Learning from imbalanced COVID-19 chest X-ray (CXR) medical imaging data
[Display omitted] •Presented a systematic approach to learn from imbalanced set of bio-medical images.•Developed a practical “survival of the fittest” approach for hyperparameter tuning of models.•Proposed a framework to use leftout imbalanced data for pseudo-testing purpose.•Provided a publicly ava...
Gespeichert in:
| Veröffentlicht in: | Methods (San Diego, Calif.) Jg. 202; S. 31 - 39 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Inc
01.06.2022
|
| Schlagworte: | |
| ISSN: | 1046-2023, 1095-9130, 1095-9130 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | [Display omitted]
•Presented a systematic approach to learn from imbalanced set of bio-medical images.•Developed a practical “survival of the fittest” approach for hyperparameter tuning of models.•Proposed a framework to use leftout imbalanced data for pseudo-testing purpose.•Provided a publicly available chest X-ray dataset on the Kaggle platform.•Outperformed global competitors in terms of F1 and recall scores on the given dataset.
The trendy task of digital medical image analysis has been continually evolving. It has been an area of prominent and growing importance from both research and deployment perspectives. Nonetheless, it is necessary to realize that the use of algorithms, methodology, as well as the source of medical image data, must be strictly scrutinized. As the COVID-19 pandemic has been gripping much of the world recently, there has been much efforts gone into developing affordable testing for the masses, and it has been shown that the established and widely available chest X-rays (CXR) images may be used as a screening criteria for assistive diagnosis purpose. Thanks to the dedicated work by various individuals and organizations, publicly available CXR of COVID-19 subjects are available for analytic usage. We have also provided a publicly available CXR dataset on the Kaggle platform. As a case study, this paper presents a systematic approach to learn from a typically imbalanced set of CXR images, which consists of a limited number of publicly available COVID-19 images. Our results show that we are able to outperform the top finishers in a related Kaggle multi-class CXR challenge. The proposed methodology should be able to help guide medical personnel in obtaining a robust diagnosis model to discern COVID-19 from other conditions confidently. |
|---|---|
| AbstractList | The trendy task of digital medical image analysis has been continually evolving. It has been an area of prominent and growing importance from both research and deployment perspectives. Nonetheless, it is necessary to realize that the use of algorithms, methodology, as well as the source of medical image data, must be strictly scrutinized. As the COVID-19 pandemic has been gripping much of the world recently, there has been much efforts gone into developing affordable testing for the masses, and it has been shown that the established and widely available chest X-rays (CXR) images may be used as a screening criteria for assistive diagnosis purpose. Thanks to the dedicated work by various individuals and organizations, publicly available CXR of COVID-19 subjects are available for analytic usage. We have also provided a publicly available CXR dataset on the Kaggle platform. As a case study, this paper presents a systematic approach to learn from a typically imbalanced set of CXR images, which consists of a limited number of publicly available COVID-19 images. Our results show that we are able to outperform the top finishers in a related Kaggle multi-class CXR challenge. The proposed methodology should be able to help guide medical personnel in obtaining a robust diagnosis model to discern COVID-19 from other conditions confidently. The trendy task of digital medical image analysis has been continually evolving. It has been an area of prominent and growing importance from both research and deployment perspectives. Nonetheless, it is necessary to realize that the use of algorithms, methodology, as well as the source of medical image data, must be strictly scrutinized. As the COVID-19 pandemic has been gripping much of the world recently, there has been much efforts gone into developing affordable testing for the masses, and it has been shown that the established and widely available chest X-rays (CXR) images may be used as a screening criteria for assistive diagnosis purpose. Thanks to the dedicated work by various individuals and organizations, publicly available CXR of COVID-19 subjects are available for analytic usage. We have also provided a publicly available CXR dataset on the Kaggle platform. As a case study, this paper presents a systematic approach to learn from a typically imbalanced set of CXR images, which consists of a limited number of publicly available COVID-19 images. Our results show that we are able to outperform the top finishers in a related Kaggle multi-class CXR challenge. The proposed methodology should be able to help guide medical personnel in obtaining a robust diagnosis model to discern COVID-19 from other conditions confidently.The trendy task of digital medical image analysis has been continually evolving. It has been an area of prominent and growing importance from both research and deployment perspectives. Nonetheless, it is necessary to realize that the use of algorithms, methodology, as well as the source of medical image data, must be strictly scrutinized. As the COVID-19 pandemic has been gripping much of the world recently, there has been much efforts gone into developing affordable testing for the masses, and it has been shown that the established and widely available chest X-rays (CXR) images may be used as a screening criteria for assistive diagnosis purpose. Thanks to the dedicated work by various individuals and organizations, publicly available CXR of COVID-19 subjects are available for analytic usage. We have also provided a publicly available CXR dataset on the Kaggle platform. As a case study, this paper presents a systematic approach to learn from a typically imbalanced set of CXR images, which consists of a limited number of publicly available COVID-19 images. Our results show that we are able to outperform the top finishers in a related Kaggle multi-class CXR challenge. The proposed methodology should be able to help guide medical personnel in obtaining a robust diagnosis model to discern COVID-19 from other conditions confidently. [Display omitted] •Presented a systematic approach to learn from imbalanced set of bio-medical images.•Developed a practical “survival of the fittest” approach for hyperparameter tuning of models.•Proposed a framework to use leftout imbalanced data for pseudo-testing purpose.•Provided a publicly available chest X-ray dataset on the Kaggle platform.•Outperformed global competitors in terms of F1 and recall scores on the given dataset. The trendy task of digital medical image analysis has been continually evolving. It has been an area of prominent and growing importance from both research and deployment perspectives. Nonetheless, it is necessary to realize that the use of algorithms, methodology, as well as the source of medical image data, must be strictly scrutinized. As the COVID-19 pandemic has been gripping much of the world recently, there has been much efforts gone into developing affordable testing for the masses, and it has been shown that the established and widely available chest X-rays (CXR) images may be used as a screening criteria for assistive diagnosis purpose. Thanks to the dedicated work by various individuals and organizations, publicly available CXR of COVID-19 subjects are available for analytic usage. We have also provided a publicly available CXR dataset on the Kaggle platform. As a case study, this paper presents a systematic approach to learn from a typically imbalanced set of CXR images, which consists of a limited number of publicly available COVID-19 images. Our results show that we are able to outperform the top finishers in a related Kaggle multi-class CXR challenge. The proposed methodology should be able to help guide medical personnel in obtaining a robust diagnosis model to discern COVID-19 from other conditions confidently. |
| Author | Chan, Jonathan H. Li, Chenqi |
| Author_xml | – sequence: 1 givenname: Jonathan H. surname: Chan fullname: Chan, Jonathan H. email: jonathan@sit.kmutt.ac.th organization: Innovative Cognitive Computing (IC2) Research Center, School of Information Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand – sequence: 2 givenname: Chenqi surname: Li fullname: Li, Chenqi email: chenqi.li@mail.utoronto.ca organization: Division of Engineering Science, Faculty of Applied Science and Engineering, University of Toronto, Toronto, Canada |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34090971$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU9r3DAQxUVJaf60n6BQfEwPdkeWJUuHFso2bQILgdKW3MRYlne12FYqeQP77Stnk5D20OQkwbw3vDe_Y3Iw-tES8pZCQYGKD5tiN9hpXZRQ0gJEAVC-IEcUFM8VZXAw_yuRpzE7JMcxbgCAlrV8RQ5ZBQpUTY_I-dJiGN24yrrgh8wNDfY4Gttmi8tfF19yqjKztnHKrvKAu-x0cfX9fTbY1hnskxpXs7XFCV-Tlx320b65e0_Iz69nPxbn-fLy28Xi8zI3lSqnvKVcdjVjteRcIeMNp0YgdGA7oLJqGjDS8LprGylR1F3FEIWoWtoyrIFW7IR82u-93jYph7HjFLDX1yGFCTvt0em_J6Nb65W_0armSpYiLTi9WxD8722qpgcXje1Tbeu3UZecU6WAUvYMKZNQccZ5kr57HOshz_2lk4DtBSb4GIPtHiQU9MxTb_QtTz3z1CB04plc6h-XcRNOzs_dXP-E9-PeaxOOG2eDjsbZma0L1ky69e6__j_AH7pz |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3365544 crossref_primary_10_1007_s12539_025_00726_2 crossref_primary_10_1007_s42979_024_03529_2 |
| Cites_doi | 10.1148/radiol.2020203173 10.1148/radiol.2020201343 10.1016/j.clinimag.2020.06.031 10.1101/2020.11.07.20227504 10.1016/j.jacr.2020.02.008 10.1016/j.compbiomed.2020.103792 10.1109/ACCESS.2020.2994762 10.1155/2020/8889023 10.1016/j.mehy.2020.109761 10.2214/AJR.20.23411 10.1007/s00330-020-07453-w 10.1016/j.cmpb.2020.105581 10.3390/diagnostics10060417 10.1016/j.eswa.2016.12.035 10.1016/j.knosys.2020.106631 10.1016/j.ejrad.2020.108996 10.1016/j.ejrad.2020.109272 10.1007/978-981-15-6759-9_9 10.1007/s10489-020-01829-7 10.1007/s13246-020-00865-4 10.7717/peerj.9470 10.1186/s12938-020-00831-x |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. 2021 Elsevier Inc. All rights reserved. 2021 Elsevier Inc. |
| Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. – notice: 2021 Elsevier Inc. All rights reserved. 2021 Elsevier Inc. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
| DOI | 10.1016/j.ymeth.2021.06.002 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1095-9130 |
| EndPage | 39 |
| ExternalDocumentID | PMC9759826 34090971 10_1016_j_ymeth_2021_06_002 S1046202321001547 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HMG HVGLF HZ~ IHE J1W K-O KOM LG5 LX2 LZ5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SCC SDF SDG SDP SES SEW SIN SPCBC SSU SSZ T5K WUQ XPP Y6R ZGI ZMT ZU3 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c492t-d158f73378559a35b51c6a0f0ef0184bb0c8c57fdb88a67f43aa664d1d3a70143 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000804389000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1046-2023 1095-9130 |
| IngestDate | Tue Sep 30 17:17:46 EDT 2025 Sun Nov 09 09:38:24 EST 2025 Sun Sep 28 08:36:45 EDT 2025 Thu Apr 03 07:06:39 EDT 2025 Sat Nov 29 07:02:57 EST 2025 Tue Nov 18 21:46:58 EST 2025 Fri Feb 23 02:39:17 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | COVID-19 Imbalanced data Medical imaging Deep neural networks Chest X-ray Transfer learning |
| Language | English |
| License | Copyright © 2021 Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c492t-d158f73378559a35b51c6a0f0ef0184bb0c8c57fdb88a67f43aa664d1d3a70143 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9759826 |
| PMID | 34090971 |
| PQID | 2538045355 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9759826 proquest_miscellaneous_2551990113 proquest_miscellaneous_2538045355 pubmed_primary_34090971 crossref_primary_10_1016_j_ymeth_2021_06_002 crossref_citationtrail_10_1016_j_ymeth_2021_06_002 elsevier_sciencedirect_doi_10_1016_j_ymeth_2021_06_002 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Methods (San Diego, Calif.) |
| PublicationTitleAlternate | Methods |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Haixiang, Yijing, Shang, Mingyun, Yuanyue, Bing (b0060) 2017; 73 E.A. Akl, I. Blažić, S. Yaacoub, G. Frija, R. Chou, J.A. Appiah, M. Fatehi, N. Flor, E. Hitti, H. Jafri, Z.-Y. Jin, H.U. Kauczor, M. Kawooya, E.A. Kazerooni, J.P. Ko, R. Mahfouz, V. Muglia, R. Nyabanda, M. Sanchez, P.B. Shete, M. Ulla, C. Zheng, E. van Deventer, M. d. R. Perez, Use of chest imaging in the diagnosis and management of covid-19: A WHO rapid advice guide, Radiology 298 (2) (2021) E63–E69, pMID: 32729811. doi:10.1148/radiol.2020203173. doi: 10.1148/radiol.2020203173. I.D. Apostolopoulos, T.A. Mpesiana, Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks, Physical and engineering sciences in medicine 43 (2) (2020) 635–640, edition: 2020/04/03 Publisher: Springer International Publishing. doi:10.1007/s13246-020-00865-4. https://pubmed.ncbi.nlm.nih.gov/32524445. Xiao, Cooper, Godbe, Bechel, Scott, Nguyen, McCarthy, Abboud, Allen, Parekh (b0140) 2020 H. Kim, H. Hong, S.H. Yoon, Diagnostic Performance of CT and Reverse Transcriptase Polymerase Chain Reaction for Coronavirus Disease 2019: A Meta-Analysis, Radiology 296 (3) (2020) E145–E155, edition: 2020/04/17 Publisher: Radiological Society of North America. doi:10.1148/radiol.2020201343. https://pubmed.ncbi.nlm.nih.gov/32301646. A.I. Khan, J.L. Shah, M.M. Bhat, CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images, Computer methods and programs in biomedicine 196 (2020) 105581–105581, edition: 2020/06/05 Publisher: Elsevier B.V. doi:10.1016/j.cmpb.2020.105581. https://pubmed.ncbi.nlm.nih.gov/32534344. Y. Zhao, C. Xiang, S. Wang, C. Peng, Q. Zou, J. Hu, Radiology department strategies to protect radiologic technologists against COVID19: Experience from Wuhan, European journal of radiology 127 (2020) 108996–108996, edition: 2020/04/20 Publisher: Elsevier B.V. doi:10.1016/j.ejrad.2020.108996. https://pubmed.ncbi.nlm.nih.gov/32344294. Waheed, Goyal, Gupta, Khanna, Al-Turjman, Pinheiro (b0090) 2020; 8 N. Flor, R. Dore, F. Sardanelli, On the Role of Chest Radiography and CT in the Coronavirus Disease (COVID-19) Pandemic., AJR. American journal of roentgenology 215 (4) (2020) W44, place: United States. doi:10.2214/AJR.20.23411. H.R. Tizhoosh, J. Fratesi, COVID-19, AI enthusiasts, and toy datasets: radiology without radiologists, European Radiology doi:10.1007/s00330-020-07453-w. doi: 10.1007/s00330-020-07453-w. M.K. Hasan, M.A. Alam, L. Dahal, M.T.E. Elahi, S. Roy, S.R. Wahid, R. Martí, B. Khanal, Challenges of deep learning methods for covid-19 detection using public datasets, medRxiv doi:10.1101/2020.11.07.20227504. https://www.medrxiv.org/content/early/2020/11/10/2020.11.07.20227504. S. Kooraki, M. Hosseiny, L. Myers, A. Gholamrezanezhad, Coronavirus (COVID-19) Outbreak: What the Department of Radiology Should Know., Journal of the American College of Radiology: JACR 17 (4) (2020) 447–451. doi:10.1016/j.jacr.2020.02.008. Ucar, Korkmaz (b0110) 2020; 140 Zanardo, Schiaffino, Sardanelli (b0035) 2020; 68 R. Chou, M. Pappas, D. Buckley, M. McDonagh, A. Totten, N. Flor, F. Sardanelli, T. Dana, E. Hart, N. Wasson, H. Nelson, Use of chest imaging in covid-19: a rapid advice guide. Ozturk, Talo, Yildirim, Baloglu, Yildirim, Rajendra Acharya (b0095) 2020; 121 A. Sharma, S. Rani, D. Gupta, Artificial Intelligence-Based Classification of Chest X-Ray Images into COVID-19 and Other Infectious Diseases, Int. J. Biomed. Imaging 2020 (2020) 8889023, publisher: Hindawi. doi:10.1155/2020/8889023. doi: 10.1155/2020/8889023. Hussain, Nguyen, Li, Abbasi, Lone, Zhao, Zaib, Chen, Duong (b0105) 2020; 19 Abbas, Abdelsamea, Gaber (b0115) 2021; 51 M.F. Hashmi, S. Katiyar, A.G. Keskar, N.D. Bokde, Z.W. Geem, Efficient Pneumonia Detection in Chest Xray Images Using Deep Transfer Learning, Diagnostics (Basel, Switzerland) 10 (6) (2020) 417, publisher: MDPI. doi:10.3390/diagnostics10060417. https://pubmed.ncbi.nlm.nih.gov/32575475. T. Thanapattheerakul, W. Engchuan, J.H. Chan, Predicting the effect of variants on splicing using convolutional neural networks, PeerJ 8:e9470 doi: 10.7717/peerj.9470. J. Johnson, T. Khoshgoftaar, Thresholding strategies for deep learning with highly imbalanced big data., Deep Learning Applications, Volume 2. Advances in Intelligent Systems and Computing, vol 1232.In: Wani M.A., Khoshgoftaar T.M., Palade V. (eds) Springer, Singapore. doi: 10.1007/978-981-15-6759-9_9. Chen, Jaegerman, Matic, Inayatali, Charoenkitkarn, Chan (b0125) 2020 M. Buda, A. Maki, M.A. Mazurowski, A systematic study of the class imbalance problem in convolutional neural networks, CoRR abs/1710.05381. arXiv:1710.05381. Vuttipittayamongkol, Elyan, Petrovski (b0075) 2021; 212 J.H. Chan, Dlai3 hackathon phase3 covid-19 cxr challenge. kaggle. doi:10.34740/KAGGLE/DSV/1347344. A. Cozzi, S. Schiaffino, F. Arpaia, G. Della Pepa, S. Tritella, P. Bertolotti, L. Menicagli, C.G. Monaco, L.A. Carbonaro, R. Spairani, B. Babaei Paskeh, F. Sardanelli, Chest x-ray in the COVID-19 pandemic: Radiologists’ real-world reader performance, European journal of radiology 132 (2020) 109272–109272, edition: 2020/09/10 Publisher: Elsevier B.V. doi:10.1016/j.ejrad.2020.109272. https://pubmed.ncbi.nlm.nih.gov/32971326. Li, Wang, Wu, Rana, Charoenkitkarn, Chan (b0130) 2020 10.1016/j.ymeth.2021.06.002_b0045 10.1016/j.ymeth.2021.06.002_b0100 Haixiang (10.1016/j.ymeth.2021.06.002_b0060) 2017; 73 10.1016/j.ymeth.2021.06.002_b0065 10.1016/j.ymeth.2021.06.002_b0120 10.1016/j.ymeth.2021.06.002_b0085 10.1016/j.ymeth.2021.06.002_b0020 Hussain (10.1016/j.ymeth.2021.06.002_b0105) 2020; 19 10.1016/j.ymeth.2021.06.002_b0040 10.1016/j.ymeth.2021.06.002_b0005 10.1016/j.ymeth.2021.06.002_b0025 10.1016/j.ymeth.2021.06.002_b0080 10.1016/j.ymeth.2021.06.002_b0010 Ucar (10.1016/j.ymeth.2021.06.002_b0110) 2020; 140 10.1016/j.ymeth.2021.06.002_b0055 10.1016/j.ymeth.2021.06.002_b0030 Ozturk (10.1016/j.ymeth.2021.06.002_b0095) 2020; 121 10.1016/j.ymeth.2021.06.002_b0050 Vuttipittayamongkol (10.1016/j.ymeth.2021.06.002_b0075) 2021; 212 10.1016/j.ymeth.2021.06.002_b0135 Waheed (10.1016/j.ymeth.2021.06.002_b0090) 2020; 8 Zanardo (10.1016/j.ymeth.2021.06.002_b0035) 2020; 68 Abbas (10.1016/j.ymeth.2021.06.002_b0115) 2021; 51 Li (10.1016/j.ymeth.2021.06.002_b0130) 2020 cr-split#-10.1016/j.ymeth.2021.06.002_b0015.2 cr-split#-10.1016/j.ymeth.2021.06.002_b0015.1 Xiao (10.1016/j.ymeth.2021.06.002_b0140) 2020 10.1016/j.ymeth.2021.06.002_b0070 Chen (10.1016/j.ymeth.2021.06.002_b0125) 2020 |
| References_xml | – reference: A.I. Khan, J.L. Shah, M.M. Bhat, CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images, Computer methods and programs in biomedicine 196 (2020) 105581–105581, edition: 2020/06/05 Publisher: Elsevier B.V. doi:10.1016/j.cmpb.2020.105581. https://pubmed.ncbi.nlm.nih.gov/32534344. – reference: M.F. Hashmi, S. Katiyar, A.G. Keskar, N.D. Bokde, Z.W. Geem, Efficient Pneumonia Detection in Chest Xray Images Using Deep Transfer Learning, Diagnostics (Basel, Switzerland) 10 (6) (2020) 417, publisher: MDPI. doi:10.3390/diagnostics10060417. https://pubmed.ncbi.nlm.nih.gov/32575475. – volume: 140 year: 2020 ident: b0110 article-title: Covidiagnosis-net: Deep bayes-squeezenet based diagnosis of the coronavirus disease 2019 (covid-19) from x-ray images publication-title: Medical Hypotheses – reference: T. Thanapattheerakul, W. Engchuan, J.H. Chan, Predicting the effect of variants on splicing using convolutional neural networks, PeerJ 8:e9470 doi: 10.7717/peerj.9470. – reference: A. Sharma, S. Rani, D. Gupta, Artificial Intelligence-Based Classification of Chest X-Ray Images into COVID-19 and Other Infectious Diseases, Int. J. Biomed. Imaging 2020 (2020) 8889023, publisher: Hindawi. doi:10.1155/2020/8889023. doi: 10.1155/2020/8889023. – reference: E.A. Akl, I. Blažić, S. Yaacoub, G. Frija, R. Chou, J.A. Appiah, M. Fatehi, N. Flor, E. Hitti, H. Jafri, Z.-Y. Jin, H.U. Kauczor, M. Kawooya, E.A. Kazerooni, J.P. Ko, R. Mahfouz, V. Muglia, R. Nyabanda, M. Sanchez, P.B. Shete, M. Ulla, C. Zheng, E. van Deventer, M. d. R. Perez, Use of chest imaging in the diagnosis and management of covid-19: A WHO rapid advice guide, Radiology 298 (2) (2021) E63–E69, pMID: 32729811. doi:10.1148/radiol.2020203173. doi: 10.1148/radiol.2020203173. – reference: Y. Zhao, C. Xiang, S. Wang, C. Peng, Q. Zou, J. Hu, Radiology department strategies to protect radiologic technologists against COVID19: Experience from Wuhan, European journal of radiology 127 (2020) 108996–108996, edition: 2020/04/20 Publisher: Elsevier B.V. doi:10.1016/j.ejrad.2020.108996. https://pubmed.ncbi.nlm.nih.gov/32344294. – volume: 73 start-page: 220 year: 2017 end-page: 239 ident: b0060 article-title: Learning from class-imbalanced data: Review of methods and applications publication-title: Expert Systems Appl. – volume: 51 start-page: 854 year: 2021 end-page: 864 ident: b0115 article-title: Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network publication-title: Appl. Intelligence – reference: J.H. Chan, Dlai3 hackathon phase3 covid-19 cxr challenge. kaggle. doi:10.34740/KAGGLE/DSV/1347344. – volume: 212 year: 2021 ident: b0075 article-title: On the class overlap problem in imbalanced data classification publication-title: Knowledge-Based Systems – reference: I.D. Apostolopoulos, T.A. Mpesiana, Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks, Physical and engineering sciences in medicine 43 (2) (2020) 635–640, edition: 2020/04/03 Publisher: Springer International Publishing. doi:10.1007/s13246-020-00865-4. https://pubmed.ncbi.nlm.nih.gov/32524445. – reference: M.K. Hasan, M.A. Alam, L. Dahal, M.T.E. Elahi, S. Roy, S.R. Wahid, R. Martí, B. Khanal, Challenges of deep learning methods for covid-19 detection using public datasets, medRxiv doi:10.1101/2020.11.07.20227504. https://www.medrxiv.org/content/early/2020/11/10/2020.11.07.20227504. – reference: S. Kooraki, M. Hosseiny, L. Myers, A. Gholamrezanezhad, Coronavirus (COVID-19) Outbreak: What the Department of Radiology Should Know., Journal of the American College of Radiology: JACR 17 (4) (2020) 447–451. doi:10.1016/j.jacr.2020.02.008. – start-page: 1 year: 2020 end-page: 8 ident: b0140 article-title: Chest radiograph at admission predicts early intubation among inpatient covid-19 patients publication-title: European Radiol. – volume: 121 year: 2020 ident: b0095 article-title: Automated detection of covid-19 cases using deep neural networks with x-ray images publication-title: Computers Biol. Med. – reference: A. Cozzi, S. Schiaffino, F. Arpaia, G. Della Pepa, S. Tritella, P. Bertolotti, L. Menicagli, C.G. Monaco, L.A. Carbonaro, R. Spairani, B. Babaei Paskeh, F. Sardanelli, Chest x-ray in the COVID-19 pandemic: Radiologists’ real-world reader performance, European journal of radiology 132 (2020) 109272–109272, edition: 2020/09/10 Publisher: Elsevier B.V. doi:10.1016/j.ejrad.2020.109272. https://pubmed.ncbi.nlm.nih.gov/32971326. – reference: R. Chou, M. Pappas, D. Buckley, M. McDonagh, A. Totten, N. Flor, F. Sardanelli, T. Dana, E. Hart, N. Wasson, H. Nelson, Use of chest imaging in covid-19: a rapid advice guide. – reference: J. Johnson, T. Khoshgoftaar, Thresholding strategies for deep learning with highly imbalanced big data., Deep Learning Applications, Volume 2. Advances in Intelligent Systems and Computing, vol 1232.In: Wani M.A., Khoshgoftaar T.M., Palade V. (eds) Springer, Singapore. doi: 10.1007/978-981-15-6759-9_9. – reference: H. Kim, H. Hong, S.H. Yoon, Diagnostic Performance of CT and Reverse Transcriptase Polymerase Chain Reaction for Coronavirus Disease 2019: A Meta-Analysis, Radiology 296 (3) (2020) E145–E155, edition: 2020/04/17 Publisher: Radiological Society of North America. doi:10.1148/radiol.2020201343. https://pubmed.ncbi.nlm.nih.gov/32301646. – volume: 8 start-page: 91916 year: 2020 end-page: 91923 ident: b0090 article-title: Covidgan: Data augmentation using auxiliary classifier gan for improved covid-19 detection publication-title: IEEE Access – start-page: 97 year: 2020 end-page: 100 ident: b0130 article-title: Covid19 chest x-ray classification with simple convolutional neural network publication-title: CSBio ’20 Proceedings of the Eleventh International Conference on Computational Systems-Biology and Bioinformatics – start-page: 93 year: 2020 end-page: 96 ident: b0125 article-title: Detecting covid-19 in chest x-rays using transfer learning with vgg16 publication-title: CSBio ’20 Proceedings of the Eleventh International Conference on Computational Systems-Biology and Bioinformatics – volume: 19 start-page: 88 year: 2020 ident: b0105 article-title: Machine-learning classification of texture features of portable chest X-ray accurately classifies COVID-19 lung infection publication-title: BioMedical Eng. OnLine – volume: 68 start-page: 99 year: 2020 end-page: 101 ident: b0035 article-title: Bringing radiology to patient’s home using mobile equipment: A weapon to fight covid-19 pandemic publication-title: Clinical Imaging – reference: N. Flor, R. Dore, F. Sardanelli, On the Role of Chest Radiography and CT in the Coronavirus Disease (COVID-19) Pandemic., AJR. American journal of roentgenology 215 (4) (2020) W44, place: United States. doi:10.2214/AJR.20.23411. – reference: H.R. Tizhoosh, J. Fratesi, COVID-19, AI enthusiasts, and toy datasets: radiology without radiologists, European Radiology doi:10.1007/s00330-020-07453-w. doi: 10.1007/s00330-020-07453-w. – reference: M. Buda, A. Maki, M.A. Mazurowski, A systematic study of the class imbalance problem in convolutional neural networks, CoRR abs/1710.05381. arXiv:1710.05381. – ident: 10.1016/j.ymeth.2021.06.002_b0005 doi: 10.1148/radiol.2020203173 – ident: #cr-split#-10.1016/j.ymeth.2021.06.002_b0015.2 doi: 10.1148/radiol.2020201343 – volume: 68 start-page: 99 year: 2020 ident: 10.1016/j.ymeth.2021.06.002_b0035 article-title: Bringing radiology to patient’s home using mobile equipment: A weapon to fight covid-19 pandemic publication-title: Clinical Imaging doi: 10.1016/j.clinimag.2020.06.031 – ident: 10.1016/j.ymeth.2021.06.002_b0135 doi: 10.1101/2020.11.07.20227504 – start-page: 1 year: 2020 ident: 10.1016/j.ymeth.2021.06.002_b0140 article-title: Chest radiograph at admission predicts early intubation among inpatient covid-19 patients publication-title: European Radiol. – ident: 10.1016/j.ymeth.2021.06.002_b0025 doi: 10.1016/j.jacr.2020.02.008 – volume: 121 year: 2020 ident: 10.1016/j.ymeth.2021.06.002_b0095 article-title: Automated detection of covid-19 cases using deep neural networks with x-ray images publication-title: Computers Biol. Med. doi: 10.1016/j.compbiomed.2020.103792 – volume: 8 start-page: 91916 year: 2020 ident: 10.1016/j.ymeth.2021.06.002_b0090 article-title: Covidgan: Data augmentation using auxiliary classifier gan for improved covid-19 detection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2994762 – ident: 10.1016/j.ymeth.2021.06.002_b0120 doi: 10.1155/2020/8889023 – ident: 10.1016/j.ymeth.2021.06.002_b0055 – volume: 140 year: 2020 ident: 10.1016/j.ymeth.2021.06.002_b0110 article-title: Covidiagnosis-net: Deep bayes-squeezenet based diagnosis of the coronavirus disease 2019 (covid-19) from x-ray images publication-title: Medical Hypotheses doi: 10.1016/j.mehy.2020.109761 – ident: 10.1016/j.ymeth.2021.06.002_b0030 doi: 10.2214/AJR.20.23411 – ident: 10.1016/j.ymeth.2021.06.002_b0050 doi: 10.1007/s00330-020-07453-w – ident: 10.1016/j.ymeth.2021.06.002_b0085 doi: 10.1016/j.cmpb.2020.105581 – ident: 10.1016/j.ymeth.2021.06.002_b0045 doi: 10.3390/diagnostics10060417 – volume: 73 start-page: 220 year: 2017 ident: 10.1016/j.ymeth.2021.06.002_b0060 article-title: Learning from class-imbalanced data: Review of methods and applications publication-title: Expert Systems Appl. doi: 10.1016/j.eswa.2016.12.035 – ident: #cr-split#-10.1016/j.ymeth.2021.06.002_b0015.1 doi: 10.1148/radiol.2020201343 – start-page: 97 year: 2020 ident: 10.1016/j.ymeth.2021.06.002_b0130 article-title: Covid19 chest x-ray classification with simple convolutional neural network – ident: 10.1016/j.ymeth.2021.06.002_b0065 – volume: 212 year: 2021 ident: 10.1016/j.ymeth.2021.06.002_b0075 article-title: On the class overlap problem in imbalanced data classification publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106631 – ident: 10.1016/j.ymeth.2021.06.002_b0020 doi: 10.1016/j.ejrad.2020.108996 – ident: 10.1016/j.ymeth.2021.06.002_b0010 doi: 10.1016/j.ejrad.2020.109272 – ident: 10.1016/j.ymeth.2021.06.002_b0040 – ident: 10.1016/j.ymeth.2021.06.002_b0080 doi: 10.1007/978-981-15-6759-9_9 – volume: 51 start-page: 854 issue: 2 year: 2021 ident: 10.1016/j.ymeth.2021.06.002_b0115 article-title: Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network publication-title: Appl. Intelligence doi: 10.1007/s10489-020-01829-7 – ident: 10.1016/j.ymeth.2021.06.002_b0100 doi: 10.1007/s13246-020-00865-4 – ident: 10.1016/j.ymeth.2021.06.002_b0070 doi: 10.7717/peerj.9470 – volume: 19 start-page: 88 issue: 1 year: 2020 ident: 10.1016/j.ymeth.2021.06.002_b0105 article-title: Machine-learning classification of texture features of portable chest X-ray accurately classifies COVID-19 lung infection publication-title: BioMedical Eng. OnLine doi: 10.1186/s12938-020-00831-x – start-page: 93 year: 2020 ident: 10.1016/j.ymeth.2021.06.002_b0125 article-title: Detecting covid-19 in chest x-rays using transfer learning with vgg16 |
| SSID | ssj0001278 |
| Score | 2.410251 |
| Snippet | [Display omitted]
•Presented a systematic approach to learn from imbalanced set of bio-medical images.•Developed a practical “survival of the fittest” approach... The trendy task of digital medical image analysis has been continually evolving. It has been an area of prominent and growing importance from both research and... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 31 |
| SubjectTerms | case studies chest Chest X-ray COVID-19 COVID-19 - diagnostic imaging COVID-19 infection data collection Deep Learning Deep neural networks health care workers Humans image analysis Imbalanced data Medical imaging Pandemics SARS-CoV-2 Tomography, X-Ray Computed - methods Transfer learning X-radiation X-Rays |
| Title | Learning from imbalanced COVID-19 chest X-ray (CXR) medical imaging data |
| URI | https://dx.doi.org/10.1016/j.ymeth.2021.06.002 https://www.ncbi.nlm.nih.gov/pubmed/34090971 https://www.proquest.com/docview/2538045355 https://www.proquest.com/docview/2551990113 https://pubmed.ncbi.nlm.nih.gov/PMC9759826 |
| Volume | 202 |
| WOSCitedRecordID | wos000804389000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-9130 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001278 issn: 1046-2023 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZYhwQvCDYY5TIZCSHQcJU4Tmw_Vt1Qh8ZAbKC8Rc4NMtF0tB3a_j0-tpOlVFSAxEtUpU7q5nyxz_1D6HnKchamXkmo5BlhhVcQJRknMi1LqVjO89Swlhzx42MRx_KDa08wN3QCvK7F5aU8_6-i1ue0sKF09i_E3d5Un9CftdD1UYtdH_9I8EeNs8NUjlSTFJIXIco_ev_5cJ_4cs9wZO3FZKZMqH8UfwTfwMSFbKqJJS5yVWut6vrOcE0bJ-2JXhT2q-KLdbNCddeg41GAgoWuY35vPGjTfiob4i_q71XX36BN1TYvyjrBmkKYpTxNiBQTYGK324o7Z2kgve5iSz3aWS7dBmA3XtvUaGVJt96Fs8EVUGprg576puGqu89yr-wTmAdMg_pGOeQbaJPyUIoe2hweHsRv203ap9xWSbp5Nw2pTOrfyk_9TmlZNUp-za3tKCund9EdZ2XgoUXHPXSjqLfQ9lDLYzq5wi-wyfs1AZUtdGvUcP5to3EDHgzgwdfgwQ14sAEPNuDBLzV0XmEHHOyAgwE499GnNwenozFxXBskY5IuSO6HouRBwIU2MVUQpqGfRcorvaL0fMHS1MtEFvIyT4VQES9ZoFQUsdzPA8WhR-QD1KundfEQ4UwB2UhYAoEIC3IpU2giJyDenZdZLvqINg8zyVwjeuBD-ZY0GYdniZFAAhJITN4l7aPX7UXntg_L-uFRI6XEqZJWRUw0rNZf-KyRaaKfPUTPVF1ML-YJ1aqBtn-0fr5ujDaIoJg76KMdi4N2tgHzJDRs6yO-hJB2ADR6X_6mrr6ahu8SIEyjR__6px6j29dv8hPUW8wuiqfoZvZjUc1nu2iDx2LXvSA_AfiPxtY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+from+imbalanced+COVID-19+chest+X-ray+%28CXR%29+medical+imaging+data&rft.jtitle=Methods+%28San+Diego%2C+Calif.%29&rft.au=Chan%2C+Jonathan+H.&rft.au=Li%2C+Chenqi&rft.date=2022-06-01&rft.pub=Elsevier+Inc&rft.issn=1046-2023&rft.eissn=1095-9130&rft.volume=202&rft.spage=31&rft.epage=39&rft_id=info:doi/10.1016%2Fj.ymeth.2021.06.002&rft.externalDocID=S1046202321001547 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1046-2023&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1046-2023&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1046-2023&client=summon |