An Open Source Python Library for Anonymizing Sensitive Data
Open science is a fundamental pillar to promote scientific progress and collaboration, based on the principles of open data, open source and open access. However, the requirements for publishing and sharing open data are in many cases difficult to meet in compliance with strict data protection regul...
Gespeichert in:
| Veröffentlicht in: | Scientific data Jg. 11; H. 1; S. 1289 - 14 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
26.11.2024
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2052-4463, 2052-4463 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Open science is a fundamental pillar to promote scientific progress and collaboration, based on the principles of open data, open source and open access. However, the requirements for publishing and sharing open data are in many cases difficult to meet in compliance with strict data protection regulations. Consequently, researchers need to rely on proven methods that allow them to anonymize their data without sharing it with third parties. To this end, this paper presents the implementation of a Python library for the anonymization of sensitive tabular data. This framework provides users with a wide range of anonymization methods that can be applied on the given dataset, including the set of identifiers, quasi-identifiers, generalization hierarchies and allowed level of suppression, along with the sensitive attribute and the level of anonymity required. The library has been implemented following best practices for integration and continuous development, as well as the use of workflows to test code coverage based on unit and functional tests. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2052-4463 2052-4463 |
| DOI: | 10.1038/s41597-024-04019-z |