10_1002_dac_3248 crossref_primary_10_1016_j_asoc_2020_106301 crossref_primary_10_3390_s22134926 crossref_primary_10_1016_j_ins_2023_119439 crossref_primary_10_1186_s13638_025_02464_x crossref_primary_10_1016_j_jnca_2015_05_017 crossref_primary_10_1016_j_jnca_2015_12_006 crossref_primary_10_1007_s10462_020_09942_2 crossref_primary_10_1088_1755_1315_647_1_012075 crossref_primary_10_1007_s00607_025_01485_0 crossref_primary_10_1080_15325008_2022_2134512 crossref_primary_10_1007_s10700_020_09332_x crossref_primary_10_1007_s11227_023_05091_9 crossref_primary_10_3390_electronics11162567 crossref_primary_10_1109_ACCESS_2020_3033455 crossref_primary_10_1016_j_flowmeasinst_2025_102852 crossref_primary_10_1109_COMST_2017_2749508 |
| Cites_doi | 10.1109/ICNN.1995.488968 10.1109/ICC.2012.6363698 10.1016/j.neucom.2013.05.046 10.1145/1541880.1541882 10.1016/j.neucom.2012.11.050 10.1016/j.comnet.2008.11.011 10.1016/j.jnca.2012.09.004 10.1109/TPAMI.1979.4766909 10.1016/j.patrec.2007.08.006 10.1016/j.comnet.2013.07.034 10.1145/331499.331504 10.1007/978-81-322-1038-2_25 10.1016/j.asoc.2009.06.019 10.1109/TPAMI.1984.4767478 10.1016/j.neucom.2013.07.005 10.1109/ICICTA.2008.421 10.1145/382912.382914 10.1145/1921233.1921248 10.1016/j.neucom.2013.08.020 10.1016/j.neucom.2008.09.021 10.1016/S0031-3203(96)00142-2 10.1016/j.cose.2011.08.009 10.1109/CEC.2000.870279 10.1007/s10844-009-0115-6 10.1109/MCOM.2012.6231276 10.1016/j.eswa.2007.01.028 10.1016/j.jnca.2005.06.003 10.1016/j.neucom.2013.08.006 10.1016/j.cose.2010.05.002 10.1016/j.patrec.2008.02.014 10.1007/11538356_45 10.1016/j.neucom.2013.01.053 10.1145/1658939.1658941 10.1016/j.comnet.2007.02.001 10.1016/j.neucom.2013.04.038 |
| ContentType | Journal Article Publication |
| Contributor | Universitat Politècnica de Catalunya. CNDS - Xarxes de Computadors i Sistemes Distribuïts Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors |
| Contributor_xml | – sequence: 1 fullname: Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors – sequence: 2 fullname: Universitat Politècnica de Catalunya. CNDS - Xarxes de Computadors i Sistemes Distribuïts |
| Copyright | 2014 Elsevier B.V. info:eu-repo/semantics/openAccess |
| Copyright_xml | – notice: 2014 Elsevier B.V. – notice: info:eu-repo/semantics/openAccess |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D XX2 |
| DOI | 10.1016/j.neucom.2014.08.070 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Recercat |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 1269 |
| ExternalDocumentID | oai_recercat_cat_2072_251084 10_1016_j_neucom_2014_08_070 S0925231214011588 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD 7SC 8FD JQ2 L7M L~C L~D XX2 |
| ID | FETCH-LOGICAL-c493t-c6fcafa3837ad44b7bb873d9360bc336a0ae39166e42b45b47b47c11210d0f7d3 |
| ISICitedReferencesCount | 106 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000356105100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Fri Nov 07 13:51:45 EST 2025 Thu Oct 02 10:40:04 EDT 2025 Tue Nov 18 22:35:02 EST 2025 Sat Nov 29 07:56:38 EST 2025 Fri Feb 23 02:28:30 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | K-means Clustering analysis Fuzzy set Particle swarm optimization Anomaly detection Content-centric networks |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c493t-c6fcafa3837ad44b7bb873d9360bc336a0ae39166e42b45b47b47c11210d0f7d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3635-513X |
| OpenAccessLink | https://recercat.cat/handle/2072/251084 |
| PQID | 1660094202 |
| PQPubID | 23500 |
| PageCount | 17 |
| ParticipantIDs | csuc_recercat_oai_recercat_cat_2072_251084 proquest_miscellaneous_1660094202 crossref_citationtrail_10_1016_j_neucom_2014_08_070 crossref_primary_10_1016_j_neucom_2014_08_070 elsevier_sciencedirect_doi_10_1016_j_neucom_2014_08_070 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-02-03 |
| PublicationDateYYYYMMDD | 2015-02-03 |
| PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-03 day: 03 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2015 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Settles (bib51) 2005 Fiore, Palmieri, Castiglione, Santis (bib16) 2013; 122 Chen (bib36) 2012; 46 L. Xiao, Z. Shao, G. Liu, K-means algorithm based on particle swarm optimization algorithm for anomaly intrusion detection, in: Proceedings of the Sixth World Congress on Intelligent Control and Automation, Dalian, China, 2006, pp. 5854–5858. Kolias, Kambourakis, Maragoudakis (bib9) 2011; 30 Karami, Johansson (bib62) 2014; 30 G. Münz, S. Li, G. Carle, Traffic anomaly detection using k-means clustering, in: Proceedings of Performance, Reliability and Dependability Evaluation of Communication Networks and Distributed Systems, 4GI/ITG Workshop MMBnet, Hamburg, Germany, 2007. Davies, Bouldin (bib56) 1979; PAMI-1 Lee, Stolfo (bib65) 2000; 3 C.Y. Chen, F. Ye, Particle swarm optimization algorithm and its application to clustering analysis, in: Proceedings of the IEEE International Conference on Networking, Sensing and Control, 2004, pp. 789–794. B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, B. Ohlman, A survey of information-centric networking (draft), in: Proceedings from Dagstuhl Seminar 10492 on Information-Centric Networking, Dagstuhl, Germany, 2010. A. Asuncion, D. Newman, UCI machine learning repository. 2007. URL Anderberg (bib29) 1973 Quan, Srinivasan, Khosravi (bib30) 2014; 127 A. Compagno, M. Conti, P. Gasti, G. Tsudik, Poseidon: mitigating interest flooding DDoS attacks in named data networking. CoRR (2013), abs/1303.4823. Bradley (bib67) 1997; 30 Palmieri, Fiore (bib12) 2010; 29 W. Chimphlee, A.H. Abdullah, S. Chimphlee, S. Srinoy, Unsupervised clustering methods for identifying rare events in anomaly detection, in: The Sixth International Enformatika Conference, 2005, pp. 26–28. P. Zhenkui, H. Xia, H. Jinfeng, The clustering algorithm based on particle swarm optimization algorithm, in: Proceedings of the International Conference on Intelligent Computation Technology and Automation (ICICTA׳08), IEEE Computer Society, Washington, DC, USA, 2008, pp. 148–151. M. Xie, I. Widjaja, H. Wang, Enhancing cache robustness for content-centric networking, in: INFOCOM, 2012, pp. 2426–2434. W. Wong, P. Nikander, Secure naming in information-centric networks, in: Proceedings of the Re-architecting the Internet Workshop (ReARCH׳10), 2010, pp. 1–12. V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs, R.L. Braynard, Networking named content, in: Proceedings of the Fifth International Conference on Emerging Networking Experiments and Technologies (CoNEXT ׳09), ACM, New York, NY, USA, 2009. Conti, Gasti, Teoli (bib41) 2013; 57 Zalik (bib24) 2008; 29 Kaufman, Rousseeuw (bib34) 1990 N. Padhye, K. Deb, P. Mittal, Boundary handling approaches in particle swarm optimization, in: BIC-TA (1), 2012, pp. 287–298. Jain, Murty, Flynn (bib20) 1999; 31 Louvieris, Clewley, Liu (bib6) 2013; 121 Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: IEEE World Congress on Computational Intelligence, 1998, pp. 69–73. Gersho, Gray (bib55) 1992 . Corral, Armengol, Fornells, Golobardes (bib18) 2009; 72 L. Zhang, D. Estrin, J. Burke, V. Jacobson, J.D. Thornton, D.K. Smetters, et al. Named data networking (NDN) project, in: Proceedings of the ACM SIGCOMM Workshop on Information-Centric Networking, Number PARC TR-2010-3, 2010, pp. 68–73. Laszlo, Mukherjee (bib23) 2007; 28 I. Kärkkäinen, P. Fränti, Minimization of the value of Davies–Bouldin index, in: Proceedings of the LASTED International Conference Signal Processing and Communications, Marbella, Spain, 2000, pp. 426–432. Perdisci, Ariu, Fogla, Giacinto, Lee (bib13) 2009; 53 Patcha, Park (bib11) 2007; 51 Li, Wang, Hsu, Chang, Chou, Chang (bib50) 2014; 124 J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings in IEEE International Conference Neural Networks, vol. 4, 1995, pp. 1942–1948. Krawczyk, Woźniak (bib15) 2014; 126 Everitt (bib33) 1993 M. Hovaidi Ardestani, A. Karami, P. Sarolahti, J. Ott, Congestion control in content-centric networking using neural network, in: CCNxCon 2013. PARC, a Xerox company, 2013. B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, B. Ohlman, A survey of information-centric networking (draft), in: Information-Centric Networking, Dagstuhl Seminar Proceedings, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2011. Selim, Ismail (bib26) 1984; 6 T. Lauinger, Security & Scalability of Content-centric Networking, September 2010. Naldi, Campello (bib28) 2014; 127 A. Karami, Utilization and comparison of multi attribute decision making techniques to rank Bayesian network options (Master thesis), University of Skövde, Skövde, Sweden, 2011. Verma (bib63) 2013 Faysel, Haque (bib14) 2010; 10 D.W.V.D. Merwe, A.P. Engelbrecht. Data clustering using particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Canberra, Australia, 2003, pp. 215–220. Wang, Megalooikonomou (bib19) 2010; 35 Liao, Lin, Lin, Tung (bib8) 2013; 36 I. Widjaja, Towards a flexible resource management system for content centric networking, in: Proceedings of IEEE ICC׳12 Next Generation Network Symposium, 2012. Wu, Banzhaf (bib58) 2010; 10 Cui, Potok (bib38) 2005 C. Cortes, M.M., Confidence intervals for the area under the roc curve, in: Proceedings of Advances in Neural Information Processing Systems (NIPS), 2004. Chandola, Banerjee, Kumar (bib17) 2009; 41 B. Ohlman, B. Ahlgren, M. Brunner, M. D’Ambrosio, C. Dannewitz, A. Eriksson, et al., First netinf Architecture Description. FP7-ICT-2007-1-216041-4WARD/D-6.1, 2009. Karami, Johansson (bib21) 2014; 91 Peddabachigari, Abraham, Grosan, Thomas (bib10) 2007; 30 Kao, Zahara, Kao (bib22) 2008; 34 H. tao He, X. nan Luo, B. lu Liu, Detecting anomalous network traffic with combined fuzzy-based approaches, in: International Conference on Intelligent Computing (ICIC), 2005, pp. 433–442. Karami (bib27) 2013; 81 P. Gasti, G. Tsudik, E. Uzun, L. Zhang, DoS and DDoS in Named-Data Networking. CoRR (2012), abs/1208.0952. A. Carlisle, G. Dozier, An off-the-shelf PSO, in: Proceedings of the Particle Swarm Optimization Workshop, 2001, pp. 1–6. R.C. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, in: Proceedings of the Evolutionary Computation, vol. 1, 2000, pp. 84–88. Kennedy, Eberhart (bib32) 2001 Izakian, Pedrycz (bib57) 2014; 127 L. Zhang, D. Estrin, J. Burke, V. Jacobson, J.D. Thornton, D.K. Smetters, et al., Named data networking (NDN) project, in: Proceedings of the ACM SIGCOMM Workshop on Information-Centric Networking (PARC TR-2010-3), 2010, pp. 68–73. Selim (10.1016/j.neucom.2014.08.070_bib26) 1984; 6 10.1016/j.neucom.2014.08.070_bib52 10.1016/j.neucom.2014.08.070_bib53 Fiore (10.1016/j.neucom.2014.08.070_bib16) 2013; 122 Kao (10.1016/j.neucom.2014.08.070_bib22) 2008; 34 Conti (10.1016/j.neucom.2014.08.070_bib41) 2013; 57 Karami (10.1016/j.neucom.2014.08.070_bib21) 2014; 91 Kennedy (10.1016/j.neucom.2014.08.070_bib32) 2001 Gersho (10.1016/j.neucom.2014.08.070_bib55) 1992 10.1016/j.neucom.2014.08.070_bib45 Karami (10.1016/j.neucom.2014.08.070_bib62) 2014; 30 10.1016/j.neucom.2014.08.070_bib5 10.1016/j.neucom.2014.08.070_bib46 10.1016/j.neucom.2014.08.070_bib43 10.1016/j.neucom.2014.08.070_bib7 10.1016/j.neucom.2014.08.070_bib44 10.1016/j.neucom.2014.08.070_bib2 10.1016/j.neucom.2014.08.070_bib49 10.1016/j.neucom.2014.08.070_bib1 10.1016/j.neucom.2014.08.070_bib4 10.1016/j.neucom.2014.08.070_bib47 10.1016/j.neucom.2014.08.070_bib3 Peddabachigari (10.1016/j.neucom.2014.08.070_bib10) 2007; 30 10.1016/j.neucom.2014.08.070_bib48 Faysel (10.1016/j.neucom.2014.08.070_bib14) 2010; 10 Wu (10.1016/j.neucom.2014.08.070_bib58) 2010; 10 Kaufman (10.1016/j.neucom.2014.08.070_bib34) 1990 10.1016/j.neucom.2014.08.070_bib42 10.1016/j.neucom.2014.08.070_bib40 Davies (10.1016/j.neucom.2014.08.070_bib56) 1979; PAMI-1 Cui (10.1016/j.neucom.2014.08.070_bib38) 2005 Louvieris (10.1016/j.neucom.2014.08.070_bib6) 2013; 121 Patcha (10.1016/j.neucom.2014.08.070_bib11) 2007; 51 Krawczyk (10.1016/j.neucom.2014.08.070_bib15) 2014; 126 10.1016/j.neucom.2014.08.070_bib35 10.1016/j.neucom.2014.08.070_bib39 10.1016/j.neucom.2014.08.070_bib37 10.1016/j.neucom.2014.08.070_bib31 Izakian (10.1016/j.neucom.2014.08.070_bib57) 2014; 127 Li (10.1016/j.neucom.2014.08.070_bib50) 2014; 124 Everitt (10.1016/j.neucom.2014.08.070_bib33) 1993 Chen (10.1016/j.neucom.2014.08.070_bib36) 2012; 46 Jain (10.1016/j.neucom.2014.08.070_bib20) 1999; 31 Anderberg (10.1016/j.neucom.2014.08.070_bib29) 1973 10.1016/j.neucom.2014.08.070_bib68 10.1016/j.neucom.2014.08.070_bib66 Naldi (10.1016/j.neucom.2014.08.070_bib28) 2014; 127 10.1016/j.neucom.2014.08.070_bib25 Karami (10.1016/j.neucom.2014.08.070_bib27) 2013; 81 Perdisci (10.1016/j.neucom.2014.08.070_bib13) 2009; 53 Wang (10.1016/j.neucom.2014.08.070_bib19) 2010; 35 Laszlo (10.1016/j.neucom.2014.08.070_bib23) 2007; 28 Settles (10.1016/j.neucom.2014.08.070_bib51) 2005 10.1016/j.neucom.2014.08.070_bib60 Chandola (10.1016/j.neucom.2014.08.070_bib17) 2009; 41 10.1016/j.neucom.2014.08.070_bib64 Quan (10.1016/j.neucom.2014.08.070_bib30) 2014; 127 10.1016/j.neucom.2014.08.070_bib61 Lee (10.1016/j.neucom.2014.08.070_bib65) 2000; 3 Zalik (10.1016/j.neucom.2014.08.070_bib24) 2008; 29 Corral (10.1016/j.neucom.2014.08.070_bib18) 2009; 72 Kolias (10.1016/j.neucom.2014.08.070_bib9) 2011; 30 Verma (10.1016/j.neucom.2014.08.070_bib63) 2013 Liao (10.1016/j.neucom.2014.08.070_bib8) 2013; 36 10.1016/j.neucom.2014.08.070_bib54 Palmieri (10.1016/j.neucom.2014.08.070_bib12) 2010; 29 10.1016/j.neucom.2014.08.070_bib59 Bradley (10.1016/j.neucom.2014.08.070_bib67) 1997; 30 |
| References_xml | – volume: 122 start-page: 13 year: 2013 end-page: 23 ident: bib16 article-title: Network anomaly detection with the restricted boltzmann machine publication-title: Neurocomputing – reference: V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs, R.L. Braynard, Networking named content, in: Proceedings of the Fifth International Conference on Emerging Networking Experiments and Technologies (CoNEXT ׳09), ACM, New York, NY, USA, 2009. – reference: A. Compagno, M. Conti, P. Gasti, G. Tsudik, Poseidon: mitigating interest flooding DDoS attacks in named data networking. CoRR (2013), abs/1303.4823. – volume: 41 start-page: 15:1 year: 2009 end-page: 15:58 ident: bib17 article-title: Anomaly detection publication-title: ACM Comput. Surv. – year: 1990 ident: bib34 article-title: Finding Groups in Data: An Introduction to Cluster Analysis – volume: 121 start-page: 265 year: 2013 end-page: 273 ident: bib6 article-title: Effects-based feature identification for network intrusion detection publication-title: Neurocomputing – volume: 72 start-page: 2754 year: 2009 end-page: 2762 ident: bib18 article-title: Explanations of unsupervised learning clustering applied to data security analysis publication-title: Neurocomputing – reference: N. Padhye, K. Deb, P. Mittal, Boundary handling approaches in particle swarm optimization, in: BIC-TA (1), 2012, pp. 287–298. – reference: L. Zhang, D. Estrin, J. Burke, V. Jacobson, J.D. Thornton, D.K. Smetters, et al., Named data networking (NDN) project, in: Proceedings of the ACM SIGCOMM Workshop on Information-Centric Networking (PARC TR-2010-3), 2010, pp. 68–73. – reference: P. Gasti, G. Tsudik, E. Uzun, L. Zhang, DoS and DDoS in Named-Data Networking. CoRR (2012), abs/1208.0952. – reference: D.W.V.D. Merwe, A.P. Engelbrecht. Data clustering using particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Canberra, Australia, 2003, pp. 215–220. – volume: 34 start-page: 1754 year: 2008 end-page: 1762 ident: bib22 article-title: A hybridized approach to data clustering publication-title: Expert Syst. Appl. – reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings in IEEE International Conference Neural Networks, vol. 4, 1995, pp. 1942–1948. – reference: 〉. – volume: 126 start-page: 36 year: 2014 end-page: 44 ident: bib15 article-title: Diversity measures for one-class classifier ensembles publication-title: Neurocomputing – year: 1973 ident: bib29 article-title: Cluster Analysis for Applications – year: 2001 ident: bib32 article-title: Swarm Intelligence – reference: B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, B. Ohlman, A survey of information-centric networking (draft), in: Proceedings from Dagstuhl Seminar 10492 on Information-Centric Networking, Dagstuhl, Germany, 2010. – volume: 31 start-page: 264 year: 1999 end-page: 323 ident: bib20 article-title: Data clustering: a review publication-title: ACM Comput. Surv. – reference: B. Ohlman, B. Ahlgren, M. Brunner, M. D’Ambrosio, C. Dannewitz, A. Eriksson, et al., First netinf Architecture Description. FP7-ICT-2007-1-216041-4WARD/D-6.1, 2009. – volume: 127 start-page: 30 year: 2014 end-page: 42 ident: bib28 article-title: Evolutionary k-means for distributed data sets publication-title: Neurocomputing – volume: 3 start-page: 227 year: 2000 end-page: 261 ident: bib65 article-title: A framework for constructing features and models for intrusion detection systems publication-title: ACM Trans. Inf. Syst. Secur. – start-page: 27 year: 2005 end-page: 33 ident: bib38 article-title: Document clustering analysis based on hybrid pso+k-means algorithm publication-title: J. Comput. Sci. – reference: P. Zhenkui, H. Xia, H. Jinfeng, The clustering algorithm based on particle swarm optimization algorithm, in: Proceedings of the International Conference on Intelligent Computation Technology and Automation (ICICTA׳08), IEEE Computer Society, Washington, DC, USA, 2008, pp. 148–151. – reference: C.Y. Chen, F. Ye, Particle swarm optimization algorithm and its application to clustering analysis, in: Proceedings of the IEEE International Conference on Networking, Sensing and Control, 2004, pp. 789–794. – reference: T. Lauinger, Security & Scalability of Content-centric Networking, September 2010. – volume: PAMI-1 start-page: 224 year: 1979 end-page: 227 ident: bib56 article-title: A cluster separation measure publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: A. Karami, Utilization and comparison of multi attribute decision making techniques to rank Bayesian network options (Master thesis), University of Skövde, Skövde, Sweden, 2011. – volume: 35 start-page: 465 year: 2010 end-page: 494 ident: bib19 article-title: A performance evaluation framework for association mining in spatial data publication-title: Intell. Inf. Syst. – volume: 91 start-page: 1 year: 2014 end-page: 11 ident: bib21 article-title: Choosing DBSCAN parameters automatically using differential evolution publication-title: Int. J. Comput. Appl. – year: 1993 ident: bib33 article-title: Cluster Analysis – reference: H. tao He, X. nan Luo, B. lu Liu, Detecting anomalous network traffic with combined fuzzy-based approaches, in: International Conference on Intelligent Computing (ICIC), 2005, pp. 433–442. – volume: 28 start-page: 2359 year: 2007 end-page: 2366 ident: bib23 article-title: A genetic algorithm that exchanges neighboring centers for k-means clustering publication-title: Pattern Recognit. Lett. – reference: A. Asuncion, D. Newman, UCI machine learning repository. 2007. URL 〈 – reference: I. Widjaja, Towards a flexible resource management system for content centric networking, in: Proceedings of IEEE ICC׳12 Next Generation Network Symposium, 2012. – volume: 30 start-page: 519 year: 2014 end-page: 534 ident: bib62 article-title: Utilization of multi attribute decision making techniques to integrate automatic and manual ranking of options publication-title: J. Inf. Sci. Eng. – reference: G. Münz, S. Li, G. Carle, Traffic anomaly detection using k-means clustering, in: Proceedings of Performance, Reliability and Dependability Evaluation of Communication Networks and Distributed Systems, 4GI/ITG Workshop MMBnet, Hamburg, Germany, 2007. – reference: I. Kärkkäinen, P. Fränti, Minimization of the value of Davies–Bouldin index, in: Proceedings of the LASTED International Conference Signal Processing and Communications, Marbella, Spain, 2000, pp. 426–432. – volume: 30 start-page: 1145 year: 1997 end-page: 1159 ident: bib67 article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms publication-title: Pattern Recognit. – volume: 10 start-page: 316 year: 2010 end-page: 325 ident: bib14 article-title: Towards cyber defense publication-title: Int. J. Comput. Sci. Netw. Secur. – volume: 127 start-page: 172 year: 2014 end-page: 180 ident: bib30 article-title: Particle swarm optimization for construction of neural network-based prediction intervals publication-title: Neurocomputing – volume: 30 start-page: 625 year: 2011 end-page: 642 ident: bib9 article-title: Swarm intelligence in intrusion detection publication-title: Comput. Secur. – volume: 29 start-page: 1385 year: 2008 end-page: 1391 ident: bib24 article-title: An efficient k-means clustering algorithm publication-title: Pattern Recognit. Lett. – volume: 57 start-page: 3178 year: 2013 end-page: 3191 ident: bib41 article-title: A lightweight mechanism for detection of cache pollution attacks in named data networking publication-title: Comput. Netw. – reference: B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, B. Ohlman, A survey of information-centric networking (draft), in: Information-Centric Networking, Dagstuhl Seminar Proceedings, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2011. – reference: L. Zhang, D. Estrin, J. Burke, V. Jacobson, J.D. Thornton, D.K. Smetters, et al. Named data networking (NDN) project, in: Proceedings of the ACM SIGCOMM Workshop on Information-Centric Networking, Number PARC TR-2010-3, 2010, pp. 68–73. – year: 1992 ident: bib55 article-title: Vector Quantization and Signal Compression – year: 2013 ident: bib63 article-title: Data Analysis in Management with SPSS Software – volume: 53 start-page: 864 year: 2009 end-page: 881 ident: bib13 article-title: Mcpad: a multiple classifier system for accurate payload-based anomaly detection publication-title: Comput. Netw. – volume: 124 start-page: 218 year: 2014 end-page: 227 ident: bib50 article-title: Enhanced particle swarm optimizer incorporating a weighted particle publication-title: Neurocomputing – reference: L. Xiao, Z. Shao, G. Liu, K-means algorithm based on particle swarm optimization algorithm for anomaly intrusion detection, in: Proceedings of the Sixth World Congress on Intelligent Control and Automation, Dalian, China, 2006, pp. 5854–5858. – volume: 6 start-page: 81 year: 1984 end-page: 87 ident: bib26 article-title: K-means-type algorithms: a generalized convergence theorem and characterization of local optimality publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 46 start-page: 434 year: 2012 end-page: 440 ident: bib36 article-title: Hybrid clustering algorithm based on pso with the multidimensional asynchronism and stochastic disturbance method publication-title: J. Theor. Appl. Inf. Technol. – reference: Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: IEEE World Congress on Computational Intelligence, 1998, pp. 69–73. – volume: 81 start-page: 1 year: 2013 end-page: 8 ident: bib27 article-title: Data clustering for anomaly detection in content-centric networks publication-title: Int. J. Comput. Appl. – reference: W. Wong, P. Nikander, Secure naming in information-centric networks, in: Proceedings of the Re-architecting the Internet Workshop (ReARCH׳10), 2010, pp. 1–12. – reference: A. Carlisle, G. Dozier, An off-the-shelf PSO, in: Proceedings of the Particle Swarm Optimization Workshop, 2001, pp. 1–6. – reference: C. Cortes, M.M., Confidence intervals for the area under the roc curve, in: Proceedings of Advances in Neural Information Processing Systems (NIPS), 2004. – reference: M. Hovaidi Ardestani, A. Karami, P. Sarolahti, J. Ott, Congestion control in content-centric networking using neural network, in: CCNxCon 2013. PARC, a Xerox company, 2013. – volume: 36 start-page: 16 year: 2013 end-page: 24 ident: bib8 article-title: Intrusion detection system publication-title: J. Netw. Comput. Appl. – volume: 10 start-page: 1 year: 2010 end-page: 35 ident: bib58 article-title: The use of computational intelligence in intrusion detection systems: a review publication-title: J. Appl. Soft Comput. – reference: W. Chimphlee, A.H. Abdullah, S. Chimphlee, S. Srinoy, Unsupervised clustering methods for identifying rare events in anomaly detection, in: The Sixth International Enformatika Conference, 2005, pp. 26–28. – volume: 51 start-page: 3448 year: 2007 end-page: 3470 ident: bib11 article-title: An overview of anomaly detection techniques publication-title: Comput. Netw. – year: 2005 ident: bib51 article-title: An Introduction to Particle Swarm Optimization – volume: 29 start-page: 737 year: 2010 end-page: 755 ident: bib12 article-title: Network anomaly detection through nonlinear analysis publication-title: Comput. Secur. – reference: R.C. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, in: Proceedings of the Evolutionary Computation, vol. 1, 2000, pp. 84–88. – reference: M. Xie, I. Widjaja, H. Wang, Enhancing cache robustness for content-centric networking, in: INFOCOM, 2012, pp. 2426–2434. – volume: 127 start-page: 266 year: 2014 end-page: 280 ident: bib57 article-title: Agreement-based fuzzy c-means for clustering data with blocks of features publication-title: Neurocomputing – volume: 30 start-page: 114 year: 2007 end-page: 132 ident: bib10 article-title: Modeling intrusion detection system using hybrid intelligent systems publication-title: J. Netw. Comput. Appl. – volume: 46 start-page: 434 issue: 1 year: 2012 ident: 10.1016/j.neucom.2014.08.070_bib36 article-title: Hybrid clustering algorithm based on pso with the multidimensional asynchronism and stochastic disturbance method publication-title: J. Theor. Appl. Inf. Technol. – ident: 10.1016/j.neucom.2014.08.070_bib49 doi: 10.1109/ICNN.1995.488968 – ident: 10.1016/j.neucom.2014.08.070_bib44 doi: 10.1109/ICC.2012.6363698 – volume: 127 start-page: 30 year: 2014 ident: 10.1016/j.neucom.2014.08.070_bib28 article-title: Evolutionary k-means for distributed data sets publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.05.046 – volume: 41 start-page: 15:1 issue: 3 year: 2009 ident: 10.1016/j.neucom.2014.08.070_bib17 article-title: Anomaly detection publication-title: ACM Comput. Surv. doi: 10.1145/1541880.1541882 – volume: 122 start-page: 13 issue: 25 year: 2013 ident: 10.1016/j.neucom.2014.08.070_bib16 article-title: Network anomaly detection with the restricted boltzmann machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.11.050 – year: 1993 ident: 10.1016/j.neucom.2014.08.070_bib33 – volume: 53 start-page: 864 year: 2009 ident: 10.1016/j.neucom.2014.08.070_bib13 article-title: Mcpad: a multiple classifier system for accurate payload-based anomaly detection publication-title: Comput. Netw. doi: 10.1016/j.comnet.2008.11.011 – volume: 36 start-page: 16 issue: 1 year: 2013 ident: 10.1016/j.neucom.2014.08.070_bib8 article-title: Intrusion detection system publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2012.09.004 – volume: 10 start-page: 316 issue: 7 year: 2010 ident: 10.1016/j.neucom.2014.08.070_bib14 article-title: Towards cyber defense publication-title: Int. J. Comput. Sci. Netw. Secur. – volume: PAMI-1 start-page: 224 issue: 2 year: 1979 ident: 10.1016/j.neucom.2014.08.070_bib56 article-title: A cluster separation measure publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1979.4766909 – ident: 10.1016/j.neucom.2014.08.070_bib25 – ident: 10.1016/j.neucom.2014.08.070_bib40 – volume: 28 start-page: 2359 issue: 16 year: 2007 ident: 10.1016/j.neucom.2014.08.070_bib23 article-title: A genetic algorithm that exchanges neighboring centers for k-means clustering publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2007.08.006 – volume: 57 start-page: 3178 issue: 16 year: 2013 ident: 10.1016/j.neucom.2014.08.070_bib41 article-title: A lightweight mechanism for detection of cache pollution attacks in named data networking publication-title: Comput. Netw. doi: 10.1016/j.comnet.2013.07.034 – ident: 10.1016/j.neucom.2014.08.070_bib66 – ident: 10.1016/j.neucom.2014.08.070_bib39 – volume: 31 start-page: 264 issue: 3 year: 1999 ident: 10.1016/j.neucom.2014.08.070_bib20 article-title: Data clustering: a review publication-title: ACM Comput. Surv. doi: 10.1145/331499.331504 – ident: 10.1016/j.neucom.2014.08.070_bib35 – year: 1990 ident: 10.1016/j.neucom.2014.08.070_bib34 – ident: 10.1016/j.neucom.2014.08.070_bib31 – ident: 10.1016/j.neucom.2014.08.070_bib3 – year: 1973 ident: 10.1016/j.neucom.2014.08.070_bib29 – volume: 91 start-page: 1 issue: 7 year: 2014 ident: 10.1016/j.neucom.2014.08.070_bib21 article-title: Choosing DBSCAN parameters automatically using differential evolution publication-title: Int. J. Comput. Appl. – ident: 10.1016/j.neucom.2014.08.070_bib54 doi: 10.1007/978-81-322-1038-2_25 – volume: 10 start-page: 1 year: 2010 ident: 10.1016/j.neucom.2014.08.070_bib58 article-title: The use of computational intelligence in intrusion detection systems: a review publication-title: J. Appl. Soft Comput. doi: 10.1016/j.asoc.2009.06.019 – volume: 6 start-page: 81 issue: 1 year: 1984 ident: 10.1016/j.neucom.2014.08.070_bib26 article-title: K-means-type algorithms: a generalized convergence theorem and characterization of local optimality publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1984.4767478 – ident: 10.1016/j.neucom.2014.08.070_bib45 – volume: 124 start-page: 218 year: 2014 ident: 10.1016/j.neucom.2014.08.070_bib50 article-title: Enhanced particle swarm optimizer incorporating a weighted particle publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.07.005 – year: 2005 ident: 10.1016/j.neucom.2014.08.070_bib51 – ident: 10.1016/j.neucom.2014.08.070_bib37 doi: 10.1109/ICICTA.2008.421 – ident: 10.1016/j.neucom.2014.08.070_bib42 – volume: 3 start-page: 227 issue: 4 year: 2000 ident: 10.1016/j.neucom.2014.08.070_bib65 article-title: A framework for constructing features and models for intrusion detection systems publication-title: ACM Trans. Inf. Syst. Secur. doi: 10.1145/382912.382914 – ident: 10.1016/j.neucom.2014.08.070_bib48 doi: 10.1145/1921233.1921248 – volume: 127 start-page: 172 year: 2014 ident: 10.1016/j.neucom.2014.08.070_bib30 article-title: Particle swarm optimization for construction of neural network-based prediction intervals publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.08.020 – ident: 10.1016/j.neucom.2014.08.070_bib59 – volume: 72 start-page: 2754 issue: 13–15 year: 2009 ident: 10.1016/j.neucom.2014.08.070_bib18 article-title: Explanations of unsupervised learning clustering applied to data security analysis publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.09.021 – volume: 30 start-page: 1145 issue: 7 year: 1997 ident: 10.1016/j.neucom.2014.08.070_bib67 article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(96)00142-2 – ident: 10.1016/j.neucom.2014.08.070_bib7 – volume: 30 start-page: 625 issue: 8 year: 2011 ident: 10.1016/j.neucom.2014.08.070_bib9 article-title: Swarm intelligence in intrusion detection publication-title: Comput. Secur. doi: 10.1016/j.cose.2011.08.009 – ident: 10.1016/j.neucom.2014.08.070_bib53 doi: 10.1109/CEC.2000.870279 – ident: 10.1016/j.neucom.2014.08.070_bib4 – volume: 35 start-page: 465 issue: 3 year: 2010 ident: 10.1016/j.neucom.2014.08.070_bib19 article-title: A performance evaluation framework for association mining in spatial data publication-title: Intell. Inf. Syst. doi: 10.1007/s10844-009-0115-6 – ident: 10.1016/j.neucom.2014.08.070_bib52 – year: 2001 ident: 10.1016/j.neucom.2014.08.070_bib32 – ident: 10.1016/j.neucom.2014.08.070_bib1 doi: 10.1109/MCOM.2012.6231276 – ident: 10.1016/j.neucom.2014.08.070_bib46 – ident: 10.1016/j.neucom.2014.08.070_bib61 – volume: 81 start-page: 1 issue: 7 year: 2013 ident: 10.1016/j.neucom.2014.08.070_bib27 article-title: Data clustering for anomaly detection in content-centric networks publication-title: Int. J. Comput. Appl. – volume: 34 start-page: 1754 issue: 3 year: 2008 ident: 10.1016/j.neucom.2014.08.070_bib22 article-title: A hybridized approach to data clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.01.028 – volume: 30 start-page: 114 issue: 1 year: 2007 ident: 10.1016/j.neucom.2014.08.070_bib10 article-title: Modeling intrusion detection system using hybrid intelligent systems publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2005.06.003 – ident: 10.1016/j.neucom.2014.08.070_bib43 – ident: 10.1016/j.neucom.2014.08.070_bib64 – ident: 10.1016/j.neucom.2014.08.070_bib68 – volume: 127 start-page: 266 year: 2014 ident: 10.1016/j.neucom.2014.08.070_bib57 article-title: Agreement-based fuzzy c-means for clustering data with blocks of features publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.08.006 – volume: 29 start-page: 737 year: 2010 ident: 10.1016/j.neucom.2014.08.070_bib12 article-title: Network anomaly detection through nonlinear analysis publication-title: Comput. Secur. doi: 10.1016/j.cose.2010.05.002 – volume: 29 start-page: 1385 year: 2008 ident: 10.1016/j.neucom.2014.08.070_bib24 article-title: An efficient k-means clustering algorithm publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2008.02.014 – ident: 10.1016/j.neucom.2014.08.070_bib60 doi: 10.1007/11538356_45 – volume: 30 start-page: 519 issue: 2 year: 2014 ident: 10.1016/j.neucom.2014.08.070_bib62 article-title: Utilization of multi attribute decision making techniques to integrate automatic and manual ranking of options publication-title: J. Inf. Sci. Eng. – year: 2013 ident: 10.1016/j.neucom.2014.08.070_bib63 – start-page: 27 year: 2005 ident: 10.1016/j.neucom.2014.08.070_bib38 article-title: Document clustering analysis based on hybrid pso+k-means algorithm publication-title: J. Comput. Sci. – year: 1992 ident: 10.1016/j.neucom.2014.08.070_bib55 – ident: 10.1016/j.neucom.2014.08.070_bib5 – volume: 126 start-page: 36 year: 2014 ident: 10.1016/j.neucom.2014.08.070_bib15 article-title: Diversity measures for one-class classifier ensembles publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.01.053 – ident: 10.1016/j.neucom.2014.08.070_bib47 – ident: 10.1016/j.neucom.2014.08.070_bib2 doi: 10.1145/1658939.1658941 – volume: 51 start-page: 3448 issue: 12 year: 2007 ident: 10.1016/j.neucom.2014.08.070_bib11 article-title: An overview of anomaly detection techniques publication-title: Comput. Netw. doi: 10.1016/j.comnet.2007.02.001 – volume: 121 start-page: 265 year: 2013 ident: 10.1016/j.neucom.2014.08.070_bib6 article-title: Effects-based feature identification for network intrusion detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.04.038 |
| SSID | ssj0017129 |
| Score | 2.4891496 |
| Snippet | In Content-Centric Networks (CCNs) as a possible future Internet, new kinds of attacks and security challenges – from Denial of Service (DoS) to privacy... In Content-Centric Networks (CCNs) as a possible future Internet, new kinds of attacks and security challenges - from Denial of Service (DoS) to privacy... |
| SourceID | csuc proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1253 |
| SubjectTerms | Algorithms Anomalies Anomaly detection Clustering analysis Clusters Content-centric networks Enginyeria de la telecomunicació Fuzzy Fuzzy logic Fuzzy set Fuzzy set theory Internet K-means Mesures de seguretat Networks Optimization Particle swarm optimization Particle swarm optimization K-means Security Security measures Telemàtica i xarxes d'ordinadors Àrees temàtiques de la UPC |
| Title | A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks |
| URI | https://dx.doi.org/10.1016/j.neucom.2014.08.070 https://www.proquest.com/docview/1660094202 https://recercat.cat/handle/2072/251084 |
| Volume | 149 |
| WOSCitedRecordID | wos000356105100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZuoe97D6W3dBgTzMetuVEyqMZ3ZV1hXYQ9iJkSV5TYqc4dmn763d0sdMkD90Gg8TExrGFzuejT_I530HoTaQUsPw8DxNqRLWFjMOcMB3GMo9ZIYpiInNbbIIeHLDZbHo4GLRdLsz5glYVu7iYnv1XU8MxMLZJnf0Lc_cXhQPwG4wOWzA7bP_I8FlQtFdXRlZpWYrFZaB0o109cKfaHJiBS5mXBCeXJl0rODz6Hn4tNYxZgVj8Wtbz5qQMbHi6CW9vQhu_OZdB5SLGV9f5rNX2kLYyhF9zyEojvaAMztZx3KIWpQ0byMp5j8aPra5rXS_DnzBgOxL7TVQ-hN8vRMQ2sTsi69WxnQwZt8yYjEPgkM7jaudkGU1s-vqGF3bKpd6PAu0i18bkOHH1XHb8vVt6OH1X6dYE_0CzUqvI6oqRbClpH5nGmLaYSWU8ZuwW2kvoeMqGaC_7vD_70r9-onHiRBp947ucSxsYuHuvDU4zlKtWblCbrUHeMpfj--iun3LgzEHlARro6iG615XzwN67P0IiwxY52CMH98jBDjnYIgfDvkMOXiMH98jB8wpvIQd3yHmMfnzYP37_KfQVOEKZTgmcNimkKIRZxRAqTXOa54wSNSWTKJeETEQktMncnug0ydNxnlL4yNiI0qmooIo8QcNqWemnCAuYylEqiSITmRIhmRSK6FilTAkqpRwh0vUhl16e3lRJWfAuDvGUu57npue5KZ5KoxEK-3-dOXmWG85_a8zDgU3oWoqGG3X1fsd8k4gmHEh_xNIRop0RueejjmdygN8Nt3nd2ZyDuzbv4OD5WbYrDn1lgnmTKHn2z1d_ju6sn78XaNjUrX6JbsvzZr6qX3ks_waY08Ae |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fuzzy+anomaly+detection+system+based+on+hybrid+PSO-Kmeans+algorithm+in+content-centric+networks&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Karami%2C+Amin&rft.au=Guerrero-Zapata%2C+Manel&rft.date=2015-02-03&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=149&rft.spage=1253&rft.epage=1269&rft_id=info:doi/10.1016%2Fj.neucom.2014.08.070&rft.externalDocID=S0925231214011588 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |