Estimation and Inference of Heterogeneous Treatment Effects using Random Forests
Many scientific and engineering challenges-ranging from personalized medicine to customized marketing recommendations-require an understanding of treatment effect heterogeneity. In this article, we develop a nonparametric causal forest for estimating heterogeneous treatment effects that extends Brei...
Uložené v:
| Vydané v: | Journal of the American Statistical Association Ročník 113; číslo 523; s. 1228 - 1242 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Alexandria
Taylor & Francis
03.07.2018
Taylor & Francis Group,LLC Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 0162-1459, 1537-274X, 1537-274X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!