A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks

In Content-Centric Networks (CCNs) as a possible future Internet, new kinds of attacks and security challenges – from Denial of Service (DoS) to privacy attacks – will arise. An efficient and effective security mechanism is required to secure content and defense against unknown and new forms of atta...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 149; pp. 1253 - 1269
Main Authors: Karami, Amin, Guerrero-Zapata, Manel
Format: Journal Article Publication
Language:English
Published: Elsevier B.V 03.02.2015
Subjects:
ISSN:0925-2312, 1872-8286
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In Content-Centric Networks (CCNs) as a possible future Internet, new kinds of attacks and security challenges – from Denial of Service (DoS) to privacy attacks – will arise. An efficient and effective security mechanism is required to secure content and defense against unknown and new forms of attacks and anomalies. Usually, clustering algorithms would fit the requirements for building a good anomaly detection system. K-means is a popular anomaly detection method to classify data into different categories. However, it suffers from the local convergence and sensitivity to selection of the cluster centroids. In this paper, we present a novel fuzzy anomaly detection system that works in two phases. In the first phase – the training phase – we propose an hybridization of Particle Swarm Optimization (PSO) and K-means algorithm with two simultaneous cost functions as well-separated clusters and local optimization to determine the optimal number of clusters. When the optimal placement of clusters centroids and objects are defined, it starts the second phase. In this phase – the detection phase – we employ a fuzzy approach by the combination of two distance-based methods as classification and outlier to detect anomalies in new monitoring data. Experimental results demonstrate that the proposed algorithm can achieve to the optimal number of clusters, well-separated clusters, as well as increase the high detection rate and decrease the false positive rate at the same time when compared to some other well-known clustering algorithms.
AbstractList In Content-Centric Networks (CCNs) as a possible future Internet, new kinds of attacks and security challenges – from Denial of Service (DoS) to privacy attacks – will arise. An efficient and effective security mechanism is required to secure content and defense against unknown and new forms of attacks and anomalies. Usually, clustering algorithms would fit the requirements for building a good anomaly detection system. K-means is a popular anomaly detection method to classify data into different categories. However, it suffers from the local convergence and sensitivity to selection of the cluster centroids. In this paper, we present a novel fuzzy anomaly detection system that works in two phases. In the first phase – the training phase – we propose an hybridization of Particle Swarm Optimization (PSO) and K-means algorithm with two simultaneous cost functions as well-separated clusters and local optimization to determine the optimal number of clusters. When the optimal placement of clusters centroids and objects are defined, it starts the second phase. In this phase – the detection phase – we employ a fuzzy approach by the combination of two distance-based methods as classification and outlier to detect anomalies in new monitoring data. Experimental results demonstrate that the proposed algorithm can achieve to the optimal number of clusters, well-separated clusters, as well as increase the high detection rate and decrease the false positive rate at the same time when compared to some other well-known clustering algorithms. Peer Reviewed
In Content-Centric Networks (CCNs) as a possible future Internet, new kinds of attacks and security challenges - from Denial of Service (DoS) to privacy attacks - will arise. An efficient and effective security mechanism is required to secure content and defense against unknown and new forms of attacks and anomalies. Usually, clustering algorithms would fit the requirements for building a good anomaly detection system. K-means is a popular anomaly detection method to classify data into different categories. However, it suffers from the local convergence and sensitivity to selection of the cluster centroids. In this paper, we present a novel fuzzy anomaly detection system that works in two phases. In the first phase - the training phase - we propose an hybridization of Particle Swarm Optimization (PSO) and K-means algorithm with two simultaneous cost functions as well-separated clusters and local optimization to determine the optimal number of clusters. When the optimal placement of clusters centroids and objects are defined, it starts the second phase. In this phase - the detection phase - we employ a fuzzy approach by the combination of two distance-based methods as classification and outlier to detect anomalies in new monitoring data. Experimental results demonstrate that the proposed algorithm can achieve to the optimal number of clusters, well-separated clusters, as well as increase the high detection rate and decrease the false positive rate at the same time when compared to some other well-known clustering algorithms.
Author Guerrero-Zapata, Manel
Karami, Amin
Author_xml – sequence: 1
  givenname: Amin
  orcidid: 0000-0003-3635-513X
  surname: Karami
  fullname: Karami, Amin
  email: amin@ac.upc.edu
  organization: Computer Architecture Department (DAC), Universitat Politècnica de Catalunya (UPC), C6-E102 Campus Nord, C. Jordi Girona 1–3, 08034 Barcelona, Spain
– sequence: 2
  givenname: Manel
  surname: Guerrero-Zapata
  fullname: Guerrero-Zapata, Manel
  email: guerrero@ac.upc.edu
  organization: Computer Architecture Department (DAC), Universitat Politècnica de Catalunya (UPC), D6-212 Campus Nord, C. Jordi Girona 1–3, 08034 Barcelona, Spain
BookMark eNqFkUuLFTEQhYOM4J3Rf-AiSzfdVh630-1CGAZfODCCug7ppNrJtTsZk7TS8-vN5Q4ILhQqFQ7kO0XqnJOzEAMS8pxBy4B1Lw9twNXGpeXAZAt9CwoekR3rFW963ndnZAcD3zdcMP6EnOd8AGCK8WFHzCWd1vv7jZoQFzNv1GFBW3wMNG-54EJHk9HRqm-3MXlHP32-aT4uaEKmZv4Wky-3C_WB2hgKhtLY2pK3NGD5FdP3_JQ8nsyc8dnDfUG-vn3z5ep9c33z7sPV5XVj5SAq1k3WTEb0Qhkn5ajGsVfCDaKD0QrRGTAoBtZ1KPko96NUtSxjnIGDSTlxQdjJ1-bV6oQWkzVFR-P_iOPhoLjmewa9rMyLE3OX4o8Vc9GLzxbn2QSMa9Z1HMAgOfD69NWDfYo5J5y09cUcF1WS8bNmoI9Z6IM-ZaGPWWjodc2iwvIv-C75xaTtf9jrE4Z1bz89Jp2tx2DR-fqlol30_zb4DbAKqNI
CitedBy_id crossref_primary_10_3390_app121910135
crossref_primary_10_1007_s11277_024_11270_5
crossref_primary_10_1016_j_comnet_2015_01_020
crossref_primary_10_1016_j_neucom_2014_11_003
crossref_primary_10_1016_j_cose_2017_06_005
crossref_primary_10_1016_j_epsr_2016_09_025
crossref_primary_10_1109_ACCESS_2017_2787719
crossref_primary_10_1007_s00500_020_04958_w
crossref_primary_10_1016_j_knosys_2017_03_012
crossref_primary_10_3390_fi10040033
crossref_primary_10_1371_journal_pone_0279989
crossref_primary_10_3390_s23198153
crossref_primary_10_1016_j_neucom_2016_06_021
crossref_primary_10_1016_j_jksuci_2019_08_003
crossref_primary_10_1007_s11042_022_13433_7
crossref_primary_10_1016_j_patrec_2016_11_018
crossref_primary_10_1007_s11831_023_10059_2
crossref_primary_10_1002_cpe_7548
crossref_primary_10_1016_j_neucom_2018_09_080
crossref_primary_10_1016_j_jclepro_2020_121017
crossref_primary_10_1016_j_asoc_2017_08_022
crossref_primary_10_1016_j_neucom_2018_05_027
crossref_primary_10_1007_s10586_017_1643_4
crossref_primary_10_1016_j_compbiomed_2019_103348
crossref_primary_10_1016_j_eswa_2021_115017
crossref_primary_10_1109_ACCESS_2020_3029826
crossref_primary_10_1155_2022_5985426
crossref_primary_10_3389_fenrg_2022_861571
crossref_primary_10_1016_j_apor_2021_102681
crossref_primary_10_1016_j_eswa_2021_115054
crossref_primary_10_1155_2016_4606384
crossref_primary_10_55195_jscai_1560068
crossref_primary_10_3390_s16101701
crossref_primary_10_1007_s11235_018_0475_8
crossref_primary_10_1016_j_compeleceng_2017_07_008
crossref_primary_10_1109_TFUZZ_2021_3117441
crossref_primary_10_1155_2018_1578314
crossref_primary_10_1038_s41598_025_90619_7
crossref_primary_10_1134_S2075108720010046
crossref_primary_10_1016_j_swevo_2019_100631
crossref_primary_10_3390_en11112891
crossref_primary_10_1007_s10044_015_0505_z
crossref_primary_10_1007_s13369_020_05181_3
crossref_primary_10_1016_j_energy_2018_01_175
crossref_primary_10_1016_j_eswa_2018_04_038
crossref_primary_10_1038_s41598_024_83005_2
crossref_primary_10_1109_ACCESS_2021_3118573
crossref_primary_10_1007_s00500_023_08718_4
crossref_primary_10_1002_spy2_429
crossref_primary_10_1016_j_neucom_2018_06_087
crossref_primary_10_1007_s12652_019_01611_9
crossref_primary_10_1016_j_ifacol_2019_12_743
crossref_primary_10_1109_ACCESS_2018_2878576
crossref_primary_10_4018_IJAMC_2022010110
crossref_primary_10_1016_j_bspc_2022_104209
crossref_primary_10_3233_JIFS_189065
crossref_primary_10_1109_TASE_2016_2603420
crossref_primary_10_1145_3311888
crossref_primary_10_1007_s12046_021_01688_z
crossref_primary_10_1007_s42979_025_04352_z
crossref_primary_10_1080_02564602_2021_1957029
crossref_primary_10_1002_int_22729
crossref_primary_10_1111_coin_12312
crossref_primary_10_1002_dac_3248
crossref_primary_10_1016_j_asoc_2020_106301
crossref_primary_10_3390_s22134926
crossref_primary_10_1016_j_ins_2023_119439
crossref_primary_10_1186_s13638_025_02464_x
crossref_primary_10_1016_j_jnca_2015_05_017
crossref_primary_10_1016_j_jnca_2015_12_006
crossref_primary_10_1007_s10462_020_09942_2
crossref_primary_10_1088_1755_1315_647_1_012075
crossref_primary_10_1007_s00607_025_01485_0
crossref_primary_10_1080_15325008_2022_2134512
crossref_primary_10_1007_s10700_020_09332_x
crossref_primary_10_1007_s11227_023_05091_9
crossref_primary_10_3390_electronics11162567
crossref_primary_10_1109_ACCESS_2020_3033455
crossref_primary_10_1016_j_flowmeasinst_2025_102852
crossref_primary_10_1109_COMST_2017_2749508
Cites_doi 10.1109/ICNN.1995.488968
10.1109/ICC.2012.6363698
10.1016/j.neucom.2013.05.046
10.1145/1541880.1541882
10.1016/j.neucom.2012.11.050
10.1016/j.comnet.2008.11.011
10.1016/j.jnca.2012.09.004
10.1109/TPAMI.1979.4766909
10.1016/j.patrec.2007.08.006
10.1016/j.comnet.2013.07.034
10.1145/331499.331504
10.1007/978-81-322-1038-2_25
10.1016/j.asoc.2009.06.019
10.1109/TPAMI.1984.4767478
10.1016/j.neucom.2013.07.005
10.1109/ICICTA.2008.421
10.1145/382912.382914
10.1145/1921233.1921248
10.1016/j.neucom.2013.08.020
10.1016/j.neucom.2008.09.021
10.1016/S0031-3203(96)00142-2
10.1016/j.cose.2011.08.009
10.1109/CEC.2000.870279
10.1007/s10844-009-0115-6
10.1109/MCOM.2012.6231276
10.1016/j.eswa.2007.01.028
10.1016/j.jnca.2005.06.003
10.1016/j.neucom.2013.08.006
10.1016/j.cose.2010.05.002
10.1016/j.patrec.2008.02.014
10.1007/11538356_45
10.1016/j.neucom.2013.01.053
10.1145/1658939.1658941
10.1016/j.comnet.2007.02.001
10.1016/j.neucom.2013.04.038
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. CNDS - Xarxes de Computadors i Sistemes Distribuïts
Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. CNDS - Xarxes de Computadors i Sistemes Distribuïts
Copyright 2014 Elsevier B.V.
info:eu-repo/semantics/openAccess
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: info:eu-repo/semantics/openAccess
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
XX2
DOI 10.1016/j.neucom.2014.08.070
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Recercat
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 1269
ExternalDocumentID oai_recercat_cat_2072_251084
10_1016_j_neucom_2014_08_070
S0925231214011588
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
XX2
ID FETCH-LOGICAL-c493t-c6fcafa3837ad44b7bb873d9360bc336a0ae39166e42b45b47b47c11210d0f7d3
ISICitedReferencesCount 106
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000356105100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Fri Nov 07 13:51:45 EST 2025
Thu Oct 02 10:40:04 EDT 2025
Tue Nov 18 22:35:02 EST 2025
Sat Nov 29 07:56:38 EST 2025
Fri Feb 23 02:28:30 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords K-means
Clustering analysis
Fuzzy set
Particle swarm optimization
Anomaly detection
Content-centric networks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c493t-c6fcafa3837ad44b7bb873d9360bc336a0ae39166e42b45b47b47c11210d0f7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3635-513X
OpenAccessLink https://recercat.cat/handle/2072/251084
PQID 1660094202
PQPubID 23500
PageCount 17
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_251084
proquest_miscellaneous_1660094202
crossref_citationtrail_10_1016_j_neucom_2014_08_070
crossref_primary_10_1016_j_neucom_2014_08_070
elsevier_sciencedirect_doi_10_1016_j_neucom_2014_08_070
PublicationCentury 2000
PublicationDate 2015-02-03
PublicationDateYYYYMMDD 2015-02-03
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-03
  day: 03
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Settles (bib51) 2005
Fiore, Palmieri, Castiglione, Santis (bib16) 2013; 122
Chen (bib36) 2012; 46
L. Xiao, Z. Shao, G. Liu, K-means algorithm based on particle swarm optimization algorithm for anomaly intrusion detection, in: Proceedings of the Sixth World Congress on Intelligent Control and Automation, Dalian, China, 2006, pp. 5854–5858.
Kolias, Kambourakis, Maragoudakis (bib9) 2011; 30
Karami, Johansson (bib62) 2014; 30
G. Münz, S. Li, G. Carle, Traffic anomaly detection using k-means clustering, in: Proceedings of Performance, Reliability and Dependability Evaluation of Communication Networks and Distributed Systems, 4GI/ITG Workshop MMBnet, Hamburg, Germany, 2007.
Davies, Bouldin (bib56) 1979; PAMI-1
Lee, Stolfo (bib65) 2000; 3
C.Y. Chen, F. Ye, Particle swarm optimization algorithm and its application to clustering analysis, in: Proceedings of the IEEE International Conference on Networking, Sensing and Control, 2004, pp. 789–794.
B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, B. Ohlman, A survey of information-centric networking (draft), in: Proceedings from Dagstuhl Seminar 10492 on Information-Centric Networking, Dagstuhl, Germany, 2010.
A. Asuncion, D. Newman, UCI machine learning repository. 2007. URL
Anderberg (bib29) 1973
Quan, Srinivasan, Khosravi (bib30) 2014; 127
A. Compagno, M. Conti, P. Gasti, G. Tsudik, Poseidon: mitigating interest flooding DDoS attacks in named data networking. CoRR (2013), abs/1303.4823.
Bradley (bib67) 1997; 30
Palmieri, Fiore (bib12) 2010; 29
W. Chimphlee, A.H. Abdullah, S. Chimphlee, S. Srinoy, Unsupervised clustering methods for identifying rare events in anomaly detection, in: The Sixth International Enformatika Conference, 2005, pp. 26–28.
P. Zhenkui, H. Xia, H. Jinfeng, The clustering algorithm based on particle swarm optimization algorithm, in: Proceedings of the International Conference on Intelligent Computation Technology and Automation (ICICTA׳08), IEEE Computer Society, Washington, DC, USA, 2008, pp. 148–151.
M. Xie, I. Widjaja, H. Wang, Enhancing cache robustness for content-centric networking, in: INFOCOM, 2012, pp. 2426–2434.
W. Wong, P. Nikander, Secure naming in information-centric networks, in: Proceedings of the Re-architecting the Internet Workshop (ReARCH׳10), 2010, pp. 1–12.
V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs, R.L. Braynard, Networking named content, in: Proceedings of the Fifth International Conference on Emerging Networking Experiments and Technologies (CoNEXT ׳09), ACM, New York, NY, USA, 2009.
Conti, Gasti, Teoli (bib41) 2013; 57
Zalik (bib24) 2008; 29
Kaufman, Rousseeuw (bib34) 1990
N. Padhye, K. Deb, P. Mittal, Boundary handling approaches in particle swarm optimization, in: BIC-TA (1), 2012, pp. 287–298.
Jain, Murty, Flynn (bib20) 1999; 31
Louvieris, Clewley, Liu (bib6) 2013; 121
Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: IEEE World Congress on Computational Intelligence, 1998, pp. 69–73.
Gersho, Gray (bib55) 1992
.
Corral, Armengol, Fornells, Golobardes (bib18) 2009; 72
L. Zhang, D. Estrin, J. Burke, V. Jacobson, J.D. Thornton, D.K. Smetters, et al. Named data networking (NDN) project, in: Proceedings of the ACM SIGCOMM Workshop on Information-Centric Networking, Number PARC TR-2010-3, 2010, pp. 68–73.
Laszlo, Mukherjee (bib23) 2007; 28
I. Kärkkäinen, P. Fränti, Minimization of the value of Davies–Bouldin index, in: Proceedings of the LASTED International Conference Signal Processing and Communications, Marbella, Spain, 2000, pp. 426–432.
Perdisci, Ariu, Fogla, Giacinto, Lee (bib13) 2009; 53
Patcha, Park (bib11) 2007; 51
Li, Wang, Hsu, Chang, Chou, Chang (bib50) 2014; 124
J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings in IEEE International Conference Neural Networks, vol. 4, 1995, pp. 1942–1948.
Krawczyk, Woźniak (bib15) 2014; 126
Everitt (bib33) 1993
M. Hovaidi Ardestani, A. Karami, P. Sarolahti, J. Ott, Congestion control in content-centric networking using neural network, in: CCNxCon 2013. PARC, a Xerox company, 2013.
B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, B. Ohlman, A survey of information-centric networking (draft), in: Information-Centric Networking, Dagstuhl Seminar Proceedings, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2011.
Selim, Ismail (bib26) 1984; 6
T. Lauinger, Security & Scalability of Content-centric Networking, September 2010.
Naldi, Campello (bib28) 2014; 127
A. Karami, Utilization and comparison of multi attribute decision making techniques to rank Bayesian network options (Master thesis), University of Skövde, Skövde, Sweden, 2011.
Verma (bib63) 2013
Faysel, Haque (bib14) 2010; 10
D.W.V.D. Merwe, A.P. Engelbrecht. Data clustering using particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Canberra, Australia, 2003, pp. 215–220.
Wang, Megalooikonomou (bib19) 2010; 35
Liao, Lin, Lin, Tung (bib8) 2013; 36
I. Widjaja, Towards a flexible resource management system for content centric networking, in: Proceedings of IEEE ICC׳12 Next Generation Network Symposium, 2012.
Wu, Banzhaf (bib58) 2010; 10
Cui, Potok (bib38) 2005
C. Cortes, M.M., Confidence intervals for the area under the roc curve, in: Proceedings of Advances in Neural Information Processing Systems (NIPS), 2004.
Chandola, Banerjee, Kumar (bib17) 2009; 41
B. Ohlman, B. Ahlgren, M. Brunner, M. D’Ambrosio, C. Dannewitz, A. Eriksson, et al., First netinf Architecture Description. FP7-ICT-2007-1-216041-4WARD/D-6.1, 2009.
Karami, Johansson (bib21) 2014; 91
Peddabachigari, Abraham, Grosan, Thomas (bib10) 2007; 30
Kao, Zahara, Kao (bib22) 2008; 34
H. tao He, X. nan Luo, B. lu Liu, Detecting anomalous network traffic with combined fuzzy-based approaches, in: International Conference on Intelligent Computing (ICIC), 2005, pp. 433–442.
Karami (bib27) 2013; 81
P. Gasti, G. Tsudik, E. Uzun, L. Zhang, DoS and DDoS in Named-Data Networking. CoRR (2012), abs/1208.0952.
A. Carlisle, G. Dozier, An off-the-shelf PSO, in: Proceedings of the Particle Swarm Optimization Workshop, 2001, pp. 1–6.
R.C. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, in: Proceedings of the Evolutionary Computation, vol. 1, 2000, pp. 84–88.
Kennedy, Eberhart (bib32) 2001
Izakian, Pedrycz (bib57) 2014; 127
L. Zhang, D. Estrin, J. Burke, V. Jacobson, J.D. Thornton, D.K. Smetters, et al., Named data networking (NDN) project, in: Proceedings of the ACM SIGCOMM Workshop on Information-Centric Networking (PARC TR-2010-3), 2010, pp. 68–73.
Selim (10.1016/j.neucom.2014.08.070_bib26) 1984; 6
10.1016/j.neucom.2014.08.070_bib52
10.1016/j.neucom.2014.08.070_bib53
Fiore (10.1016/j.neucom.2014.08.070_bib16) 2013; 122
Kao (10.1016/j.neucom.2014.08.070_bib22) 2008; 34
Conti (10.1016/j.neucom.2014.08.070_bib41) 2013; 57
Karami (10.1016/j.neucom.2014.08.070_bib21) 2014; 91
Kennedy (10.1016/j.neucom.2014.08.070_bib32) 2001
Gersho (10.1016/j.neucom.2014.08.070_bib55) 1992
10.1016/j.neucom.2014.08.070_bib45
Karami (10.1016/j.neucom.2014.08.070_bib62) 2014; 30
10.1016/j.neucom.2014.08.070_bib5
10.1016/j.neucom.2014.08.070_bib46
10.1016/j.neucom.2014.08.070_bib43
10.1016/j.neucom.2014.08.070_bib7
10.1016/j.neucom.2014.08.070_bib44
10.1016/j.neucom.2014.08.070_bib2
10.1016/j.neucom.2014.08.070_bib49
10.1016/j.neucom.2014.08.070_bib1
10.1016/j.neucom.2014.08.070_bib4
10.1016/j.neucom.2014.08.070_bib47
10.1016/j.neucom.2014.08.070_bib3
Peddabachigari (10.1016/j.neucom.2014.08.070_bib10) 2007; 30
10.1016/j.neucom.2014.08.070_bib48
Faysel (10.1016/j.neucom.2014.08.070_bib14) 2010; 10
Wu (10.1016/j.neucom.2014.08.070_bib58) 2010; 10
Kaufman (10.1016/j.neucom.2014.08.070_bib34) 1990
10.1016/j.neucom.2014.08.070_bib42
10.1016/j.neucom.2014.08.070_bib40
Davies (10.1016/j.neucom.2014.08.070_bib56) 1979; PAMI-1
Cui (10.1016/j.neucom.2014.08.070_bib38) 2005
Louvieris (10.1016/j.neucom.2014.08.070_bib6) 2013; 121
Patcha (10.1016/j.neucom.2014.08.070_bib11) 2007; 51
Krawczyk (10.1016/j.neucom.2014.08.070_bib15) 2014; 126
10.1016/j.neucom.2014.08.070_bib35
10.1016/j.neucom.2014.08.070_bib39
10.1016/j.neucom.2014.08.070_bib37
10.1016/j.neucom.2014.08.070_bib31
Izakian (10.1016/j.neucom.2014.08.070_bib57) 2014; 127
Li (10.1016/j.neucom.2014.08.070_bib50) 2014; 124
Everitt (10.1016/j.neucom.2014.08.070_bib33) 1993
Chen (10.1016/j.neucom.2014.08.070_bib36) 2012; 46
Jain (10.1016/j.neucom.2014.08.070_bib20) 1999; 31
Anderberg (10.1016/j.neucom.2014.08.070_bib29) 1973
10.1016/j.neucom.2014.08.070_bib68
10.1016/j.neucom.2014.08.070_bib66
Naldi (10.1016/j.neucom.2014.08.070_bib28) 2014; 127
10.1016/j.neucom.2014.08.070_bib25
Karami (10.1016/j.neucom.2014.08.070_bib27) 2013; 81
Perdisci (10.1016/j.neucom.2014.08.070_bib13) 2009; 53
Wang (10.1016/j.neucom.2014.08.070_bib19) 2010; 35
Laszlo (10.1016/j.neucom.2014.08.070_bib23) 2007; 28
Settles (10.1016/j.neucom.2014.08.070_bib51) 2005
10.1016/j.neucom.2014.08.070_bib60
Chandola (10.1016/j.neucom.2014.08.070_bib17) 2009; 41
10.1016/j.neucom.2014.08.070_bib64
Quan (10.1016/j.neucom.2014.08.070_bib30) 2014; 127
10.1016/j.neucom.2014.08.070_bib61
Lee (10.1016/j.neucom.2014.08.070_bib65) 2000; 3
Zalik (10.1016/j.neucom.2014.08.070_bib24) 2008; 29
Corral (10.1016/j.neucom.2014.08.070_bib18) 2009; 72
Kolias (10.1016/j.neucom.2014.08.070_bib9) 2011; 30
Verma (10.1016/j.neucom.2014.08.070_bib63) 2013
Liao (10.1016/j.neucom.2014.08.070_bib8) 2013; 36
10.1016/j.neucom.2014.08.070_bib54
Palmieri (10.1016/j.neucom.2014.08.070_bib12) 2010; 29
10.1016/j.neucom.2014.08.070_bib59
Bradley (10.1016/j.neucom.2014.08.070_bib67) 1997; 30
References_xml – volume: 122
  start-page: 13
  year: 2013
  end-page: 23
  ident: bib16
  article-title: Network anomaly detection with the restricted boltzmann machine
  publication-title: Neurocomputing
– reference: V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs, R.L. Braynard, Networking named content, in: Proceedings of the Fifth International Conference on Emerging Networking Experiments and Technologies (CoNEXT ׳09), ACM, New York, NY, USA, 2009.
– reference: A. Compagno, M. Conti, P. Gasti, G. Tsudik, Poseidon: mitigating interest flooding DDoS attacks in named data networking. CoRR (2013), abs/1303.4823.
– volume: 41
  start-page: 15:1
  year: 2009
  end-page: 15:58
  ident: bib17
  article-title: Anomaly detection
  publication-title: ACM Comput. Surv.
– year: 1990
  ident: bib34
  article-title: Finding Groups in Data: An Introduction to Cluster Analysis
– volume: 121
  start-page: 265
  year: 2013
  end-page: 273
  ident: bib6
  article-title: Effects-based feature identification for network intrusion detection
  publication-title: Neurocomputing
– volume: 72
  start-page: 2754
  year: 2009
  end-page: 2762
  ident: bib18
  article-title: Explanations of unsupervised learning clustering applied to data security analysis
  publication-title: Neurocomputing
– reference: N. Padhye, K. Deb, P. Mittal, Boundary handling approaches in particle swarm optimization, in: BIC-TA (1), 2012, pp. 287–298.
– reference: L. Zhang, D. Estrin, J. Burke, V. Jacobson, J.D. Thornton, D.K. Smetters, et al., Named data networking (NDN) project, in: Proceedings of the ACM SIGCOMM Workshop on Information-Centric Networking (PARC TR-2010-3), 2010, pp. 68–73.
– reference: P. Gasti, G. Tsudik, E. Uzun, L. Zhang, DoS and DDoS in Named-Data Networking. CoRR (2012), abs/1208.0952.
– reference: D.W.V.D. Merwe, A.P. Engelbrecht. Data clustering using particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Canberra, Australia, 2003, pp. 215–220.
– volume: 34
  start-page: 1754
  year: 2008
  end-page: 1762
  ident: bib22
  article-title: A hybridized approach to data clustering
  publication-title: Expert Syst. Appl.
– reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings in IEEE International Conference Neural Networks, vol. 4, 1995, pp. 1942–1948.
– reference: 〉.
– volume: 126
  start-page: 36
  year: 2014
  end-page: 44
  ident: bib15
  article-title: Diversity measures for one-class classifier ensembles
  publication-title: Neurocomputing
– year: 1973
  ident: bib29
  article-title: Cluster Analysis for Applications
– year: 2001
  ident: bib32
  article-title: Swarm Intelligence
– reference: B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, B. Ohlman, A survey of information-centric networking (draft), in: Proceedings from Dagstuhl Seminar 10492 on Information-Centric Networking, Dagstuhl, Germany, 2010.
– volume: 31
  start-page: 264
  year: 1999
  end-page: 323
  ident: bib20
  article-title: Data clustering: a review
  publication-title: ACM Comput. Surv.
– reference: B. Ohlman, B. Ahlgren, M. Brunner, M. D’Ambrosio, C. Dannewitz, A. Eriksson, et al., First netinf Architecture Description. FP7-ICT-2007-1-216041-4WARD/D-6.1, 2009.
– volume: 127
  start-page: 30
  year: 2014
  end-page: 42
  ident: bib28
  article-title: Evolutionary k-means for distributed data sets
  publication-title: Neurocomputing
– volume: 3
  start-page: 227
  year: 2000
  end-page: 261
  ident: bib65
  article-title: A framework for constructing features and models for intrusion detection systems
  publication-title: ACM Trans. Inf. Syst. Secur.
– start-page: 27
  year: 2005
  end-page: 33
  ident: bib38
  article-title: Document clustering analysis based on hybrid pso+k-means algorithm
  publication-title: J. Comput. Sci.
– reference: P. Zhenkui, H. Xia, H. Jinfeng, The clustering algorithm based on particle swarm optimization algorithm, in: Proceedings of the International Conference on Intelligent Computation Technology and Automation (ICICTA׳08), IEEE Computer Society, Washington, DC, USA, 2008, pp. 148–151.
– reference: C.Y. Chen, F. Ye, Particle swarm optimization algorithm and its application to clustering analysis, in: Proceedings of the IEEE International Conference on Networking, Sensing and Control, 2004, pp. 789–794.
– reference: T. Lauinger, Security & Scalability of Content-centric Networking, September 2010.
– volume: PAMI-1
  start-page: 224
  year: 1979
  end-page: 227
  ident: bib56
  article-title: A cluster separation measure
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: A. Karami, Utilization and comparison of multi attribute decision making techniques to rank Bayesian network options (Master thesis), University of Skövde, Skövde, Sweden, 2011.
– volume: 35
  start-page: 465
  year: 2010
  end-page: 494
  ident: bib19
  article-title: A performance evaluation framework for association mining in spatial data
  publication-title: Intell. Inf. Syst.
– volume: 91
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib21
  article-title: Choosing DBSCAN parameters automatically using differential evolution
  publication-title: Int. J. Comput. Appl.
– year: 1993
  ident: bib33
  article-title: Cluster Analysis
– reference: H. tao He, X. nan Luo, B. lu Liu, Detecting anomalous network traffic with combined fuzzy-based approaches, in: International Conference on Intelligent Computing (ICIC), 2005, pp. 433–442.
– volume: 28
  start-page: 2359
  year: 2007
  end-page: 2366
  ident: bib23
  article-title: A genetic algorithm that exchanges neighboring centers for k-means clustering
  publication-title: Pattern Recognit. Lett.
– reference: A. Asuncion, D. Newman, UCI machine learning repository. 2007. URL 〈
– reference: I. Widjaja, Towards a flexible resource management system for content centric networking, in: Proceedings of IEEE ICC׳12 Next Generation Network Symposium, 2012.
– volume: 30
  start-page: 519
  year: 2014
  end-page: 534
  ident: bib62
  article-title: Utilization of multi attribute decision making techniques to integrate automatic and manual ranking of options
  publication-title: J. Inf. Sci. Eng.
– reference: G. Münz, S. Li, G. Carle, Traffic anomaly detection using k-means clustering, in: Proceedings of Performance, Reliability and Dependability Evaluation of Communication Networks and Distributed Systems, 4GI/ITG Workshop MMBnet, Hamburg, Germany, 2007.
– reference: I. Kärkkäinen, P. Fränti, Minimization of the value of Davies–Bouldin index, in: Proceedings of the LASTED International Conference Signal Processing and Communications, Marbella, Spain, 2000, pp. 426–432.
– volume: 30
  start-page: 1145
  year: 1997
  end-page: 1159
  ident: bib67
  article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms
  publication-title: Pattern Recognit.
– volume: 10
  start-page: 316
  year: 2010
  end-page: 325
  ident: bib14
  article-title: Towards cyber defense
  publication-title: Int. J. Comput. Sci. Netw. Secur.
– volume: 127
  start-page: 172
  year: 2014
  end-page: 180
  ident: bib30
  article-title: Particle swarm optimization for construction of neural network-based prediction intervals
  publication-title: Neurocomputing
– volume: 30
  start-page: 625
  year: 2011
  end-page: 642
  ident: bib9
  article-title: Swarm intelligence in intrusion detection
  publication-title: Comput. Secur.
– volume: 29
  start-page: 1385
  year: 2008
  end-page: 1391
  ident: bib24
  article-title: An efficient k-means clustering algorithm
  publication-title: Pattern Recognit. Lett.
– volume: 57
  start-page: 3178
  year: 2013
  end-page: 3191
  ident: bib41
  article-title: A lightweight mechanism for detection of cache pollution attacks in named data networking
  publication-title: Comput. Netw.
– reference: B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, B. Ohlman, A survey of information-centric networking (draft), in: Information-Centric Networking, Dagstuhl Seminar Proceedings, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2011.
– reference: L. Zhang, D. Estrin, J. Burke, V. Jacobson, J.D. Thornton, D.K. Smetters, et al. Named data networking (NDN) project, in: Proceedings of the ACM SIGCOMM Workshop on Information-Centric Networking, Number PARC TR-2010-3, 2010, pp. 68–73.
– year: 1992
  ident: bib55
  article-title: Vector Quantization and Signal Compression
– year: 2013
  ident: bib63
  article-title: Data Analysis in Management with SPSS Software
– volume: 53
  start-page: 864
  year: 2009
  end-page: 881
  ident: bib13
  article-title: Mcpad: a multiple classifier system for accurate payload-based anomaly detection
  publication-title: Comput. Netw.
– volume: 124
  start-page: 218
  year: 2014
  end-page: 227
  ident: bib50
  article-title: Enhanced particle swarm optimizer incorporating a weighted particle
  publication-title: Neurocomputing
– reference: L. Xiao, Z. Shao, G. Liu, K-means algorithm based on particle swarm optimization algorithm for anomaly intrusion detection, in: Proceedings of the Sixth World Congress on Intelligent Control and Automation, Dalian, China, 2006, pp. 5854–5858.
– volume: 6
  start-page: 81
  year: 1984
  end-page: 87
  ident: bib26
  article-title: K-means-type algorithms: a generalized convergence theorem and characterization of local optimality
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 46
  start-page: 434
  year: 2012
  end-page: 440
  ident: bib36
  article-title: Hybrid clustering algorithm based on pso with the multidimensional asynchronism and stochastic disturbance method
  publication-title: J. Theor. Appl. Inf. Technol.
– reference: Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: IEEE World Congress on Computational Intelligence, 1998, pp. 69–73.
– volume: 81
  start-page: 1
  year: 2013
  end-page: 8
  ident: bib27
  article-title: Data clustering for anomaly detection in content-centric networks
  publication-title: Int. J. Comput. Appl.
– reference: W. Wong, P. Nikander, Secure naming in information-centric networks, in: Proceedings of the Re-architecting the Internet Workshop (ReARCH׳10), 2010, pp. 1–12.
– reference: A. Carlisle, G. Dozier, An off-the-shelf PSO, in: Proceedings of the Particle Swarm Optimization Workshop, 2001, pp. 1–6.
– reference: C. Cortes, M.M., Confidence intervals for the area under the roc curve, in: Proceedings of Advances in Neural Information Processing Systems (NIPS), 2004.
– reference: M. Hovaidi Ardestani, A. Karami, P. Sarolahti, J. Ott, Congestion control in content-centric networking using neural network, in: CCNxCon 2013. PARC, a Xerox company, 2013.
– volume: 36
  start-page: 16
  year: 2013
  end-page: 24
  ident: bib8
  article-title: Intrusion detection system
  publication-title: J. Netw. Comput. Appl.
– volume: 10
  start-page: 1
  year: 2010
  end-page: 35
  ident: bib58
  article-title: The use of computational intelligence in intrusion detection systems: a review
  publication-title: J. Appl. Soft Comput.
– reference: W. Chimphlee, A.H. Abdullah, S. Chimphlee, S. Srinoy, Unsupervised clustering methods for identifying rare events in anomaly detection, in: The Sixth International Enformatika Conference, 2005, pp. 26–28.
– volume: 51
  start-page: 3448
  year: 2007
  end-page: 3470
  ident: bib11
  article-title: An overview of anomaly detection techniques
  publication-title: Comput. Netw.
– year: 2005
  ident: bib51
  article-title: An Introduction to Particle Swarm Optimization
– volume: 29
  start-page: 737
  year: 2010
  end-page: 755
  ident: bib12
  article-title: Network anomaly detection through nonlinear analysis
  publication-title: Comput. Secur.
– reference: R.C. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, in: Proceedings of the Evolutionary Computation, vol. 1, 2000, pp. 84–88.
– reference: M. Xie, I. Widjaja, H. Wang, Enhancing cache robustness for content-centric networking, in: INFOCOM, 2012, pp. 2426–2434.
– volume: 127
  start-page: 266
  year: 2014
  end-page: 280
  ident: bib57
  article-title: Agreement-based fuzzy c-means for clustering data with blocks of features
  publication-title: Neurocomputing
– volume: 30
  start-page: 114
  year: 2007
  end-page: 132
  ident: bib10
  article-title: Modeling intrusion detection system using hybrid intelligent systems
  publication-title: J. Netw. Comput. Appl.
– volume: 46
  start-page: 434
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2014.08.070_bib36
  article-title: Hybrid clustering algorithm based on pso with the multidimensional asynchronism and stochastic disturbance method
  publication-title: J. Theor. Appl. Inf. Technol.
– ident: 10.1016/j.neucom.2014.08.070_bib49
  doi: 10.1109/ICNN.1995.488968
– ident: 10.1016/j.neucom.2014.08.070_bib44
  doi: 10.1109/ICC.2012.6363698
– volume: 127
  start-page: 30
  year: 2014
  ident: 10.1016/j.neucom.2014.08.070_bib28
  article-title: Evolutionary k-means for distributed data sets
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.05.046
– volume: 41
  start-page: 15:1
  issue: 3
  year: 2009
  ident: 10.1016/j.neucom.2014.08.070_bib17
  article-title: Anomaly detection
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1541880.1541882
– volume: 122
  start-page: 13
  issue: 25
  year: 2013
  ident: 10.1016/j.neucom.2014.08.070_bib16
  article-title: Network anomaly detection with the restricted boltzmann machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.11.050
– year: 1993
  ident: 10.1016/j.neucom.2014.08.070_bib33
– volume: 53
  start-page: 864
  year: 2009
  ident: 10.1016/j.neucom.2014.08.070_bib13
  article-title: Mcpad: a multiple classifier system for accurate payload-based anomaly detection
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2008.11.011
– volume: 36
  start-page: 16
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2014.08.070_bib8
  article-title: Intrusion detection system
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2012.09.004
– volume: 10
  start-page: 316
  issue: 7
  year: 2010
  ident: 10.1016/j.neucom.2014.08.070_bib14
  article-title: Towards cyber defense
  publication-title: Int. J. Comput. Sci. Netw. Secur.
– volume: PAMI-1
  start-page: 224
  issue: 2
  year: 1979
  ident: 10.1016/j.neucom.2014.08.070_bib56
  article-title: A cluster separation measure
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1979.4766909
– ident: 10.1016/j.neucom.2014.08.070_bib25
– ident: 10.1016/j.neucom.2014.08.070_bib40
– volume: 28
  start-page: 2359
  issue: 16
  year: 2007
  ident: 10.1016/j.neucom.2014.08.070_bib23
  article-title: A genetic algorithm that exchanges neighboring centers for k-means clustering
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2007.08.006
– volume: 57
  start-page: 3178
  issue: 16
  year: 2013
  ident: 10.1016/j.neucom.2014.08.070_bib41
  article-title: A lightweight mechanism for detection of cache pollution attacks in named data networking
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2013.07.034
– ident: 10.1016/j.neucom.2014.08.070_bib66
– ident: 10.1016/j.neucom.2014.08.070_bib39
– volume: 31
  start-page: 264
  issue: 3
  year: 1999
  ident: 10.1016/j.neucom.2014.08.070_bib20
  article-title: Data clustering: a review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/331499.331504
– ident: 10.1016/j.neucom.2014.08.070_bib35
– year: 1990
  ident: 10.1016/j.neucom.2014.08.070_bib34
– ident: 10.1016/j.neucom.2014.08.070_bib31
– ident: 10.1016/j.neucom.2014.08.070_bib3
– year: 1973
  ident: 10.1016/j.neucom.2014.08.070_bib29
– volume: 91
  start-page: 1
  issue: 7
  year: 2014
  ident: 10.1016/j.neucom.2014.08.070_bib21
  article-title: Choosing DBSCAN parameters automatically using differential evolution
  publication-title: Int. J. Comput. Appl.
– ident: 10.1016/j.neucom.2014.08.070_bib54
  doi: 10.1007/978-81-322-1038-2_25
– volume: 10
  start-page: 1
  year: 2010
  ident: 10.1016/j.neucom.2014.08.070_bib58
  article-title: The use of computational intelligence in intrusion detection systems: a review
  publication-title: J. Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.06.019
– volume: 6
  start-page: 81
  issue: 1
  year: 1984
  ident: 10.1016/j.neucom.2014.08.070_bib26
  article-title: K-means-type algorithms: a generalized convergence theorem and characterization of local optimality
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1984.4767478
– ident: 10.1016/j.neucom.2014.08.070_bib45
– volume: 124
  start-page: 218
  year: 2014
  ident: 10.1016/j.neucom.2014.08.070_bib50
  article-title: Enhanced particle swarm optimizer incorporating a weighted particle
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.07.005
– year: 2005
  ident: 10.1016/j.neucom.2014.08.070_bib51
– ident: 10.1016/j.neucom.2014.08.070_bib37
  doi: 10.1109/ICICTA.2008.421
– ident: 10.1016/j.neucom.2014.08.070_bib42
– volume: 3
  start-page: 227
  issue: 4
  year: 2000
  ident: 10.1016/j.neucom.2014.08.070_bib65
  article-title: A framework for constructing features and models for intrusion detection systems
  publication-title: ACM Trans. Inf. Syst. Secur.
  doi: 10.1145/382912.382914
– ident: 10.1016/j.neucom.2014.08.070_bib48
  doi: 10.1145/1921233.1921248
– volume: 127
  start-page: 172
  year: 2014
  ident: 10.1016/j.neucom.2014.08.070_bib30
  article-title: Particle swarm optimization for construction of neural network-based prediction intervals
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.08.020
– ident: 10.1016/j.neucom.2014.08.070_bib59
– volume: 72
  start-page: 2754
  issue: 13–15
  year: 2009
  ident: 10.1016/j.neucom.2014.08.070_bib18
  article-title: Explanations of unsupervised learning clustering applied to data security analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.09.021
– volume: 30
  start-page: 1145
  issue: 7
  year: 1997
  ident: 10.1016/j.neucom.2014.08.070_bib67
  article-title: The use of the area under the ROC curve in the evaluation of machine learning algorithms
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(96)00142-2
– ident: 10.1016/j.neucom.2014.08.070_bib7
– volume: 30
  start-page: 625
  issue: 8
  year: 2011
  ident: 10.1016/j.neucom.2014.08.070_bib9
  article-title: Swarm intelligence in intrusion detection
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2011.08.009
– ident: 10.1016/j.neucom.2014.08.070_bib53
  doi: 10.1109/CEC.2000.870279
– ident: 10.1016/j.neucom.2014.08.070_bib4
– volume: 35
  start-page: 465
  issue: 3
  year: 2010
  ident: 10.1016/j.neucom.2014.08.070_bib19
  article-title: A performance evaluation framework for association mining in spatial data
  publication-title: Intell. Inf. Syst.
  doi: 10.1007/s10844-009-0115-6
– ident: 10.1016/j.neucom.2014.08.070_bib52
– year: 2001
  ident: 10.1016/j.neucom.2014.08.070_bib32
– ident: 10.1016/j.neucom.2014.08.070_bib1
  doi: 10.1109/MCOM.2012.6231276
– ident: 10.1016/j.neucom.2014.08.070_bib46
– ident: 10.1016/j.neucom.2014.08.070_bib61
– volume: 81
  start-page: 1
  issue: 7
  year: 2013
  ident: 10.1016/j.neucom.2014.08.070_bib27
  article-title: Data clustering for anomaly detection in content-centric networks
  publication-title: Int. J. Comput. Appl.
– volume: 34
  start-page: 1754
  issue: 3
  year: 2008
  ident: 10.1016/j.neucom.2014.08.070_bib22
  article-title: A hybridized approach to data clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.01.028
– volume: 30
  start-page: 114
  issue: 1
  year: 2007
  ident: 10.1016/j.neucom.2014.08.070_bib10
  article-title: Modeling intrusion detection system using hybrid intelligent systems
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2005.06.003
– ident: 10.1016/j.neucom.2014.08.070_bib43
– ident: 10.1016/j.neucom.2014.08.070_bib64
– ident: 10.1016/j.neucom.2014.08.070_bib68
– volume: 127
  start-page: 266
  year: 2014
  ident: 10.1016/j.neucom.2014.08.070_bib57
  article-title: Agreement-based fuzzy c-means for clustering data with blocks of features
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.08.006
– volume: 29
  start-page: 737
  year: 2010
  ident: 10.1016/j.neucom.2014.08.070_bib12
  article-title: Network anomaly detection through nonlinear analysis
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2010.05.002
– volume: 29
  start-page: 1385
  year: 2008
  ident: 10.1016/j.neucom.2014.08.070_bib24
  article-title: An efficient k-means clustering algorithm
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2008.02.014
– ident: 10.1016/j.neucom.2014.08.070_bib60
  doi: 10.1007/11538356_45
– volume: 30
  start-page: 519
  issue: 2
  year: 2014
  ident: 10.1016/j.neucom.2014.08.070_bib62
  article-title: Utilization of multi attribute decision making techniques to integrate automatic and manual ranking of options
  publication-title: J. Inf. Sci. Eng.
– year: 2013
  ident: 10.1016/j.neucom.2014.08.070_bib63
– start-page: 27
  year: 2005
  ident: 10.1016/j.neucom.2014.08.070_bib38
  article-title: Document clustering analysis based on hybrid pso+k-means algorithm
  publication-title: J. Comput. Sci.
– year: 1992
  ident: 10.1016/j.neucom.2014.08.070_bib55
– ident: 10.1016/j.neucom.2014.08.070_bib5
– volume: 126
  start-page: 36
  year: 2014
  ident: 10.1016/j.neucom.2014.08.070_bib15
  article-title: Diversity measures for one-class classifier ensembles
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.01.053
– ident: 10.1016/j.neucom.2014.08.070_bib47
– ident: 10.1016/j.neucom.2014.08.070_bib2
  doi: 10.1145/1658939.1658941
– volume: 51
  start-page: 3448
  issue: 12
  year: 2007
  ident: 10.1016/j.neucom.2014.08.070_bib11
  article-title: An overview of anomaly detection techniques
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2007.02.001
– volume: 121
  start-page: 265
  year: 2013
  ident: 10.1016/j.neucom.2014.08.070_bib6
  article-title: Effects-based feature identification for network intrusion detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.04.038
SSID ssj0017129
Score 2.4891496
Snippet In Content-Centric Networks (CCNs) as a possible future Internet, new kinds of attacks and security challenges – from Denial of Service (DoS) to privacy...
In Content-Centric Networks (CCNs) as a possible future Internet, new kinds of attacks and security challenges - from Denial of Service (DoS) to privacy...
SourceID csuc
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1253
SubjectTerms Algorithms
Anomalies
Anomaly detection
Clustering analysis
Clusters
Content-centric networks
Enginyeria de la telecomunicació
Fuzzy
Fuzzy logic
Fuzzy set
Fuzzy set theory
Internet
K-means
Mesures de seguretat
Networks
Optimization
Particle swarm optimization
Particle swarm optimization K-means
Security
Security measures
Telemàtica i xarxes d'ordinadors
Àrees temàtiques de la UPC
Title A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks
URI https://dx.doi.org/10.1016/j.neucom.2014.08.070
https://www.proquest.com/docview/1660094202
https://recercat.cat/handle/2072/251084
Volume 149
WOSCitedRecordID wos000356105100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb5swFLa2dA972X1adpMnTXsYYgJDMDyiKd2tSystlaK9WMY2a6pAMgJT21-_Y2xI0j60e5iUoICcOPL58DnY3_kOQm8FycOMc-ly8AfwgJL4bhJJpbNA_ISOfD4y6voHdDKJZ7PkyJLY1205AVqW8dlZsvqvpoZrYGydOvsP5u5_FC7AZzA6HMHscLyR4VMnby4utKzSsuCLc0eqWpl64Ea12dGOS-pNgpNzna7lHP04dL8VCnyWwxe_ltW8Pimclp6u6e212_I358IpDWN8vR3Pttoeoq0MYdcc0kJLL0iNsw2Pm1e8aGkDaTHv0fipUVWlqqX7Exy2CWK_89JS-O1ChN8mdnvB9ooiGbkQLu5OrkaQ1E6PEE0FW67WJ6ZMy5Vp3KwonH4oVaM5PdBb2Aqtmhoju6rZk0O2f3xwwKbj2fTd6rerC4rpjXdbXeU22iN0lMQDtJd-Gc--9ltM1CdGiNH-6y6vsiX_Xe14J24ZiHUjdsKXS468jU6mD9A9-1iBUwOHh-iWKh-h-13JDmxn8MeIp7hFB7bowD06sEEHbtGB4dygA2_QgXt04HmJL6EDd-h4go73x9OPn11bZcMVYRJAsygXPOd6pYLLMMxolsU0kEkQeZkIgoh7XOns7EiFJAtHWUjhJXwtPCe9nMrgKRqUy1I9Q5jzmMpMSq5VFX1F4jzycwj4syAjkodyiIJuDJmwEvS6EsqCdVzDU2ZGnumRZ7pAKvWGyO2_tTISLNe0f6_NwyBiUJXgNdMK6v2JfhOPEgaBvReHQ0Q7IzIbc5pYkgEWr-nmTWdzBlOy3meDe2TZrBmMlSbsEo88v0GbF-ju5m56iQZ11ahX6I74U8_X1WuL2r9SdrE-
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fuzzy+anomaly+detection+system+based+on+hybrid+PSO-Kmeans+algorithm+in+content-centric+networks&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Karami%2C+Amin&rft.au=Guerrero-Zapata%2C+Manel&rft.date=2015-02-03&rft.issn=0925-2312&rft.volume=149&rft.spage=1253&rft.epage=1269&rft_id=info:doi/10.1016%2Fj.neucom.2014.08.070&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon