Multi-Model Adaptation Learning With Possibilistic Clustering Assumption for EEG-Based Emotion Recognition

In machine learning community, graph-based semi-supervised learning (GSSL) approaches have attracted more extensive research due to their elegant mathematical formulation and good performance. However, one of the reasons affecting the performance of the GSSL method is that the training data and test...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in neuroscience Vol. 16; p. 855421
Main Authors: Dan, Yufang, Tao, Jianwen, Zhou, Di
Format: Journal Article
Language:English
Published: Switzerland Frontiers Research Foundation 04.05.2022
Frontiers Media S.A
Subjects:
ISSN:1662-453X, 1662-4548, 1662-453X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In machine learning community, graph-based semi-supervised learning (GSSL) approaches have attracted more extensive research due to their elegant mathematical formulation and good performance. However, one of the reasons affecting the performance of the GSSL method is that the training data and test data need to be independently identically distributed (IID); any individual user may show a completely different encephalogram (EEG) data in the same situation. The EEG data may be non-IID. In addition, noise/outlier sensitiveness still exist in GSSL approaches. To these ends, we propose in this paper a novel clustering method based on structure risk minimization model, called multi-model adaptation learning with possibilistic clustering assumption for EEG-based emotion recognition (MA-PCA). It can effectively minimize the influence from the noise/outlier samples based on different EEG-based data distribution in some reproduced kernel Hilbert space. Our main ideas are as follows: (1) reducing the negative impact of noise/outlier patterns through fuzzy entropy regularization, (2) considering the training data and test data are IID and non-IID to obtain a better performance by multi-model adaptation learning, and (3) the algorithm implementation and convergence theorem are also given. A large number of experiments and deep analysis on real DEAP datasets and SEED datasets was carried out. The results show that the MA-PCA method has superior or comparable robustness and generalization performance to EEG-based emotion recognition.
AbstractList In machine learning community, graph-based semi-supervised learning (GSSL) approaches have attracted more extensive research due to their elegant mathematical formulation and good performance. However, one of the reasons affecting the performance of the GSSL method is that the training data and test data need to be independently identically distributed (IID); any individual user may show a completely different encephalogram (EEG) data in the same situation. The EEG data may be non-IID. In addition, noise/outlier sensitiveness still exist in GSSL approaches. To these ends, we propose in this paper a novel clustering method based on structure risk minimization model, called multi-model adaptation learning with possibilistic clustering assumption for EEG-based emotion recognition (MA-PCA). It can effectively minimize the influence from the noise/outlier samples based on different EEG-based data distribution in some reproduced kernel Hilbert space. Our main ideas are as follows: (1) reducing the negative impact of noise/outlier patterns through fuzzy entropy regularization, (2) considering the training data and test data are IID and non-IID to obtain a better performance by multi-model adaptation learning, and (3) the algorithm implementation and convergence theorem are also given. A large number of experiments and deep analysis on real DEAP datasets and SEED datasets was carried out. The results show that the MA-PCA method has superior or comparable robustness and generalization performance to EEG-based emotion recognition.
In machine learning community, graph-based semi-supervised learning (GSSL) approaches have attracted more extensive research due to their elegant mathematical formulation and good performance. However, one of the reasons affecting the performance of the GSSL method is that the training data and test data need to be independently identically distributed (IID); any individual user may show a completely different encephalogram (EEG) data in the same situation. The EEG data may be non-IID. In addition, noise/outlier sensitiveness still exist in GSSL approaches. To these ends, we propose in this paper a novel clustering method based on structure risk minimization model, called multi-model adaptation learning with possibilistic clustering assumption for EEG-based emotion recognition (MA-PCA). It can effectively minimize the influence from the noise/outlier samples based on different EEG-based data distribution in some reproduced kernel Hilbert space. Our main ideas are as follows: (1) reducing the negative impact of noise/outlier patterns through fuzzy entropy regularization, (2) considering the training data and test data are IID and non-IID to obtain a better performance by multi-model adaptation learning, and (3) the algorithm implementation and convergence theorem are also given. A large number of experiments and deep analysis on real DEAP datasets and SEED datasets was carried out. The results show that the MA-PCA method has superior or comparable robustness and generalization performance to EEG-based emotion recognition.In machine learning community, graph-based semi-supervised learning (GSSL) approaches have attracted more extensive research due to their elegant mathematical formulation and good performance. However, one of the reasons affecting the performance of the GSSL method is that the training data and test data need to be independently identically distributed (IID); any individual user may show a completely different encephalogram (EEG) data in the same situation. The EEG data may be non-IID. In addition, noise/outlier sensitiveness still exist in GSSL approaches. To these ends, we propose in this paper a novel clustering method based on structure risk minimization model, called multi-model adaptation learning with possibilistic clustering assumption for EEG-based emotion recognition (MA-PCA). It can effectively minimize the influence from the noise/outlier samples based on different EEG-based data distribution in some reproduced kernel Hilbert space. Our main ideas are as follows: (1) reducing the negative impact of noise/outlier patterns through fuzzy entropy regularization, (2) considering the training data and test data are IID and non-IID to obtain a better performance by multi-model adaptation learning, and (3) the algorithm implementation and convergence theorem are also given. A large number of experiments and deep analysis on real DEAP datasets and SEED datasets was carried out. The results show that the MA-PCA method has superior or comparable robustness and generalization performance to EEG-based emotion recognition.
In the field of machine learning, graph-based semi-supervised learning (GSSL) has attracted more and more attention due to its intuitive and good learning performance for emotion recognition. However, one of the reasons affecting the performance of GSSL method is that the training data and test data need to be independently identically distribution (IID), each individual subject may present completely different encephalogram(EEG) patterns in the same scenario that result in the data will be non-IID. In addition, there has limited effort has been made on improving GSSL’s performance by reducing the influence of noise/outlier EEG-based patterns. To this end, we propose in this paper a novel clustering method based on structure risk minimization model, called a Multi-model adaptation method of possibilistic clustering assumption (MA-PCA) effectively minimize the influence from the noise/outlier samples based on different EEG-based data distribution in some Reproduced Kernel Hilbert Space. Its main ideas are as follows: (1) reducing the negative influence of noise/outlier patterns for the method through fuzzy entropy regularization; (2) considering the training data and test data at IID and non-IID by exploiting the proposed multi-mode adaptive learning, and then obtain a better performance; (3) the algorithm implementation and convergence theorem also are given. A large number of experiments and analysis deeply on multiple real datasets (i.e., DEAP, SEED and SEED-IV) show that the proposed method has superior or comparable robustness and generalization performance of the EEG-based emotion recognition.
Author Zhou, Di
Tao, Jianwen
Dan, Yufang
AuthorAffiliation 1 Institute of Artificial Intelligence Application, Ningbo Polytechnic , Ningbo , China
2 Key Laboratory of 3D Printing Equipment and Manufacturing in Colleges and Universities of Fujian Province , Fujian , China
3 Industrial Technological Institute of Intelligent Manufacturing, Sichuan University of Arts and Science , Dazhou , China
AuthorAffiliation_xml – name: 1 Institute of Artificial Intelligence Application, Ningbo Polytechnic , Ningbo , China
– name: 2 Key Laboratory of 3D Printing Equipment and Manufacturing in Colleges and Universities of Fujian Province , Fujian , China
– name: 3 Industrial Technological Institute of Intelligent Manufacturing, Sichuan University of Arts and Science , Dazhou , China
Author_xml – sequence: 1
  givenname: Yufang
  surname: Dan
  fullname: Dan, Yufang
– sequence: 2
  givenname: Jianwen
  surname: Tao
  fullname: Tao, Jianwen
– sequence: 3
  givenname: Di
  surname: Zhou
  fullname: Zhou, Di
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35600616$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1v1DAQhi1URD_gB3BBkbhwyRJ_xOtckJbVUiptBUIguFmOM9565dhbO0Hi3-NsWtRWQj7YnnnfR2PPnKMTHzwg9BpXC0pF895469OCVIQsRF0zgp-hM8w5KVlNf508OJ-i85T2VcWJYOQFOqU1zxfMz9D-enSDLa9DB65YdeowqMEGX2xBxUzfFT_tcFN8DSnZ1jqbBquLtRvTAHHKrlIa-8PRYUIsNpvL8qNK0BWbPhyj30CHnbfT-SV6bpRL8Opuv0A_Pm2-rz-X2y-XV-vVttSsoUNJgYiW6NoIBqZijcirpbRSZklwV5ucY60RQjWmrYFjXDWmAQaCtZ0mNaYX6GrmdkHt5SHaXsU_Migrj4EQd1LF_A4HEgztCBjCuFoyTVmGtoYxAktDG8WqzPowsw5j20OnwQ9RuUfQxxlvb-Qu_JYNxoxTngHv7gAx3I6QBtnbpME55SGMSRLOBSEV5ixL3z6R7sMYff6qrKobKoQgU0VvHlb0r5T7lmbBchbomLsWwUht56bmAq2TuJLT8Mjj8MhpeOQ8PNmJnzjv4f_3_AX0jMon
CitedBy_id crossref_primary_10_3389_fnins_2025_1592070
crossref_primary_10_1109_ACCESS_2024_3454082
Cites_doi 10.1162/0899766041732396
10.3390/s17051014
10.1016/j.image.2021.116455
10.1109/TPAMI.2009.57
10.1016/j.compbiomed.2016.10.019
10.1109/TNN.2011.2108315
10.1007/978-94-017-2053-3_2
10.1016/j.knosys.2016.01.021
10.1126/science.290.5500.2319
10.1016/j.ultras.2016.09.006
10.1109/CVPR.2013.451
10.1016/0020-0255(86)90006-x
10.1007/s12652-019-01495-9
10.1109/taffc.2020.2994159
10.1016/j.inffus.2020.09.002
10.1109/t-affc.2011.15
10.1109/91.227387
10.1109/TKDE.2017.2681670
10.1109/TKDE.2009.191
10.1109/taffc.2014.2339834
10.7551/mitpress/9780262033589.001.0001
10.1109/tpami.2013.197
10.1145/1291233.1291276
10.1109/TAFFC.2018.2828819
10.1109/ICWAPR.2007.4420738
10.1016/j.neunet.2015.01.009
10.3233/BME-130935
10.1080/2326263x.2014.912881
10.1109/IJCNN.2014.6889641
10.1007/s10916-011-9759-1
10.1109/TAFFC.2017.2650899
10.1016/j.neunet.2019.02.007
10.1007/s10044-012-0298-2
10.1049/iet-cta.2014.0672
10.1109/JPROC.2012.2197809
10.1126/science.1076358
10.1109/TIP.2015.2405474
10.1166/jmihi.2016.1923
10.1016/j.isatra.2017.10.012
10.3389/fnins.2021.690044
10.1155/2013/573734
10.1109/tamd.2015.2431497
10.1109/TPAMI.2011.114
10.1006/cbmr.1996.0023
10.1162/neco.1992.4.6.888
10.1109/tpami.2012.57
10.1007/bf02471106
10.1109/access.2019.2937657
10.1109/TNNLS.2012.2186825
10.1016/j.patcog.2016.07.006
10.1109/tcds.2018.2826840
10.1109/tnnls.2013.2263512
10.1109/TNNLS.2013.2271327
10.1109/TIP.2010.2044958
ContentType Journal Article
Copyright Copyright © 2022 Dan, Tao and Zhou.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2022 Dan, Tao and Zhou. 2022 Dan, Tao and Zhou
Copyright_xml – notice: Copyright © 2022 Dan, Tao and Zhou.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2022 Dan, Tao and Zhou. 2022 Dan, Tao and Zhou
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2022.855421
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database (ProQuest)
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

PubMed
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_ef3d2ef246a74c348a9bf442e7f39a40
PMC9114636
35600616
10_3389_fnins_2022_855421
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
88I
ACXDI
C1A
CCPQU
DWQXO
GNUQQ
IAO
IEA
IHR
ISR
M~E
NPM
3V.
7XB
8FK
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c493t-3e28b2c5f84ef0498989b330af721d5fb2c4bf88a9fb5e61109f9e4e84bdc2513
IEDL.DBID M2P
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000797487800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-453X
1662-4548
IngestDate Fri Oct 03 12:53:27 EDT 2025
Thu Aug 21 18:31:28 EDT 2025
Fri Sep 05 13:44:08 EDT 2025
Sat Nov 01 15:01:38 EDT 2025
Thu Jan 02 22:53:23 EST 2025
Sat Nov 29 02:55:16 EST 2025
Tue Nov 18 21:38:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords encephalogram
fuzzy entropy
semi-supervised learning
multi-model adaptation
clustering assumption
emotion recognition
Language English
License Copyright © 2022 Dan, Tao and Zhou.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-3e28b2c5f84ef0498989b330af721d5fb2c4bf88a9fb5e61109f9e4e84bdc2513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience
Edited by: Yuanpeng Zhang, Nantong University, China
These authors have contributed equally to this work
Reviewed by: Liang Yu, Shanghai Jiao Tong University, China; Tingyang Chen, Wuhan University of Technology, China
OpenAccessLink https://www.proquest.com/docview/2659388820?pq-origsite=%requestingapplication%
PMID 35600616
PQID 2659388820
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_ef3d2ef246a74c348a9bf442e7f39a40
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9114636
proquest_miscellaneous_2668220164
proquest_journals_2659388820
pubmed_primary_35600616
crossref_citationtrail_10_3389_fnins_2022_855421
crossref_primary_10_3389_fnins_2022_855421
PublicationCentury 2000
PublicationDate 2022-05-04
PublicationDateYYYYMMDD 2022-05-04
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-04
  day: 04
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2022
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Dan (B11) 2021; 15
Kosko (B23) 1986; 40
Zhu (B63) 2009
Tao (B38) 2019; 87
Belkin (B3) 2006; 7
Hou (B18) 2017; 29
Zhao (B57) 2016; 73
Duan (B13); 34
Zhang (B53) 2017; 7
Tu (B42) 2013; 16
Kim (B21) 2013; 2013
Tenenbaum (B40) 2000; 290
Ganin (B15) 2015
Xue (B47) 2007
Xue (B48) 2011; 22
Atkeson (B1) 1997; 11
Chai (B8) 2017; 17
Wang (B45) 2012; 23
Gao (B16) 2010; 38
Bruzzone (B6) 2010; 32
Long (B28) 2015
Zhao (B56) 2015; 9
Musha (B31) 1997; 1
Zhang (B50); 37
Mühl (B30) 2014; 1
Wang (B44) 2013; 24
Chai (B7) 2016; 79
Tao (B35) 2021; 99
Nie (B32) 2010; 19
Bishop (B4) 2006
Chu (B10) 2017; 39
Krishnapuram (B24) 1993; 1
Zu (B65) 2019; 13
Koelstra (B22) 2012; 3
Lan (B25) 2018; 11
Tao (B39) 2017; 61
Chapelle (B9) 2006
Wu (B46) 2018; 54
Yang (B49) 2007
Geng (B17) 2012; 34
Belkin (B2) 2001
Tao (B36) 2015; 69
Bottou (B5) 1992; 4
Dolan (B12) 2002; 298
Zhou (B60) 2014
Zhong (B59) 2020; 99
Zhu (B64) 2017; 9
Zheng (B58) 2015; 7
Li (B26) 2011
Zhang (B52); 9
Mansour (B29) 2009
Zhang (B54) 2016; 6
Zhu (B62) 2008
Tommasi (B41) 2014; 36
Zhang (B51); 7
Karasuyama (B20) 2013; 24
Zhang (B55) 2020; 66
Wang (B43) 2019
Pan (B33) 2010; 22
Shi (B34) 2015; 24
Liu (B27) 2012; 100
Jenke (B19) 2014; 5
Zhou (B61) 2018; 11
Duan (B14)
Tao (B37) 2016; 98
References_xml – year: 2008
  ident: B62
  publication-title: Semi-Supervised Learning Literature Survey [R]. Computer Science TR 1530.
– year: 2001
  ident: B2
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
  publication-title: Proceedings of the 14 th International. Conference on Neural Information Processing Systems
  doi: 10.1162/0899766041732396
– volume: 17
  start-page: 1014
  year: 2017
  ident: B8
  article-title: A fast, efficient domain adaptation technique for cross-domain electroencephalography (EEG)-based emotion recognition
  publication-title: Sensors
  doi: 10.3390/s17051014
– volume: 99
  year: 2021
  ident: B35
  article-title: Robust multi-source co-adaptation with adaptive loss minimization.
  publication-title: Sign. Proces. Image Commun.
  doi: 10.1016/j.image.2021.116455
– volume: 32
  start-page: 770
  year: 2010
  ident: B6
  article-title: Domain adaptation problems: a DASVM classification technique and a circular validation strategy.
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
  doi: 10.1109/TPAMI.2009.57
– volume: 79
  start-page: 205
  year: 2016
  ident: B7
  article-title: Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.10.019
– volume: 13
  start-page: 1217
  year: 2019
  ident: B65
  article-title: Semi-supervised classification application of remote sensing image based on block low rank images.
  publication-title: J. Front. Comput. Sci. Technol.
– volume: 38
  start-page: 1626
  year: 2010
  ident: B16
  article-title: Global and local preserving based semi-supervised support vector machine.
  publication-title: Acta Electron. Sin.
– volume: 22
  start-page: 573
  year: 2011
  ident: B48
  article-title: Structural regularized support vector machine: a framework for structural large margin classifier.
  publication-title: IEEE Transact. Neur. Netw.
  doi: 10.1109/TNN.2011.2108315
– volume: 11
  start-page: 11
  year: 1997
  ident: B1
  article-title: Locally weighted learning.
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/978-94-017-2053-3_2
– volume: 98
  start-page: 76
  year: 2016
  ident: B37
  article-title: Multi-source adaptation learning with global and local regularization by exploiting joint kernel sparse representation.
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2016.01.021
– volume: 290
  start-page: 2319
  year: 2000
  ident: B40
  article-title: A global geometric framework for nonlinear dimensionality reduction.
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– volume: 73
  start-page: 206
  year: 2016
  ident: B57
  article-title: Evaluation and comparison of current biopsy needle localization and tracking methods using 3d ultrasound.
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2016.09.006
– volume: 39
  start-page: 529
  year: 2017
  ident: B10
  article-title: Selective transfer machine for personalized facial action unit detection.
  publication-title: IEEE Transact. Patt. Anal. Mach. Intellig.
  doi: 10.1109/CVPR.2013.451
– volume: 40
  start-page: 165
  year: 1986
  ident: B23
  article-title: Fuzzy entropy and conditioning.
  publication-title: Inform. Sci.
  doi: 10.1016/0020-0255(86)90006-x
– volume: 9
  start-page: 1
  ident: B52
  article-title: A view-reduction based multi-view TSK fuzzy system and its application for textile color classification.
  publication-title: J. Amb. Intellig. Human. Comput.
  doi: 10.1007/s12652-019-01495-9
– volume: 99
  year: 2020
  ident: B59
  article-title: EEG-based emotion recognition using regularized graph neural networks.
  publication-title: IEEE Transact. Affect. Comput.
  doi: 10.1109/taffc.2020.2994159
– start-page: 1338
  ident: B14
  article-title: Exploiting web images for event recognition in consumer videos: A multiple source domain adaptation approach
  publication-title: Proceedings of the CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR
– volume: 66
  start-page: 170
  year: 2020
  ident: B55
  article-title: Alzheimer’s disease multiclass diagnosis via multimodal neuroimaging embedding feature selection and fusion.
  publication-title: Inform. Fus.
  doi: 10.1016/j.inffus.2020.09.002
– volume: 3
  start-page: 18
  year: 2012
  ident: B22
  article-title: DEAP: a database for emotion analysis using physiological signals.
  publication-title: IEEE Transact. Affect. Comput.
  doi: 10.1109/t-affc.2011.15
– volume: 1
  start-page: 98
  year: 1993
  ident: B24
  article-title: A possibilistic approach to clustering [J].
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.227387
– volume: 29
  start-page: 1998
  year: 2017
  ident: B18
  article-title: Multi-view unsupervised feature selection with adaptive similarity and view weight
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2681670
– volume: 22
  start-page: 1345
  year: 2010
  ident: B33
  article-title: A survey on transfer learning.
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 5
  start-page: 327
  year: 2014
  ident: B19
  article-title: Feature extraction and selection for emotion recognition from EEG.
  publication-title: IEEE Transact. Affect. Comput.
  doi: 10.1109/taffc.2014.2339834
– year: 2006
  ident: B9
  publication-title: Scholkopf Bernhard, and Zien Alexander, Semi-Supervised Learning.
  doi: 10.7551/mitpress/9780262033589.001.0001
– volume: 36
  start-page: 928
  year: 2014
  ident: B41
  article-title: Learning categories from few examples with multi model knowledge transfer.
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/tpami.2013.197
– start-page: 188
  year: 2007
  ident: B49
  article-title: Cross-domain video concept detection using adaptive svms
  publication-title: Proceedings of the 15th ACM International Conference on Multimedia
  doi: 10.1145/1291233.1291276
– volume: 11
  start-page: 542
  year: 2018
  ident: B61
  article-title: Visually interpretable representation learning for depression recognition from facial Im-ages.
  publication-title: IEEE Transact. Affect. Comput.
  doi: 10.1109/TAFFC.2018.2828819
– start-page: 591
  year: 2007
  ident: B47
  article-title: Alternative robust local embedding
  publication-title: Proceedings of International Conference on Wavelet Analysis Pattern Recognition
  doi: 10.1109/ICWAPR.2007.4420738
– volume: 69
  start-page: 80
  year: 2015
  ident: B36
  article-title: L1-norm locally linear representation regularization multi-source adaptation learning.
  publication-title: Neur. Netw.
  doi: 10.1016/j.neunet.2015.01.009
– start-page: 386
  year: 2011
  ident: B26
  article-title: Improving semi-supervised support vector machines through unlabeled instances selection
  publication-title: Proceedings of the 25th AAAI Conference of Artificial. Intelligence
  doi: 10.3233/BME-130935
– volume: 1
  start-page: 66
  year: 2014
  ident: B30
  article-title: A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges.
  publication-title: Brain Comput. Interfac.
  doi: 10.1080/2326263x.2014.912881
– start-page: 3755
  year: 2019
  ident: B43
  article-title: Partial label learning with unlabeled data
  publication-title: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI’19)
– start-page: 550
  year: 2014
  ident: B60
  article-title: Spectral clustering-based local and global structure preservation for feature selection
  publication-title: Proceedings of the 2014 International Joint Conference on Neural Networks
  doi: 10.1109/IJCNN.2014.6889641
– start-page: 1180
  year: 2015
  ident: B15
  article-title: Unsupervised domain adaptation by back propagation
  publication-title: Proceedings of the 32nd International Conference on Machine Learning
  doi: 10.1007/s10916-011-9759-1
– volume: 9
  start-page: 578
  year: 2017
  ident: B64
  article-title: automated depression diagnosis based on deep networks to encode facial appearance and dynamics.
  publication-title: IEEE Transact. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2650899
– volume: 87
  start-page: 296
  year: 2019
  ident: B38
  article-title: Latent multi-feature co-regression for visual recognition by discriminatively leveraging multi-source models.
  publication-title: Patt. Recogn.
  doi: 10.1016/j.neunet.2019.02.007
– volume: 16
  start-page: 213
  year: 2013
  ident: B42
  article-title: Semi-supervised feature extraction for EEG classification[J].
  publication-title: Patt. Anal. Appl. Paa
  doi: 10.1007/s10044-012-0298-2
– start-page: 97
  year: 2015
  ident: B28
  article-title: Learning transferable features with deep adaptation networks
  publication-title: Proceedings of the 32nd International Conference on International Conference on Machine Learning
– volume: 9
  start-page: 1124
  year: 2015
  ident: B56
  article-title: Comparison of the existing tool localization methods on two-dimensional ultrasound images and their tracking results.
  publication-title: Control Theor Appl.
  doi: 10.1049/iet-cta.2014.0672
– volume: 100
  start-page: 2624
  year: 2012
  ident: B27
  article-title: Robust and scalable graph-based semi-supervised learning.
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2197809
– volume: 298
  start-page: 1191
  year: 2002
  ident: B12
  article-title: Emotion, cognition, and behavior.
  publication-title: Science
  doi: 10.1126/science.1076358
– volume: 24
  start-page: 1341
  year: 2015
  ident: B34
  article-title: A framework of joint graph embedding and sparse regression for dimensionality reduction
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2405474
– volume: 54
  start-page: 109
  year: 2018
  ident: B46
  article-title: Semi-supervised pattern classification method based on Tri-DE-ELM.
  publication-title: Comp. Eng. Appl.
– volume: 6
  start-page: 1337
  year: 2016
  ident: B54
  article-title: A clustering method based on fast exemplar finding and its application on brain magnetic resonance images segmentation [J].
  publication-title: J. Med. Imag. Health Inform.
  doi: 10.1166/jmihi.2016.1923
– volume: 37
  start-page: 8535
  ident: B50
  article-title: Takagi-sugeno-kang. Fuzzy systems with dynamic rule weights.
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.1016/j.isatra.2017.10.012
– volume: 15
  year: 2021
  ident: B11
  article-title: Possibilistic clustering-promoting semi-supervised learning for EEG-based emotion recognition.
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.690044
– volume: 2013
  year: 2013
  ident: B21
  article-title: A review on the computational methods for emotional state estimation from the human EEG.
  publication-title: Computat. Math. Methods Med.
  doi: 10.1155/2013/573734
– volume: 7
  start-page: 162
  year: 2015
  ident: B58
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks.
  publication-title: IEEE Transact. Autono. Mental Dev.
  doi: 10.1109/tamd.2015.2431497
– year: 2006
  ident: B4
  publication-title: Pattern Recognition and Machine Learning.
– start-page: 1041
  year: 2009
  ident: B29
  article-title: Domain adaptation with multiple sources
  publication-title: Proceedings of the Conference on Neural Information Processing Systems
– volume: 34
  start-page: 465
  ident: B13
  article-title: Domain transfer multiple kernel learning.
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.114
– volume: 7
  start-page: 1654
  year: 2017
  ident: B53
  article-title: Brain MRI tissue classification based fuzzy clustering with competitive learning.
  publication-title: J. Med. Imag. Health Inform.
  doi: 10.1006/cbmr.1996.0023
– volume: 7
  start-page: 2399
  year: 2006
  ident: B3
  article-title: Manifold regularization: a geometric framework for learning from examples.
  publication-title: J. Mach. Learn. Res.
– volume: 4
  start-page: 888
  year: 1992
  ident: B5
  article-title: Local learning algorithms.
  publication-title: Neur. Comput.
  doi: 10.1162/neco.1992.4.6.888
– volume: 34
  start-page: 1227
  year: 2012
  ident: B17
  article-title: Ensemble manifold regularization.
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
  doi: 10.1109/tpami.2012.57
– volume: 1
  start-page: 15
  year: 1997
  ident: B31
  article-title: Feature extraction from EEGs associated with emotions.
  publication-title: Artif. Life Robot.
  doi: 10.1007/bf02471106
– volume: 7
  start-page: 127600
  ident: B51
  article-title: Common and special knowledge-driven TSK fuzzy system and its modeling and application for epileptic EEG signals recognition.
  publication-title: IEEE Access
  doi: 10.1109/access.2019.2937657
– volume: 23
  start-page: 689
  year: 2012
  ident: B45
  article-title: New semi-supervised classification method based on modified cluster assumption.
  publication-title: IEEE Transact. Neur. Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2186825
– volume: 61
  start-page: 47
  year: 2017
  ident: B39
  article-title: Robust multi-source adaptation visual classification using supervised low-rank representation.
  publication-title: Patt. Recogn.
  doi: 10.1016/j.patcog.2016.07.006
– volume: 11
  start-page: 85
  year: 2018
  ident: B25
  article-title: Domain adaptation techniques for EEG-based emotion recognition: a comparative study on two public datasets.
  publication-title: IEEE Transact. Cogn. Dev. Syst.
  doi: 10.1109/tcds.2018.2826840
– start-page: 130
  year: 2009
  ident: B63
  publication-title: Introduction to Semi-Supervised Learning
– volume: 24
  start-page: 1763
  year: 2013
  ident: B44
  article-title: Safety-aware semi-supervised classification[J].
  publication-title: IEEE Tran.s Neur. Netw. Learn Syst.
  doi: 10.1109/tnnls.2013.2263512
– volume: 24
  start-page: 1999
  year: 2013
  ident: B20
  article-title: Multiple graph label propagation by sparse integration.
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2271327
– volume: 19
  start-page: 1921
  year: 2010
  ident: B32
  article-title: Flexible manifold embedding: a framework for semi-supervised and unsupervised di- mension reduction.
  publication-title: IEEE Transact. Image Proces.
  doi: 10.1109/TIP.2010.2044958
SSID ssj0062842
Score 2.2992628
Snippet In machine learning community, graph-based semi-supervised learning (GSSL) approaches have attracted more extensive research due to their elegant mathematical...
In the field of machine learning, graph-based semi-supervised learning (GSSL) has attracted more and more attention due to its intuitive and good learning...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 855421
SubjectTerms Accuracy
Adaptive learning
Classification
clustering assumption
Datasets
EEG
Efficiency
Electroencephalography
emotion recognition
Emotions
encephalogram
Entropy
fuzzy entropy
Machine learning
multi-model adaptation
Neuroscience
Noise
Remote sensing
semi-supervised learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4h1AOXqi19hFJkpKqHSikb23HsI6ClPSCEqj64RYkfZRF4Eewi8e87Y2dXLKraS68ZW3HmG8cz9vgbgPeh6muP62DpJO1WVUGXHSVT6VoJ6bXlIVWJ-HHcnJzoszNz-qDUF-WEZXrgrLg9H4TjPnCpukZaIXVn-iAl900QppMpWh81ZhFM5X-wwp8uz2eYGIKZvRAnkbi5Of9EaVm8WlmFEln_nzzMx4mSD1aeo2fwdHAZ2X4e6nNY8_EFbO5HDJev7tkHlpI40-74JlykC7UlVTjDHq67ziftbKBR_cV-Tmbn7HR6m7NiiaSZHV7OiS2BpAgWwpt6oDPLxuPP5QEuc46Nc7Uf9nWRbzSNL-H70fjb4ZdyKKdQWmnErBSe657bOmjpAwYGVDiyF2LUBYwCXR1QJvugUcEB8VNERRqMR8Bk7yy6QeIVrMdp9G-A9Y3UYeSVa5SVVWP7SiknPRWwwaYuFDBaqLe1A9c4lby4bDHmIETahEhLiLQZkQI-LrtcZ6KNvzU-IMyWDYkjOz1Ay2kHy2n_ZTkFbC8Qb4eJiy9RtREaww4U7y7FOOXoHKWLfjqnNgrdKuImK-B1NpDlSAR5kKpSBTQrprMy1FVJnJwnWm9DF8SF2vof3_YWNkhdKTNTbsP67Gbu38ETezeb3N7spLnyG24BHEw
  priority: 102
  providerName: Directory of Open Access Journals
Title Multi-Model Adaptation Learning With Possibilistic Clustering Assumption for EEG-Based Emotion Recognition
URI https://www.ncbi.nlm.nih.gov/pubmed/35600616
https://www.proquest.com/docview/2659388820
https://www.proquest.com/docview/2668220164
https://pubmed.ncbi.nlm.nih.gov/PMC9114636
https://doaj.org/article/ef3d2ef246a74c348a9bf442e7f39a40
Volume 16
WOSCitedRecordID wos000797487800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH6iHQ5c2MoSKCMjIQ5IoYntOM4JdaopINFRVLEMpyiL3Q4qyTALEv-e95xFDEK9cMlhbGucfM_22_w9gBc2LCKD56BfSfJWhVb7OSVT6UgJaXTJrasS8flDPJvp-TxJO4fbukur7PdEt1FXTUk-8iOuokSgucaDN8sfPlWNouhqV0JjD0ao2YSU0nXG034nVrj1uminoptBqJq3UU00ypIjWy9qYuvm_DUlavFw51xy9P3_0jn_Tp384yw6vfO_b3EXbndaKDtuxeYe3DD1fTg4rtEC__6LvWQuL9Q53A_gm7uj61PRNBxR5cs2eM86ZtYL9mWxuWRps24TbYn3mZ1cbYmAgVoRf5QYNwL1YzadvvUneHJWbNoWEGLnfQpTUz-AT6fTjyfv_K5Cg1_KRGx8YbgueBlZLY1FW4NqURZCBLlFw7KKLLbJwmqdJxZFQhG7qU0MyoAsqhI1K_EQ9uumNo-BFbHUNjCqilUpw7gsELVKGqqJg10r60HQ45OVHX05VdG4ytCMIUgzB2lGkGYtpB68GoYsW-6O6zpPCPShI9Fuux-a1UXWreLMWFFxY7lUeSxLIfHFCislN7EVSS4DDw572LNuL8A_GTD34PnQjKuYQjN5bZot9VGoqRHdmQePWgkbZiJIKVWh8iDekb2dqe621ItLxxSe0J1zoZ5cP62ncIs-hEvjlIewv1ltzTO4Wf7cLNarMezFcz2G0WQ6S8_HzmcxdsuMnjE-R-n7s_Trbz9AMew
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NgcRe-DVggQFGAh6QwhrbdZIHhLbRsWmlqtCAvYXEsbeikZQ2Be2f4m_kzvkhitDe9sBrbbd2-vl8l_v8HcAzG2R9g-egn0t6WxXYyE-JTBX1lZAm0ty6KhGfhuFoFB0fx-MV-NXehSFaZWsTnaHOS03vyLe46scCwzXeezP97lPVKMqutiU0algcmvOfGLLNXx-8xf_3Oed7g6Pdfb-pKuBrGYvKF4ZHGdd9G0lj0T-m-okZRvWpxWAo71tsk5mNojS2uAxFipw2NjhvmeUavQGB33sFrkpSFiOqIB-3ll-hqXfZVUU3kTAUqLOoGATGW7aYFKQOzvkrIobxYOkcdOUC_uXj_k3V_OPs27v5vz21W3Cj8bLZdr0tbsOKKe7A-naRVuW3c_aCOd6rSyisw1d3B9mnonA4Ik-nNTmBNcqzJ-zzpDpl43JeE4lJ15rtni1IYIJaEd-4I9wI9P_ZYPDO30HPIGeDukAS-9BStMriLny8lFXfg9WiLMwGsCyUke0ZlYdKyyDUGaIkl4Zq_mDX3HrQa_GQ6EaenaqEnCUYphGEEgehhCCU1BDy4GU3ZFprk1zUeYdA1nUkWXH3QTk7SRorlRgrcm4slyoNpRYSF5ZZKbkJrYhT2fNgs4VZ0tg6_JEOYx487ZrRSlHqKS1MuaA-Cj1RknPz4H6N6G4mgpxuFSgPwiWsL011uaWYnDol9Jju1Av14OJpPYHr-0fvh8nwYHT4ENbooTjKqtyE1Wq2MI_gmv5RTeazx247M_hy2TvhN9suiUk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCEuvArFUGCRgAOSSbxer-0DQn0kELVEFoJSTq4fu21QsUPigPrX-HXMrB8iCPXWA9fsbrLrfDs74_l2PoBn2kk9heegnQt6W-XowE6ITBV40hUqyLg2KhGHB_5kEhwdhdEa_GrvwhCtsrWJxlDnZUbvyPtceqGL4Rof9HVDi4j2Rm9m321SkKJMayunUUNkX53_xPBt8Xq8h__1c85Hw4-77-xGYcDOROhWtqt4kPLM04FQGn1l0lJMMcJPNAZGuaexTaQ6CJJQ45IkVefUocI1iDTP0DNw8XuvwDq65IL3YD0av4--tOeARMNvcq2S7iVhYFDnVDEkDPu6mBZUK5zzV0QT487KqWjEA_7l8f5N3PzjJBzd_J-f4S240fjfbLveMLdhTRV3YGO7SKry2zl7wQwj1qQaNuCruZ1sk1wcjsiTWU1bYE1N2hP2eVqdsqhc1BRjqnjNds-WVHqCWhH5uFfMCIwM2HD41t5BnyFnw1o6iX1oyVtlcRc-Xcqq70GvKAt1H1jqi0APlMx9mQnHz1JETC4UqQFh11xbMGixEWdN4XbSDzmLMYAjOMUGTjHBKa7hZMHLbsisrlpyUecdAlzXkQqOmw_K-Unc2K9YaTfnSnMhE19krsCFpVoIrnzthokYWLDVQi5urCD-SIc3C552zWi_KCmVFKpcUh-JPioVerNgs0Z3NxOX3HHpSAv8FdyvTHW1pZiemhrpId22d-WDi6f1BK7hBogPxpP9h3Cdnonhsoot6FXzpXoEV7Mf1XQxf9zsbQbHl70VfgM95JOS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Model+Adaptation+Learning+With+Possibilistic+Clustering+Assumption+for+EEG-Based+Emotion+Recognition&rft.jtitle=Frontiers+in+neuroscience&rft.au=Dan%2C+Yufang&rft.au=Tao%2C+Jianwen&rft.au=Zhou%2C+Di&rft.date=2022-05-04&rft.pub=Frontiers+Research+Foundation&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389%2Ffnins.2022.855421&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon