Learning from imbalanced COVID-19 chest X-ray (CXR) medical imaging data

[Display omitted] •Presented a systematic approach to learn from imbalanced set of bio-medical images.•Developed a practical “survival of the fittest” approach for hyperparameter tuning of models.•Proposed a framework to use leftout imbalanced data for pseudo-testing purpose.•Provided a publicly ava...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods (San Diego, Calif.) Jg. 202; S. 31 - 39
Hauptverfasser: Chan, Jonathan H., Li, Chenqi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Inc 01.06.2022
Schlagworte:
ISSN:1046-2023, 1095-9130, 1095-9130
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract [Display omitted] •Presented a systematic approach to learn from imbalanced set of bio-medical images.•Developed a practical “survival of the fittest” approach for hyperparameter tuning of models.•Proposed a framework to use leftout imbalanced data for pseudo-testing purpose.•Provided a publicly available chest X-ray dataset on the Kaggle platform.•Outperformed global competitors in terms of F1 and recall scores on the given dataset. The trendy task of digital medical image analysis has been continually evolving. It has been an area of prominent and growing importance from both research and deployment perspectives. Nonetheless, it is necessary to realize that the use of algorithms, methodology, as well as the source of medical image data, must be strictly scrutinized. As the COVID-19 pandemic has been gripping much of the world recently, there has been much efforts gone into developing affordable testing for the masses, and it has been shown that the established and widely available chest X-rays (CXR) images may be used as a screening criteria for assistive diagnosis purpose. Thanks to the dedicated work by various individuals and organizations, publicly available CXR of COVID-19 subjects are available for analytic usage. We have also provided a publicly available CXR dataset on the Kaggle platform. As a case study, this paper presents a systematic approach to learn from a typically imbalanced set of CXR images, which consists of a limited number of publicly available COVID-19 images. Our results show that we are able to outperform the top finishers in a related Kaggle multi-class CXR challenge. The proposed methodology should be able to help guide medical personnel in obtaining a robust diagnosis model to discern COVID-19 from other conditions confidently.
AbstractList The trendy task of digital medical image analysis has been continually evolving. It has been an area of prominent and growing importance from both research and deployment perspectives. Nonetheless, it is necessary to realize that the use of algorithms, methodology, as well as the source of medical image data, must be strictly scrutinized. As the COVID-19 pandemic has been gripping much of the world recently, there has been much efforts gone into developing affordable testing for the masses, and it has been shown that the established and widely available chest X-rays (CXR) images may be used as a screening criteria for assistive diagnosis purpose. Thanks to the dedicated work by various individuals and organizations, publicly available CXR of COVID-19 subjects are available for analytic usage. We have also provided a publicly available CXR dataset on the Kaggle platform. As a case study, this paper presents a systematic approach to learn from a typically imbalanced set of CXR images, which consists of a limited number of publicly available COVID-19 images. Our results show that we are able to outperform the top finishers in a related Kaggle multi-class CXR challenge. The proposed methodology should be able to help guide medical personnel in obtaining a robust diagnosis model to discern COVID-19 from other conditions confidently.
The trendy task of digital medical image analysis has been continually evolving. It has been an area of prominent and growing importance from both research and deployment perspectives. Nonetheless, it is necessary to realize that the use of algorithms, methodology, as well as the source of medical image data, must be strictly scrutinized. As the COVID-19 pandemic has been gripping much of the world recently, there has been much efforts gone into developing affordable testing for the masses, and it has been shown that the established and widely available chest X-rays (CXR) images may be used as a screening criteria for assistive diagnosis purpose. Thanks to the dedicated work by various individuals and organizations, publicly available CXR of COVID-19 subjects are available for analytic usage. We have also provided a publicly available CXR dataset on the Kaggle platform. As a case study, this paper presents a systematic approach to learn from a typically imbalanced set of CXR images, which consists of a limited number of publicly available COVID-19 images. Our results show that we are able to outperform the top finishers in a related Kaggle multi-class CXR challenge. The proposed methodology should be able to help guide medical personnel in obtaining a robust diagnosis model to discern COVID-19 from other conditions confidently.The trendy task of digital medical image analysis has been continually evolving. It has been an area of prominent and growing importance from both research and deployment perspectives. Nonetheless, it is necessary to realize that the use of algorithms, methodology, as well as the source of medical image data, must be strictly scrutinized. As the COVID-19 pandemic has been gripping much of the world recently, there has been much efforts gone into developing affordable testing for the masses, and it has been shown that the established and widely available chest X-rays (CXR) images may be used as a screening criteria for assistive diagnosis purpose. Thanks to the dedicated work by various individuals and organizations, publicly available CXR of COVID-19 subjects are available for analytic usage. We have also provided a publicly available CXR dataset on the Kaggle platform. As a case study, this paper presents a systematic approach to learn from a typically imbalanced set of CXR images, which consists of a limited number of publicly available COVID-19 images. Our results show that we are able to outperform the top finishers in a related Kaggle multi-class CXR challenge. The proposed methodology should be able to help guide medical personnel in obtaining a robust diagnosis model to discern COVID-19 from other conditions confidently.
[Display omitted] •Presented a systematic approach to learn from imbalanced set of bio-medical images.•Developed a practical “survival of the fittest” approach for hyperparameter tuning of models.•Proposed a framework to use leftout imbalanced data for pseudo-testing purpose.•Provided a publicly available chest X-ray dataset on the Kaggle platform.•Outperformed global competitors in terms of F1 and recall scores on the given dataset. The trendy task of digital medical image analysis has been continually evolving. It has been an area of prominent and growing importance from both research and deployment perspectives. Nonetheless, it is necessary to realize that the use of algorithms, methodology, as well as the source of medical image data, must be strictly scrutinized. As the COVID-19 pandemic has been gripping much of the world recently, there has been much efforts gone into developing affordable testing for the masses, and it has been shown that the established and widely available chest X-rays (CXR) images may be used as a screening criteria for assistive diagnosis purpose. Thanks to the dedicated work by various individuals and organizations, publicly available CXR of COVID-19 subjects are available for analytic usage. We have also provided a publicly available CXR dataset on the Kaggle platform. As a case study, this paper presents a systematic approach to learn from a typically imbalanced set of CXR images, which consists of a limited number of publicly available COVID-19 images. Our results show that we are able to outperform the top finishers in a related Kaggle multi-class CXR challenge. The proposed methodology should be able to help guide medical personnel in obtaining a robust diagnosis model to discern COVID-19 from other conditions confidently.
Author Chan, Jonathan H.
Li, Chenqi
Author_xml – sequence: 1
  givenname: Jonathan H.
  surname: Chan
  fullname: Chan, Jonathan H.
  email: jonathan@sit.kmutt.ac.th
  organization: Innovative Cognitive Computing (IC2) Research Center, School of Information Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
– sequence: 2
  givenname: Chenqi
  surname: Li
  fullname: Li, Chenqi
  email: chenqi.li@mail.utoronto.ca
  organization: Division of Engineering Science, Faculty of Applied Science and Engineering, University of Toronto, Toronto, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34090971$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9r3DAQxUVJaf60n6BQfEwPdkeWJUuHFso2bQILgdKW3MRYlne12FYqeQP77Stnk5D20OQkwbw3vDe_Y3Iw-tES8pZCQYGKD5tiN9hpXZRQ0gJEAVC-IEcUFM8VZXAw_yuRpzE7JMcxbgCAlrV8RQ5ZBQpUTY_I-dJiGN24yrrgh8wNDfY4Gttmi8tfF19yqjKztnHKrvKAu-x0cfX9fTbY1hnskxpXs7XFCV-Tlx320b65e0_Iz69nPxbn-fLy28Xi8zI3lSqnvKVcdjVjteRcIeMNp0YgdGA7oLJqGjDS8LprGylR1F3FEIWoWtoyrIFW7IR82u-93jYph7HjFLDX1yGFCTvt0em_J6Nb65W_0armSpYiLTi9WxD8722qpgcXje1Tbeu3UZecU6WAUvYMKZNQccZ5kr57HOshz_2lk4DtBSb4GIPtHiQU9MxTb_QtTz3z1CB04plc6h-XcRNOzs_dXP-E9-PeaxOOG2eDjsbZma0L1ky69e6__j_AH7pz
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3365544
crossref_primary_10_1007_s12539_025_00726_2
crossref_primary_10_1007_s42979_024_03529_2
Cites_doi 10.1148/radiol.2020203173
10.1148/radiol.2020201343
10.1016/j.clinimag.2020.06.031
10.1101/2020.11.07.20227504
10.1016/j.jacr.2020.02.008
10.1016/j.compbiomed.2020.103792
10.1109/ACCESS.2020.2994762
10.1155/2020/8889023
10.1016/j.mehy.2020.109761
10.2214/AJR.20.23411
10.1007/s00330-020-07453-w
10.1016/j.cmpb.2020.105581
10.3390/diagnostics10060417
10.1016/j.eswa.2016.12.035
10.1016/j.knosys.2020.106631
10.1016/j.ejrad.2020.108996
10.1016/j.ejrad.2020.109272
10.1007/978-981-15-6759-9_9
10.1007/s10489-020-01829-7
10.1007/s13246-020-00865-4
10.7717/peerj.9470
10.1186/s12938-020-00831-x
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
2021 Elsevier Inc. All rights reserved. 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
– notice: 2021 Elsevier Inc. All rights reserved. 2021 Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.ymeth.2021.06.002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
AGRICOLA


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1095-9130
EndPage 39
ExternalDocumentID PMC9759826
34090971
10_1016_j_ymeth_2021_06_002
S1046202321001547
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HMG
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG5
LX2
LZ5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SIN
SPCBC
SSU
SSZ
T5K
WUQ
XPP
Y6R
ZGI
ZMT
ZU3
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c492t-d158f73378559a35b51c6a0f0ef0184bb0c8c57fdb88a67f43aa664d1d3a70143
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000804389000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1046-2023
1095-9130
IngestDate Tue Sep 30 17:17:46 EDT 2025
Sun Nov 09 09:38:24 EST 2025
Sun Sep 28 08:36:45 EDT 2025
Thu Apr 03 07:06:39 EDT 2025
Sat Nov 29 07:02:57 EST 2025
Tue Nov 18 21:46:58 EST 2025
Fri Feb 23 02:39:17 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
Imbalanced data
Medical imaging
Deep neural networks
Chest X-ray
Transfer learning
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c492t-d158f73378559a35b51c6a0f0ef0184bb0c8c57fdb88a67f43aa664d1d3a70143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9759826
PMID 34090971
PQID 2538045355
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9759826
proquest_miscellaneous_2551990113
proquest_miscellaneous_2538045355
pubmed_primary_34090971
crossref_primary_10_1016_j_ymeth_2021_06_002
crossref_citationtrail_10_1016_j_ymeth_2021_06_002
elsevier_sciencedirect_doi_10_1016_j_ymeth_2021_06_002
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Methods (San Diego, Calif.)
PublicationTitleAlternate Methods
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Haixiang, Yijing, Shang, Mingyun, Yuanyue, Bing (b0060) 2017; 73
E.A. Akl, I. Blažić, S. Yaacoub, G. Frija, R. Chou, J.A. Appiah, M. Fatehi, N. Flor, E. Hitti, H. Jafri, Z.-Y. Jin, H.U. Kauczor, M. Kawooya, E.A. Kazerooni, J.P. Ko, R. Mahfouz, V. Muglia, R. Nyabanda, M. Sanchez, P.B. Shete, M. Ulla, C. Zheng, E. van Deventer, M. d. R. Perez, Use of chest imaging in the diagnosis and management of covid-19: A WHO rapid advice guide, Radiology 298 (2) (2021) E63–E69, pMID: 32729811. doi:10.1148/radiol.2020203173. doi: 10.1148/radiol.2020203173.
I.D. Apostolopoulos, T.A. Mpesiana, Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks, Physical and engineering sciences in medicine 43 (2) (2020) 635–640, edition: 2020/04/03 Publisher: Springer International Publishing. doi:10.1007/s13246-020-00865-4. https://pubmed.ncbi.nlm.nih.gov/32524445.
Xiao, Cooper, Godbe, Bechel, Scott, Nguyen, McCarthy, Abboud, Allen, Parekh (b0140) 2020
H. Kim, H. Hong, S.H. Yoon, Diagnostic Performance of CT and Reverse Transcriptase Polymerase Chain Reaction for Coronavirus Disease 2019: A Meta-Analysis, Radiology 296 (3) (2020) E145–E155, edition: 2020/04/17 Publisher: Radiological Society of North America. doi:10.1148/radiol.2020201343. https://pubmed.ncbi.nlm.nih.gov/32301646.
A.I. Khan, J.L. Shah, M.M. Bhat, CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images, Computer methods and programs in biomedicine 196 (2020) 105581–105581, edition: 2020/06/05 Publisher: Elsevier B.V. doi:10.1016/j.cmpb.2020.105581. https://pubmed.ncbi.nlm.nih.gov/32534344.
Y. Zhao, C. Xiang, S. Wang, C. Peng, Q. Zou, J. Hu, Radiology department strategies to protect radiologic technologists against COVID19: Experience from Wuhan, European journal of radiology 127 (2020) 108996–108996, edition: 2020/04/20 Publisher: Elsevier B.V. doi:10.1016/j.ejrad.2020.108996. https://pubmed.ncbi.nlm.nih.gov/32344294.
Waheed, Goyal, Gupta, Khanna, Al-Turjman, Pinheiro (b0090) 2020; 8
N. Flor, R. Dore, F. Sardanelli, On the Role of Chest Radiography and CT in the Coronavirus Disease (COVID-19) Pandemic., AJR. American journal of roentgenology 215 (4) (2020) W44, place: United States. doi:10.2214/AJR.20.23411.
H.R. Tizhoosh, J. Fratesi, COVID-19, AI enthusiasts, and toy datasets: radiology without radiologists, European Radiology doi:10.1007/s00330-020-07453-w. doi: 10.1007/s00330-020-07453-w.
M.K. Hasan, M.A. Alam, L. Dahal, M.T.E. Elahi, S. Roy, S.R. Wahid, R. Martí, B. Khanal, Challenges of deep learning methods for covid-19 detection using public datasets, medRxiv doi:10.1101/2020.11.07.20227504. https://www.medrxiv.org/content/early/2020/11/10/2020.11.07.20227504.
S. Kooraki, M. Hosseiny, L. Myers, A. Gholamrezanezhad, Coronavirus (COVID-19) Outbreak: What the Department of Radiology Should Know., Journal of the American College of Radiology: JACR 17 (4) (2020) 447–451. doi:10.1016/j.jacr.2020.02.008.
Ucar, Korkmaz (b0110) 2020; 140
Zanardo, Schiaffino, Sardanelli (b0035) 2020; 68
R. Chou, M. Pappas, D. Buckley, M. McDonagh, A. Totten, N. Flor, F. Sardanelli, T. Dana, E. Hart, N. Wasson, H. Nelson, Use of chest imaging in covid-19: a rapid advice guide.
Ozturk, Talo, Yildirim, Baloglu, Yildirim, Rajendra Acharya (b0095) 2020; 121
A. Sharma, S. Rani, D. Gupta, Artificial Intelligence-Based Classification of Chest X-Ray Images into COVID-19 and Other Infectious Diseases, Int. J. Biomed. Imaging 2020 (2020) 8889023, publisher: Hindawi. doi:10.1155/2020/8889023. doi: 10.1155/2020/8889023.
Hussain, Nguyen, Li, Abbasi, Lone, Zhao, Zaib, Chen, Duong (b0105) 2020; 19
Abbas, Abdelsamea, Gaber (b0115) 2021; 51
M.F. Hashmi, S. Katiyar, A.G. Keskar, N.D. Bokde, Z.W. Geem, Efficient Pneumonia Detection in Chest Xray Images Using Deep Transfer Learning, Diagnostics (Basel, Switzerland) 10 (6) (2020) 417, publisher: MDPI. doi:10.3390/diagnostics10060417. https://pubmed.ncbi.nlm.nih.gov/32575475.
T. Thanapattheerakul, W. Engchuan, J.H. Chan, Predicting the effect of variants on splicing using convolutional neural networks, PeerJ 8:e9470 doi: 10.7717/peerj.9470.
J. Johnson, T. Khoshgoftaar, Thresholding strategies for deep learning with highly imbalanced big data., Deep Learning Applications, Volume 2. Advances in Intelligent Systems and Computing, vol 1232.In: Wani M.A., Khoshgoftaar T.M., Palade V. (eds) Springer, Singapore. doi: 10.1007/978-981-15-6759-9_9.
Chen, Jaegerman, Matic, Inayatali, Charoenkitkarn, Chan (b0125) 2020
M. Buda, A. Maki, M.A. Mazurowski, A systematic study of the class imbalance problem in convolutional neural networks, CoRR abs/1710.05381. arXiv:1710.05381.
Vuttipittayamongkol, Elyan, Petrovski (b0075) 2021; 212
J.H. Chan, Dlai3 hackathon phase3 covid-19 cxr challenge. kaggle. doi:10.34740/KAGGLE/DSV/1347344.
A. Cozzi, S. Schiaffino, F. Arpaia, G. Della Pepa, S. Tritella, P. Bertolotti, L. Menicagli, C.G. Monaco, L.A. Carbonaro, R. Spairani, B. Babaei Paskeh, F. Sardanelli, Chest x-ray in the COVID-19 pandemic: Radiologists’ real-world reader performance, European journal of radiology 132 (2020) 109272–109272, edition: 2020/09/10 Publisher: Elsevier B.V. doi:10.1016/j.ejrad.2020.109272. https://pubmed.ncbi.nlm.nih.gov/32971326.
Li, Wang, Wu, Rana, Charoenkitkarn, Chan (b0130) 2020
10.1016/j.ymeth.2021.06.002_b0045
10.1016/j.ymeth.2021.06.002_b0100
Haixiang (10.1016/j.ymeth.2021.06.002_b0060) 2017; 73
10.1016/j.ymeth.2021.06.002_b0065
10.1016/j.ymeth.2021.06.002_b0120
10.1016/j.ymeth.2021.06.002_b0085
10.1016/j.ymeth.2021.06.002_b0020
Hussain (10.1016/j.ymeth.2021.06.002_b0105) 2020; 19
10.1016/j.ymeth.2021.06.002_b0040
10.1016/j.ymeth.2021.06.002_b0005
10.1016/j.ymeth.2021.06.002_b0025
10.1016/j.ymeth.2021.06.002_b0080
10.1016/j.ymeth.2021.06.002_b0010
Ucar (10.1016/j.ymeth.2021.06.002_b0110) 2020; 140
10.1016/j.ymeth.2021.06.002_b0055
10.1016/j.ymeth.2021.06.002_b0030
Ozturk (10.1016/j.ymeth.2021.06.002_b0095) 2020; 121
10.1016/j.ymeth.2021.06.002_b0050
Vuttipittayamongkol (10.1016/j.ymeth.2021.06.002_b0075) 2021; 212
10.1016/j.ymeth.2021.06.002_b0135
Waheed (10.1016/j.ymeth.2021.06.002_b0090) 2020; 8
Zanardo (10.1016/j.ymeth.2021.06.002_b0035) 2020; 68
Abbas (10.1016/j.ymeth.2021.06.002_b0115) 2021; 51
Li (10.1016/j.ymeth.2021.06.002_b0130) 2020
cr-split#-10.1016/j.ymeth.2021.06.002_b0015.2
cr-split#-10.1016/j.ymeth.2021.06.002_b0015.1
Xiao (10.1016/j.ymeth.2021.06.002_b0140) 2020
10.1016/j.ymeth.2021.06.002_b0070
Chen (10.1016/j.ymeth.2021.06.002_b0125) 2020
References_xml – reference: A.I. Khan, J.L. Shah, M.M. Bhat, CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images, Computer methods and programs in biomedicine 196 (2020) 105581–105581, edition: 2020/06/05 Publisher: Elsevier B.V. doi:10.1016/j.cmpb.2020.105581. https://pubmed.ncbi.nlm.nih.gov/32534344.
– reference: M.F. Hashmi, S. Katiyar, A.G. Keskar, N.D. Bokde, Z.W. Geem, Efficient Pneumonia Detection in Chest Xray Images Using Deep Transfer Learning, Diagnostics (Basel, Switzerland) 10 (6) (2020) 417, publisher: MDPI. doi:10.3390/diagnostics10060417. https://pubmed.ncbi.nlm.nih.gov/32575475.
– volume: 140
  year: 2020
  ident: b0110
  article-title: Covidiagnosis-net: Deep bayes-squeezenet based diagnosis of the coronavirus disease 2019 (covid-19) from x-ray images
  publication-title: Medical Hypotheses
– reference: T. Thanapattheerakul, W. Engchuan, J.H. Chan, Predicting the effect of variants on splicing using convolutional neural networks, PeerJ 8:e9470 doi: 10.7717/peerj.9470.
– reference: A. Sharma, S. Rani, D. Gupta, Artificial Intelligence-Based Classification of Chest X-Ray Images into COVID-19 and Other Infectious Diseases, Int. J. Biomed. Imaging 2020 (2020) 8889023, publisher: Hindawi. doi:10.1155/2020/8889023. doi: 10.1155/2020/8889023.
– reference: E.A. Akl, I. Blažić, S. Yaacoub, G. Frija, R. Chou, J.A. Appiah, M. Fatehi, N. Flor, E. Hitti, H. Jafri, Z.-Y. Jin, H.U. Kauczor, M. Kawooya, E.A. Kazerooni, J.P. Ko, R. Mahfouz, V. Muglia, R. Nyabanda, M. Sanchez, P.B. Shete, M. Ulla, C. Zheng, E. van Deventer, M. d. R. Perez, Use of chest imaging in the diagnosis and management of covid-19: A WHO rapid advice guide, Radiology 298 (2) (2021) E63–E69, pMID: 32729811. doi:10.1148/radiol.2020203173. doi: 10.1148/radiol.2020203173.
– reference: Y. Zhao, C. Xiang, S. Wang, C. Peng, Q. Zou, J. Hu, Radiology department strategies to protect radiologic technologists against COVID19: Experience from Wuhan, European journal of radiology 127 (2020) 108996–108996, edition: 2020/04/20 Publisher: Elsevier B.V. doi:10.1016/j.ejrad.2020.108996. https://pubmed.ncbi.nlm.nih.gov/32344294.
– volume: 73
  start-page: 220
  year: 2017
  end-page: 239
  ident: b0060
  article-title: Learning from class-imbalanced data: Review of methods and applications
  publication-title: Expert Systems Appl.
– volume: 51
  start-page: 854
  year: 2021
  end-page: 864
  ident: b0115
  article-title: Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network
  publication-title: Appl. Intelligence
– reference: J.H. Chan, Dlai3 hackathon phase3 covid-19 cxr challenge. kaggle. doi:10.34740/KAGGLE/DSV/1347344.
– volume: 212
  year: 2021
  ident: b0075
  article-title: On the class overlap problem in imbalanced data classification
  publication-title: Knowledge-Based Systems
– reference: I.D. Apostolopoulos, T.A. Mpesiana, Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks, Physical and engineering sciences in medicine 43 (2) (2020) 635–640, edition: 2020/04/03 Publisher: Springer International Publishing. doi:10.1007/s13246-020-00865-4. https://pubmed.ncbi.nlm.nih.gov/32524445.
– reference: M.K. Hasan, M.A. Alam, L. Dahal, M.T.E. Elahi, S. Roy, S.R. Wahid, R. Martí, B. Khanal, Challenges of deep learning methods for covid-19 detection using public datasets, medRxiv doi:10.1101/2020.11.07.20227504. https://www.medrxiv.org/content/early/2020/11/10/2020.11.07.20227504.
– reference: S. Kooraki, M. Hosseiny, L. Myers, A. Gholamrezanezhad, Coronavirus (COVID-19) Outbreak: What the Department of Radiology Should Know., Journal of the American College of Radiology: JACR 17 (4) (2020) 447–451. doi:10.1016/j.jacr.2020.02.008.
– start-page: 1
  year: 2020
  end-page: 8
  ident: b0140
  article-title: Chest radiograph at admission predicts early intubation among inpatient covid-19 patients
  publication-title: European Radiol.
– volume: 121
  year: 2020
  ident: b0095
  article-title: Automated detection of covid-19 cases using deep neural networks with x-ray images
  publication-title: Computers Biol. Med.
– reference: A. Cozzi, S. Schiaffino, F. Arpaia, G. Della Pepa, S. Tritella, P. Bertolotti, L. Menicagli, C.G. Monaco, L.A. Carbonaro, R. Spairani, B. Babaei Paskeh, F. Sardanelli, Chest x-ray in the COVID-19 pandemic: Radiologists’ real-world reader performance, European journal of radiology 132 (2020) 109272–109272, edition: 2020/09/10 Publisher: Elsevier B.V. doi:10.1016/j.ejrad.2020.109272. https://pubmed.ncbi.nlm.nih.gov/32971326.
– reference: R. Chou, M. Pappas, D. Buckley, M. McDonagh, A. Totten, N. Flor, F. Sardanelli, T. Dana, E. Hart, N. Wasson, H. Nelson, Use of chest imaging in covid-19: a rapid advice guide.
– reference: J. Johnson, T. Khoshgoftaar, Thresholding strategies for deep learning with highly imbalanced big data., Deep Learning Applications, Volume 2. Advances in Intelligent Systems and Computing, vol 1232.In: Wani M.A., Khoshgoftaar T.M., Palade V. (eds) Springer, Singapore. doi: 10.1007/978-981-15-6759-9_9.
– reference: H. Kim, H. Hong, S.H. Yoon, Diagnostic Performance of CT and Reverse Transcriptase Polymerase Chain Reaction for Coronavirus Disease 2019: A Meta-Analysis, Radiology 296 (3) (2020) E145–E155, edition: 2020/04/17 Publisher: Radiological Society of North America. doi:10.1148/radiol.2020201343. https://pubmed.ncbi.nlm.nih.gov/32301646.
– volume: 8
  start-page: 91916
  year: 2020
  end-page: 91923
  ident: b0090
  article-title: Covidgan: Data augmentation using auxiliary classifier gan for improved covid-19 detection
  publication-title: IEEE Access
– start-page: 97
  year: 2020
  end-page: 100
  ident: b0130
  article-title: Covid19 chest x-ray classification with simple convolutional neural network
  publication-title: CSBio ’20 Proceedings of the Eleventh International Conference on Computational Systems-Biology and Bioinformatics
– start-page: 93
  year: 2020
  end-page: 96
  ident: b0125
  article-title: Detecting covid-19 in chest x-rays using transfer learning with vgg16
  publication-title: CSBio ’20 Proceedings of the Eleventh International Conference on Computational Systems-Biology and Bioinformatics
– volume: 19
  start-page: 88
  year: 2020
  ident: b0105
  article-title: Machine-learning classification of texture features of portable chest X-ray accurately classifies COVID-19 lung infection
  publication-title: BioMedical Eng. OnLine
– volume: 68
  start-page: 99
  year: 2020
  end-page: 101
  ident: b0035
  article-title: Bringing radiology to patient’s home using mobile equipment: A weapon to fight covid-19 pandemic
  publication-title: Clinical Imaging
– reference: N. Flor, R. Dore, F. Sardanelli, On the Role of Chest Radiography and CT in the Coronavirus Disease (COVID-19) Pandemic., AJR. American journal of roentgenology 215 (4) (2020) W44, place: United States. doi:10.2214/AJR.20.23411.
– reference: H.R. Tizhoosh, J. Fratesi, COVID-19, AI enthusiasts, and toy datasets: radiology without radiologists, European Radiology doi:10.1007/s00330-020-07453-w. doi: 10.1007/s00330-020-07453-w.
– reference: M. Buda, A. Maki, M.A. Mazurowski, A systematic study of the class imbalance problem in convolutional neural networks, CoRR abs/1710.05381. arXiv:1710.05381.
– ident: 10.1016/j.ymeth.2021.06.002_b0005
  doi: 10.1148/radiol.2020203173
– ident: #cr-split#-10.1016/j.ymeth.2021.06.002_b0015.2
  doi: 10.1148/radiol.2020201343
– volume: 68
  start-page: 99
  year: 2020
  ident: 10.1016/j.ymeth.2021.06.002_b0035
  article-title: Bringing radiology to patient’s home using mobile equipment: A weapon to fight covid-19 pandemic
  publication-title: Clinical Imaging
  doi: 10.1016/j.clinimag.2020.06.031
– ident: 10.1016/j.ymeth.2021.06.002_b0135
  doi: 10.1101/2020.11.07.20227504
– start-page: 1
  year: 2020
  ident: 10.1016/j.ymeth.2021.06.002_b0140
  article-title: Chest radiograph at admission predicts early intubation among inpatient covid-19 patients
  publication-title: European Radiol.
– ident: 10.1016/j.ymeth.2021.06.002_b0025
  doi: 10.1016/j.jacr.2020.02.008
– volume: 121
  year: 2020
  ident: 10.1016/j.ymeth.2021.06.002_b0095
  article-title: Automated detection of covid-19 cases using deep neural networks with x-ray images
  publication-title: Computers Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103792
– volume: 8
  start-page: 91916
  year: 2020
  ident: 10.1016/j.ymeth.2021.06.002_b0090
  article-title: Covidgan: Data augmentation using auxiliary classifier gan for improved covid-19 detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2994762
– ident: 10.1016/j.ymeth.2021.06.002_b0120
  doi: 10.1155/2020/8889023
– ident: 10.1016/j.ymeth.2021.06.002_b0055
– volume: 140
  year: 2020
  ident: 10.1016/j.ymeth.2021.06.002_b0110
  article-title: Covidiagnosis-net: Deep bayes-squeezenet based diagnosis of the coronavirus disease 2019 (covid-19) from x-ray images
  publication-title: Medical Hypotheses
  doi: 10.1016/j.mehy.2020.109761
– ident: 10.1016/j.ymeth.2021.06.002_b0030
  doi: 10.2214/AJR.20.23411
– ident: 10.1016/j.ymeth.2021.06.002_b0050
  doi: 10.1007/s00330-020-07453-w
– ident: 10.1016/j.ymeth.2021.06.002_b0085
  doi: 10.1016/j.cmpb.2020.105581
– ident: 10.1016/j.ymeth.2021.06.002_b0045
  doi: 10.3390/diagnostics10060417
– volume: 73
  start-page: 220
  year: 2017
  ident: 10.1016/j.ymeth.2021.06.002_b0060
  article-title: Learning from class-imbalanced data: Review of methods and applications
  publication-title: Expert Systems Appl.
  doi: 10.1016/j.eswa.2016.12.035
– ident: #cr-split#-10.1016/j.ymeth.2021.06.002_b0015.1
  doi: 10.1148/radiol.2020201343
– start-page: 97
  year: 2020
  ident: 10.1016/j.ymeth.2021.06.002_b0130
  article-title: Covid19 chest x-ray classification with simple convolutional neural network
– ident: 10.1016/j.ymeth.2021.06.002_b0065
– volume: 212
  year: 2021
  ident: 10.1016/j.ymeth.2021.06.002_b0075
  article-title: On the class overlap problem in imbalanced data classification
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106631
– ident: 10.1016/j.ymeth.2021.06.002_b0020
  doi: 10.1016/j.ejrad.2020.108996
– ident: 10.1016/j.ymeth.2021.06.002_b0010
  doi: 10.1016/j.ejrad.2020.109272
– ident: 10.1016/j.ymeth.2021.06.002_b0040
– ident: 10.1016/j.ymeth.2021.06.002_b0080
  doi: 10.1007/978-981-15-6759-9_9
– volume: 51
  start-page: 854
  issue: 2
  year: 2021
  ident: 10.1016/j.ymeth.2021.06.002_b0115
  article-title: Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network
  publication-title: Appl. Intelligence
  doi: 10.1007/s10489-020-01829-7
– ident: 10.1016/j.ymeth.2021.06.002_b0100
  doi: 10.1007/s13246-020-00865-4
– ident: 10.1016/j.ymeth.2021.06.002_b0070
  doi: 10.7717/peerj.9470
– volume: 19
  start-page: 88
  issue: 1
  year: 2020
  ident: 10.1016/j.ymeth.2021.06.002_b0105
  article-title: Machine-learning classification of texture features of portable chest X-ray accurately classifies COVID-19 lung infection
  publication-title: BioMedical Eng. OnLine
  doi: 10.1186/s12938-020-00831-x
– start-page: 93
  year: 2020
  ident: 10.1016/j.ymeth.2021.06.002_b0125
  article-title: Detecting covid-19 in chest x-rays using transfer learning with vgg16
SSID ssj0001278
Score 2.410251
Snippet [Display omitted] •Presented a systematic approach to learn from imbalanced set of bio-medical images.•Developed a practical “survival of the fittest” approach...
The trendy task of digital medical image analysis has been continually evolving. It has been an area of prominent and growing importance from both research and...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 31
SubjectTerms case studies
chest
Chest X-ray
COVID-19
COVID-19 - diagnostic imaging
COVID-19 infection
data collection
Deep Learning
Deep neural networks
health care workers
Humans
image analysis
Imbalanced data
Medical imaging
Pandemics
SARS-CoV-2
Tomography, X-Ray Computed - methods
Transfer learning
X-radiation
X-Rays
Title Learning from imbalanced COVID-19 chest X-ray (CXR) medical imaging data
URI https://dx.doi.org/10.1016/j.ymeth.2021.06.002
https://www.ncbi.nlm.nih.gov/pubmed/34090971
https://www.proquest.com/docview/2538045355
https://www.proquest.com/docview/2551990113
https://pubmed.ncbi.nlm.nih.gov/PMC9759826
Volume 202
WOSCitedRecordID wos000804389000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9130
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001278
  issn: 1046-2023
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZYhwQvCDYY5TIZCSHQcJU4Tmw_Vt1Qh8ZAbKC8Rc4NMtF0tB3a_j0-tpOlVFSAxEtUpU7q5nyxz_1D6HnKchamXkmo5BlhhVcQJRknMi1LqVjO89Swlhzx42MRx_KDa08wN3QCvK7F5aU8_6-i1ue0sKF09i_E3d5Un9CftdD1UYtdH_9I8EeNs8NUjlSTFJIXIco_ev_5cJ_4cs9wZO3FZKZMqH8UfwTfwMSFbKqJJS5yVWut6vrOcE0bJ-2JXhT2q-KLdbNCddeg41GAgoWuY35vPGjTfiob4i_q71XX36BN1TYvyjrBmkKYpTxNiBQTYGK324o7Z2kgve5iSz3aWS7dBmA3XtvUaGVJt96Fs8EVUGprg576puGqu89yr-wTmAdMg_pGOeQbaJPyUIoe2hweHsRv203ap9xWSbp5Nw2pTOrfyk_9TmlZNUp-za3tKCund9EdZ2XgoUXHPXSjqLfQ9lDLYzq5wi-wyfs1AZUtdGvUcP5to3EDHgzgwdfgwQ14sAEPNuDBLzV0XmEHHOyAgwE499GnNwenozFxXBskY5IuSO6HouRBwIU2MVUQpqGfRcorvaL0fMHS1MtEFvIyT4VQES9ZoFQUsdzPA8WhR-QD1KundfEQ4UwB2UhYAoEIC3IpU2giJyDenZdZLvqINg8zyVwjeuBD-ZY0GYdniZFAAhJITN4l7aPX7UXntg_L-uFRI6XEqZJWRUw0rNZf-KyRaaKfPUTPVF1ML-YJ1aqBtn-0fr5ujDaIoJg76KMdi4N2tgHzJDRs6yO-hJB2ADR6X_6mrr6ahu8SIEyjR__6px6j29dv8hPUW8wuiqfoZvZjUc1nu2iDx2LXvSA_AfiPxtY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+from+imbalanced+COVID-19+chest+X-ray+%28CXR%29+medical+imaging+data&rft.jtitle=Methods+%28San+Diego%2C+Calif.%29&rft.au=Chan%2C+Jonathan+H.&rft.au=Li%2C+Chenqi&rft.date=2022-06-01&rft.pub=Elsevier+Inc&rft.issn=1046-2023&rft.eissn=1095-9130&rft.volume=202&rft.spage=31&rft.epage=39&rft_id=info:doi/10.1016%2Fj.ymeth.2021.06.002&rft.externalDocID=S1046202321001547
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1046-2023&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1046-2023&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1046-2023&client=summon