A MXene‐Based Wearable Biosensor System for High‐Performance In Vitro Perspiration Analysis

Wearable electrochemical biosensors for sweat analysis present a promising means for noninvasive biomarker monitoring. However, sweat‐based sensing still poses several challenges, including easy degradation of enzymes and biomaterials with repeated testing, limited detection range and sensitivity of...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 19; pp. e1901190 - n/a
Main Authors: Lei, Yongjiu, Zhao, Wenli, Zhang, Yizhou, Jiang, Qiu, He, Jr‐Hau, Baeumner, Antje J., Wolfbeis, Otto S., Wang, Zhong Lin, Salama, Khaled N., Alshareef, Husam N.
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 01.05.2019
Subjects:
ISSN:1613-6810, 1613-6829, 1613-6829
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Wearable electrochemical biosensors for sweat analysis present a promising means for noninvasive biomarker monitoring. However, sweat‐based sensing still poses several challenges, including easy degradation of enzymes and biomaterials with repeated testing, limited detection range and sensitivity of enzyme‐based biosensors caused by oxygen deficiency in sweat, and poor shelf life of sensors using all‐in‐one working electrodes patterned by traditional techniques (e.g., electrodeposition and screen printing). Herein, a stretchable, wearable, and modular multifunctional biosensor is developed, incorporating a novel MXene/Prussian blue (Ti3C2Tx/PB) composite designed for durable and sensitive detection of biomarkers (e.g., glucose and lactate) in sweat. A unique modular design enables a simple exchange of the specific sensing electrode to target the desired analytes. Furthermore, an implemented solid–liquid–air three‐phase interface design leads to superior sensor performance and stability. Typical electrochemical sensitivities of 35.3 µA mm−1 cm−2 for glucose and 11.4 µA mm−1 cm−2 for lactate are achieved using artificial sweat. During in vitro perspiration monitoring of human subjects, the physiochemistry signals (glucose and lactate level) can be measured simultaneously with high sensitivity and good repeatability. This approach represents an important step toward the realization of ultrasensitive enzymatic wearable biosensors for personalized health monitoring. A stretchable, wearable, and modular multifunctional biosensor is developed, incorporating a novel MXene/Prussian blue (Ti3C2Tx/PB) composite designed for durable and sensitive detection of biomarkers in sweat. A unique modular design enables a simple exchange of the specific sensing electrode. This approach represents an important step toward the realization of ultrasensitive enzymatic wearable biosensors for personalized health monitoring.
AbstractList Wearable electrochemical biosensors for sweat analysis present a promising means for noninvasive biomarker monitoring. However, sweat‐based sensing still poses several challenges, including easy degradation of enzymes and biomaterials with repeated testing, limited detection range and sensitivity of enzyme‐based biosensors caused by oxygen deficiency in sweat, and poor shelf life of sensors using all‐in‐one working electrodes patterned by traditional techniques (e.g., electrodeposition and screen printing). Herein, a stretchable, wearable, and modular multifunctional biosensor is developed, incorporating a novel MXene/Prussian blue (Ti3C2Tx/PB) composite designed for durable and sensitive detection of biomarkers (e.g., glucose and lactate) in sweat. A unique modular design enables a simple exchange of the specific sensing electrode to target the desired analytes. Furthermore, an implemented solid–liquid–air three‐phase interface design leads to superior sensor performance and stability. Typical electrochemical sensitivities of 35.3 µA mm−1 cm−2 for glucose and 11.4 µA mm−1 cm−2 for lactate are achieved using artificial sweat. During in vitro perspiration monitoring of human subjects, the physiochemistry signals (glucose and lactate level) can be measured simultaneously with high sensitivity and good repeatability. This approach represents an important step toward the realization of ultrasensitive enzymatic wearable biosensors for personalized health monitoring.
Wearable electrochemical biosensors for sweat analysis present a promising means for noninvasive biomarker monitoring. However, sweat-based sensing still poses several challenges, including easy degradation of enzymes and biomaterials with repeated testing, limited detection range and sensitivity of enzyme-based biosensors caused by oxygen deficiency in sweat, and poor shelf life of sensors using all-in-one working electrodes patterned by traditional techniques (e.g., electrodeposition and screen printing). Herein, a stretchable, wearable, and modular multifunctional biosensor is developed, incorporating a novel MXene/Prussian blue (Ti3 C2 Tx /PB) composite designed for durable and sensitive detection of biomarkers (e.g., glucose and lactate) in sweat. A unique modular design enables a simple exchange of the specific sensing electrode to target the desired analytes. Furthermore, an implemented solid-liquid-air three-phase interface design leads to superior sensor performance and stability. Typical electrochemical sensitivities of 35.3 µA mm-1 cm-2 for glucose and 11.4 µA mm-1 cm-2 for lactate are achieved using artificial sweat. During in vitro perspiration monitoring of human subjects, the physiochemistry signals (glucose and lactate level) can be measured simultaneously with high sensitivity and good repeatability. This approach represents an important step toward the realization of ultrasensitive enzymatic wearable biosensors for personalized health monitoring.Wearable electrochemical biosensors for sweat analysis present a promising means for noninvasive biomarker monitoring. However, sweat-based sensing still poses several challenges, including easy degradation of enzymes and biomaterials with repeated testing, limited detection range and sensitivity of enzyme-based biosensors caused by oxygen deficiency in sweat, and poor shelf life of sensors using all-in-one working electrodes patterned by traditional techniques (e.g., electrodeposition and screen printing). Herein, a stretchable, wearable, and modular multifunctional biosensor is developed, incorporating a novel MXene/Prussian blue (Ti3 C2 Tx /PB) composite designed for durable and sensitive detection of biomarkers (e.g., glucose and lactate) in sweat. A unique modular design enables a simple exchange of the specific sensing electrode to target the desired analytes. Furthermore, an implemented solid-liquid-air three-phase interface design leads to superior sensor performance and stability. Typical electrochemical sensitivities of 35.3 µA mm-1 cm-2 for glucose and 11.4 µA mm-1 cm-2 for lactate are achieved using artificial sweat. During in vitro perspiration monitoring of human subjects, the physiochemistry signals (glucose and lactate level) can be measured simultaneously with high sensitivity and good repeatability. This approach represents an important step toward the realization of ultrasensitive enzymatic wearable biosensors for personalized health monitoring.
Wearable electrochemical biosensors for sweat analysis present a promising means for noninvasive biomarker monitoring. However, sweat-based sensing still poses several challenges, including easy degradation of enzymes and biomaterials with repeated testing, limited detection range and sensitivity of enzyme-based biosensors caused by oxygen deficiency in sweat, and poor shelf life of sensors using all-in-one working electrodes patterned by traditional techniques (e.g., electrodeposition and screen printing). Herein, a stretchable, wearable, and modular multifunctional biosensor is developed, incorporating a novel MXene/Prussian blue (Ti C T /PB) composite designed for durable and sensitive detection of biomarkers (e.g., glucose and lactate) in sweat. A unique modular design enables a simple exchange of the specific sensing electrode to target the desired analytes. Furthermore, an implemented solid-liquid-air three-phase interface design leads to superior sensor performance and stability. Typical electrochemical sensitivities of 35.3 µA mm cm for glucose and 11.4 µA mm cm for lactate are achieved using artificial sweat. During in vitro perspiration monitoring of human subjects, the physiochemistry signals (glucose and lactate level) can be measured simultaneously with high sensitivity and good repeatability. This approach represents an important step toward the realization of ultrasensitive enzymatic wearable biosensors for personalized health monitoring.
Wearable electrochemical biosensors for sweat analysis present a promising means for noninvasive biomarker monitoring. However, sweat‐based sensing still poses several challenges, including easy degradation of enzymes and biomaterials with repeated testing, limited detection range and sensitivity of enzyme‐based biosensors caused by oxygen deficiency in sweat, and poor shelf life of sensors using all‐in‐one working electrodes patterned by traditional techniques (e.g., electrodeposition and screen printing). Herein, a stretchable, wearable, and modular multifunctional biosensor is developed, incorporating a novel MXene/Prussian blue (Ti3C2Tx/PB) composite designed for durable and sensitive detection of biomarkers (e.g., glucose and lactate) in sweat. A unique modular design enables a simple exchange of the specific sensing electrode to target the desired analytes. Furthermore, an implemented solid–liquid–air three‐phase interface design leads to superior sensor performance and stability. Typical electrochemical sensitivities of 35.3 µA mm−1 cm−2 for glucose and 11.4 µA mm−1 cm−2 for lactate are achieved using artificial sweat. During in vitro perspiration monitoring of human subjects, the physiochemistry signals (glucose and lactate level) can be measured simultaneously with high sensitivity and good repeatability. This approach represents an important step toward the realization of ultrasensitive enzymatic wearable biosensors for personalized health monitoring. A stretchable, wearable, and modular multifunctional biosensor is developed, incorporating a novel MXene/Prussian blue (Ti3C2Tx/PB) composite designed for durable and sensitive detection of biomarkers in sweat. A unique modular design enables a simple exchange of the specific sensing electrode. This approach represents an important step toward the realization of ultrasensitive enzymatic wearable biosensors for personalized health monitoring.
Wearable electrochemical biosensors for sweat analysis present a promising means for noninvasive biomarker monitoring. However, sweat‐based sensing still poses several challenges, including easy degradation of enzymes and biomaterials with repeated testing, limited detection range and sensitivity of enzyme‐based biosensors caused by oxygen deficiency in sweat, and poor shelf life of sensors using all‐in‐one working electrodes patterned by traditional techniques (e.g., electrodeposition and screen printing). Herein, a stretchable, wearable, and modular multifunctional biosensor is developed, incorporating a novel MXene/Prussian blue (Ti 3 C 2 T x /PB) composite designed for durable and sensitive detection of biomarkers (e.g., glucose and lactate) in sweat. A unique modular design enables a simple exchange of the specific sensing electrode to target the desired analytes. Furthermore, an implemented solid–liquid–air three‐phase interface design leads to superior sensor performance and stability. Typical electrochemical sensitivities of 35.3 µA m m −1 cm −2 for glucose and 11.4 µA m m −1 cm −2 for lactate are achieved using artificial sweat. During in vitro perspiration monitoring of human subjects, the physiochemistry signals (glucose and lactate level) can be measured simultaneously with high sensitivity and good repeatability. This approach represents an important step toward the realization of ultrasensitive enzymatic wearable biosensors for personalized health monitoring.
Author Lei, Yongjiu
Zhang, Yizhou
He, Jr‐Hau
Jiang, Qiu
Baeumner, Antje J.
Wolfbeis, Otto S.
Zhao, Wenli
Alshareef, Husam N.
Salama, Khaled N.
Wang, Zhong Lin
Author_xml – sequence: 1
  givenname: Yongjiu
  surname: Lei
  fullname: Lei, Yongjiu
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Wenli
  surname: Zhao
  fullname: Zhao, Wenli
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Yizhou
  surname: Zhang
  fullname: Zhang, Yizhou
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Qiu
  surname: Jiang
  fullname: Jiang, Qiu
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: Jr‐Hau
  surname: He
  fullname: He, Jr‐Hau
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 6
  givenname: Antje J.
  orcidid: 0000-0001-7148-3423
  surname: Baeumner
  fullname: Baeumner, Antje J.
  organization: University of Regensburg
– sequence: 7
  givenname: Otto S.
  orcidid: 0000-0002-6124-2842
  surname: Wolfbeis
  fullname: Wolfbeis, Otto S.
  organization: University of Regensburg
– sequence: 8
  givenname: Zhong Lin
  surname: Wang
  fullname: Wang, Zhong Lin
  organization: Georgia Institute of Technology
– sequence: 9
  givenname: Khaled N.
  orcidid: 0000-0001-7742-1282
  surname: Salama
  fullname: Salama, Khaled N.
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 10
  givenname: Husam N.
  orcidid: 0000-0001-5029-2142
  surname: Alshareef
  fullname: Alshareef, Husam N.
  email: husam.alshareef@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30957964$$D View this record in MEDLINE/PubMed
BookMark eNqFkctqGzEUhkVIya3ddlkE3XRjV7fRjJZOaJOAQwLpbSc0mjOtgkZypDHFuzxCn7FPEjlOHQiULISOxPcdifMfot0QAyD0lpIpJYR9zIP3U0aoIrSsHXRAJeUT2TC1u60p2UeHOd8QwikT9R7a50RVtZLiAOkZvvgBAf7e_Tk2GTr8HUwyrQd87GKGkGPC16s8woD7Up65n78KegWpnAYTLODzgL-5MUVcLvPCJTO6GPAsGL_KLr9Gr3rjM7x53I_Q18-fvpycTeaXp-cns_nECsXIxHZSEWlqVglouqa3VcOBKlO1fc1aaGnbsw5kRbsGiDLcCsoFs7RuVC-ktPwIfdj0XaR4u4Q86sFlC96bAHGZNWOkEqSWDS_o-2foTVym8t81xZjkgqimUO8eqWU7QKcXyQ0mrfS_0RVgugFsijkn6LcIJXqdjV5no7fZFEE8E6wbH6Y1JuP8_zW10X47D6sXHtHXF_P5k3sPJXuktQ
CitedBy_id crossref_primary_10_1039_D2NR05447G
crossref_primary_10_1039_D4NR03050H
crossref_primary_10_1039_D1NR02529E
crossref_primary_10_1016_j_mattod_2021_02_010
crossref_primary_10_3390_molecules28124617
crossref_primary_10_1016_j_carbon_2022_05_012
crossref_primary_10_1016_j_memsci_2022_120469
crossref_primary_10_1016_j_snb_2021_129447
crossref_primary_10_1002_smll_202409725
crossref_primary_10_1016_j_pmatsci_2022_101024
crossref_primary_10_1016_j_ccr_2020_213514
crossref_primary_10_1016_j_colsurfb_2020_111344
crossref_primary_10_1016_j_diamond_2023_110455
crossref_primary_10_1002_adfm_201907184
crossref_primary_10_1186_s12951_023_01809_2
crossref_primary_10_1002_nano_202000309
crossref_primary_10_1016_j_cis_2025_103474
crossref_primary_10_3390_s21217423
crossref_primary_10_1016_j_surfin_2024_105678
crossref_primary_10_1016_j_jiec_2025_02_020
crossref_primary_10_1002_aelm_201900531
crossref_primary_10_3390_bios12070467
crossref_primary_10_3390_diagnostics13040697
crossref_primary_10_1016_j_coelec_2021_100782
crossref_primary_10_1002_lpor_202100171
crossref_primary_10_1002_er_6899
crossref_primary_10_1002_adhm_202303923
crossref_primary_10_1016_j_nanoen_2020_105155
crossref_primary_10_1016_j_trac_2024_117542
crossref_primary_10_3389_fmats_2021_682025
crossref_primary_10_1039_C9ME00142E
crossref_primary_10_1039_D2NR02799B
crossref_primary_10_1088_1361_6463_ac14ef
crossref_primary_10_3390_s21030879
crossref_primary_10_3390_bios12070454
crossref_primary_10_1002_smll_202205249
crossref_primary_10_1039_D3RA07092A
crossref_primary_10_3390_s19204376
crossref_primary_10_1007_s44174_022_00010_7
crossref_primary_10_1002_advs_202406324
crossref_primary_10_1016_j_bios_2022_114847
crossref_primary_10_1007_s11581_024_05642_x
crossref_primary_10_3390_ijms21239224
crossref_primary_10_1109_JSEN_2021_3074311
crossref_primary_10_1080_10408347_2020_1836470
crossref_primary_10_1016_j_microc_2024_111495
crossref_primary_10_1016_j_mtchem_2022_101235
crossref_primary_10_1002_solr_202100888
crossref_primary_10_3390_mi15010042
crossref_primary_10_1002_admi_201902170
crossref_primary_10_1002_admt_202300244
crossref_primary_10_1016_j_pmatsci_2025_101579
crossref_primary_10_3390_chemosensors11080459
crossref_primary_10_1002_admi_202102411
crossref_primary_10_1002_admt_202200151
crossref_primary_10_1088_2051_672X_abf1be
crossref_primary_10_1016_j_jelechem_2021_115849
crossref_primary_10_1038_s41528_023_00261_4
crossref_primary_10_1016_j_bios_2020_112220
crossref_primary_10_1016_j_cclet_2020_02_046
crossref_primary_10_1016_j_nwnano_2025_100133
crossref_primary_10_1007_s10544_020_00527_y
crossref_primary_10_1002_adma_202007973
crossref_primary_10_1016_j_bioelechem_2023_108540
crossref_primary_10_1016_j_mtphys_2024_101456
crossref_primary_10_1002_aelm_202400363
crossref_primary_10_1002_advs_202409178
crossref_primary_10_1016_j_microc_2022_108142
crossref_primary_10_1109_JSEN_2020_3032952
crossref_primary_10_1007_s41061_023_00420_1
crossref_primary_10_3390_nano12030334
crossref_primary_10_1016_j_cclet_2019_12_005
crossref_primary_10_3390_ijms26115368
crossref_primary_10_1002_chem_202501080
crossref_primary_10_1016_j_cattod_2020_10_003
crossref_primary_10_1016_j_microc_2023_109874
crossref_primary_10_1016_j_microc_2024_111791
crossref_primary_10_1186_s12951_021_01121_x
crossref_primary_10_2116_analsci_19R007
crossref_primary_10_1007_s42114_024_01118_8
crossref_primary_10_1016_j_flatc_2023_100576
crossref_primary_10_3390_s20185434
crossref_primary_10_1002_celc_202200103
crossref_primary_10_3390_mi14101907
crossref_primary_10_3390_nano11102732
crossref_primary_10_1002_cben_202300029
crossref_primary_10_1016_j_addr_2022_114178
crossref_primary_10_3390_nano12111797
crossref_primary_10_1016_j_indcrop_2023_117609
crossref_primary_10_1039_D4RA07165D
crossref_primary_10_1039_D3NR06604E
crossref_primary_10_1002_adfm_202405651
crossref_primary_10_1021_acsami_5c04589
crossref_primary_10_1016_j_mtchem_2022_101205
crossref_primary_10_1016_j_snb_2023_134048
crossref_primary_10_1016_j_trac_2019_115643
crossref_primary_10_1002_adfm_202208894
crossref_primary_10_1016_j_cej_2020_128349
crossref_primary_10_1002_smll_202408331
crossref_primary_10_3389_fbioe_2021_761020
crossref_primary_10_1039_D4NR04853A
crossref_primary_10_1016_j_est_2025_116507
crossref_primary_10_1016_j_bios_2021_113943
crossref_primary_10_3390_bios13080823
crossref_primary_10_1002_adfm_202200922
crossref_primary_10_1016_j_cej_2022_140473
crossref_primary_10_3390_bios14070356
crossref_primary_10_1016_j_jiec_2025_09_007
crossref_primary_10_1002_admt_202000325
crossref_primary_10_1007_s00216_020_03002_y
crossref_primary_10_1186_s12576_021_00811_3
crossref_primary_10_1002_aisy_202000113
crossref_primary_10_1016_j_sna_2021_112858
crossref_primary_10_1186_s12951_023_02088_7
crossref_primary_10_1002_adhm_202500189
crossref_primary_10_3390_molecules27175709
crossref_primary_10_1007_s40964_023_00424_9
crossref_primary_10_1016_j_ijbiomac_2023_127577
crossref_primary_10_1007_s00604_023_05814_y
crossref_primary_10_1002_admt_202202069
crossref_primary_10_1016_j_flatc_2022_100377
crossref_primary_10_1016_j_jelechem_2022_116183
crossref_primary_10_1016_j_bios_2020_112038
crossref_primary_10_1002_inf2_12299
crossref_primary_10_1016_j_snb_2022_133149
crossref_primary_10_1002_adfm_202200260
crossref_primary_10_1007_s10854_024_12532_5
crossref_primary_10_1088_1361_648X_ac8d40
crossref_primary_10_1007_s42765_023_00258_8
crossref_primary_10_1002_elsa_202200006
crossref_primary_10_1007_s10853_025_10728_6
crossref_primary_10_1016_j_trac_2025_118290
crossref_primary_10_1002_smll_202206147
crossref_primary_10_1007_s40820_021_00604_8
crossref_primary_10_1016_j_trac_2022_116729
crossref_primary_10_1021_acsami_4c22054
crossref_primary_10_1557_s43577_023_00480_0
crossref_primary_10_1088_2515_7639_ab8f78
crossref_primary_10_1002_anbr_202200123
crossref_primary_10_1016_j_flatc_2023_100524
crossref_primary_10_1002_adsr_202300025
crossref_primary_10_1109_LMWT_2023_3315714
crossref_primary_10_1039_D3RA03440B
crossref_primary_10_3390_s21103369
crossref_primary_10_1016_j_nanoen_2020_105670
crossref_primary_10_1002_adma_202407856
crossref_primary_10_1016_j_compositesb_2021_108669
crossref_primary_10_1016_j_aca_2025_343857
crossref_primary_10_1016_j_talanta_2022_123892
crossref_primary_10_1007_s11468_025_02809_8
crossref_primary_10_1016_j_cej_2024_155174
crossref_primary_10_1039_D2NR06162G
crossref_primary_10_1016_j_coco_2024_101953
crossref_primary_10_1016_j_microc_2023_108760
crossref_primary_10_1007_s12274_020_3222_x
crossref_primary_10_3390_bios12100820
crossref_primary_10_1016_j_talanta_2024_127423
crossref_primary_10_1038_s41378_022_00443_6
crossref_primary_10_1007_s12221_024_00655_9
crossref_primary_10_1016_j_microc_2024_112064
crossref_primary_10_1039_D4TB02478H
crossref_primary_10_1002_adfm_202203430
crossref_primary_10_1016_j_susmat_2022_e00439
crossref_primary_10_1016_j_bios_2023_115387
crossref_primary_10_1016_j_snb_2025_137814
crossref_primary_10_1016_j_mseb_2025_118647
crossref_primary_10_1016_j_aca_2022_340257
crossref_primary_10_1002_adma_202005846
crossref_primary_10_1109_JSEN_2023_3347423
crossref_primary_10_1007_s00604_020_04674_0
crossref_primary_10_1016_j_mattod_2020_10_025
crossref_primary_10_1039_D5RA04611D
crossref_primary_10_1016_j_chemosphere_2023_138302
crossref_primary_10_1016_j_bios_2025_117373
crossref_primary_10_1016_j_cej_2023_142351
crossref_primary_10_1039_D2SC00614F
crossref_primary_10_1016_j_aca_2022_339653
crossref_primary_10_1002_advs_201901437
crossref_primary_10_1016_j_ccr_2024_215746
crossref_primary_10_1016_j_mtphys_2021_100527
crossref_primary_10_1016_j_memsci_2024_122604
crossref_primary_10_1016_j_coelec_2021_100755
crossref_primary_10_1002_smll_202105383
crossref_primary_10_3390_nano12142456
crossref_primary_10_1002_inf2_12412
crossref_primary_10_1016_j_snb_2021_131326
crossref_primary_10_1002_adpr_202300224
crossref_primary_10_1016_j_microc_2022_108301
crossref_primary_10_1016_j_talanta_2024_126675
crossref_primary_10_1016_j_talanta_2023_125582
crossref_primary_10_1002_elt2_70015
crossref_primary_10_1007_s10570_022_04667_7
crossref_primary_10_3390_molecules26185469
crossref_primary_10_1016_j_inoche_2025_115078
crossref_primary_10_3390_bios10110185
crossref_primary_10_3390_molecules27010165
crossref_primary_10_1002_admt_202101684
crossref_primary_10_1002_smsc_202500025
crossref_primary_10_1109_JSEN_2023_3326850
crossref_primary_10_1016_j_cej_2024_151230
crossref_primary_10_1007_s00604_024_06606_8
crossref_primary_10_3390_bios12121164
crossref_primary_10_1016_j_talanta_2025_128101
crossref_primary_10_1146_annurev_anchem_100322_040914
crossref_primary_10_1002_tcr_202300369
crossref_primary_10_1016_j_jiec_2022_02_006
crossref_primary_10_1007_s40820_023_01029_1
crossref_primary_10_1016_j_cjac_2021_11_004
crossref_primary_10_1002_adsr_202200049
crossref_primary_10_1002_VIW_20220038
crossref_primary_10_1109_JSEN_2023_3285594
crossref_primary_10_3390_bios12080583
crossref_primary_10_1002_smll_202311380
crossref_primary_10_1016_j_asems_2023_100080
crossref_primary_10_1002_adfm_202005238
crossref_primary_10_1007_s00604_021_04913_y
crossref_primary_10_1016_j_talo_2025_100486
crossref_primary_10_1088_2053_1583_ac8009
crossref_primary_10_1002_admt_202100020
crossref_primary_10_1016_j_bios_2023_115975
crossref_primary_10_1016_j_matlet_2021_130656
crossref_primary_10_1016_S1872_5805_22_60589_4
crossref_primary_10_1016_j_talanta_2021_122726
crossref_primary_10_1016_j_snb_2021_129943
crossref_primary_10_1016_j_bios_2020_112933
crossref_primary_10_1021_acssensors_5c00470
crossref_primary_10_1088_2515_7639_abb361
crossref_primary_10_1088_1361_6528_ac18d5
crossref_primary_10_1016_j_biosx_2025_100600
crossref_primary_10_1007_s40820_024_01597_w
crossref_primary_10_3389_fsens_2022_1006749
crossref_primary_10_1007_s00604_023_06163_6
crossref_primary_10_1016_j_aca_2023_341688
crossref_primary_10_3390_chemosensors11100546
crossref_primary_10_1080_10408436_2022_2078789
crossref_primary_10_1016_j_bios_2022_114115
crossref_primary_10_1016_j_cej_2023_146008
crossref_primary_10_1016_j_jhazmat_2021_127974
crossref_primary_10_1007_s00216_020_02939_4
crossref_primary_10_1016_j_bios_2020_112828
crossref_primary_10_1016_j_ccr_2023_215450
crossref_primary_10_1002_adma_201908486
crossref_primary_10_1007_s00604_021_04859_1
crossref_primary_10_1016_j_progsolidstchem_2023_100392
crossref_primary_10_1016_j_bios_2021_113777
crossref_primary_10_1007_s41664_022_00246_8
crossref_primary_10_1039_D0RA00842G
crossref_primary_10_3390_nano12020221
crossref_primary_10_1016_j_trac_2025_118276
crossref_primary_10_1016_j_carbpol_2021_117658
crossref_primary_10_1016_j_jddst_2023_104569
crossref_primary_10_1016_j_trac_2023_117145
Cites_doi 10.1002/adma.200600977
10.1016/j.bios.2018.02.021
10.1039/C7CS00838D
10.1038/ncomms11650
10.1039/C8NR01883A
10.1038/nmat1650
10.1038/natrevmats.2016.98
10.1039/C4CP05666C
10.1002/jrs.5366
10.1126/sciadv.1601314
10.1017/CBO9780511805134
10.1021/acsami.7b01141
10.1002/adma.201504366
10.1002/adma.201404378
10.1021/acs.chemrev.6b00558
10.1038/nature07719
10.1038/nature20102
10.1007/s00421-003-0968-2
10.1002/adma.201500768
10.1002/adma.201503520
10.1038/ncomms13907
10.1016/j.bios.2015.08.004
10.1021/cr068123a
10.1021/acssensors.7b00729
10.1021/ac504300n
10.1002/adma.201402625
10.1021/ac501699p
10.1111/j.1469-445X.2000.02058.x
10.1038/nenergy.2017.105
10.1038/s41467-017-01136-9
10.1021/ac1004426
10.1002/adma.201504657
10.1002/adfm.201701264
10.1021/acsnano.8b02379
10.1002/adma.201701473
10.1126/science.1241488
10.1021/ac401573r
10.1021/acssensors.6b00356
10.1021/acsnano.8b01459
10.1038/nnano.2014.38
10.1177/193229681300700313
10.1002/adfm.201002117
10.1038/nnano.2016.38
10.1021/acsnano.7b06909
10.1021/acsami.6b16228
10.1007/s12576-009-0073-3
10.1038/srep36422
10.1016/j.trac.2018.05.021
10.1038/nature16521
10.1089/dia.2011.0262
10.1126/sciadv.aat0098
10.1002/adma.201304138
10.1126/science.aag2421
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201901190
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 30957964
10_1002_smll_201901190
SMLL201901190
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: King Abdullah University of Science and Technology
  funderid: CRF‐2015‐SENSORS‐2709
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AAMMB
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AEFGJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
FEDTE
GODZA
HVGLF
LH4
AAYOK
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c4920-cd6906a7254e8d8fc583e19a5bf72beb1bf2de651d8e09a3c41342c1789f466c3
IEDL.DBID DRFUL
ISICitedReferencesCount 355
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472198100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1613-6810
1613-6829
IngestDate Sun Nov 09 09:21:43 EST 2025
Fri Jul 25 12:14:11 EDT 2025
Thu Apr 03 06:56:28 EDT 2025
Sat Nov 29 03:27:37 EST 2025
Tue Nov 18 22:04:13 EST 2025
Wed Jan 22 16:20:55 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords wearable device
perspiration analysis
biosensor
MXene
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4920-cd6906a7254e8d8fc583e19a5bf72beb1bf2de651d8e09a3c41342c1789f466c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5029-2142
0000-0001-7148-3423
0000-0002-6124-2842
0000-0001-7742-1282
PMID 30957964
PQID 2222634098
PQPubID 1046358
PageCount 10
ParticipantIDs proquest_miscellaneous_2205407683
proquest_journals_2222634098
pubmed_primary_30957964
crossref_primary_10_1002_smll_201901190
crossref_citationtrail_10_1002_smll_201901190
wiley_primary_10_1002_smll_201901190_SMLL201901190
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2015; 17
2017; 2
2017; 3
2018; 105
2017; 27
2018; 107
2015; 74
2000; 85
2016; 529
2013; 85
2009
2014; 26
2008; 108
2006; 5
2006; 18
2013; 341
2013; 7
2012; 14
2004; 91
2017; 9
2018; 49
2009; 457
2018; 47
2017; 117
2016; 11
2010; 82
2014; 86
2010; 60
2016; 6
2016; 7
2015; 27
2016; 1
2018; 4
2016; 539
2015; 87
2016; 353
2011; 21
2018; 30
2014; 9
2018; 12
2016; 28
2018; 10
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 539
  start-page: 411
  year: 2016
  publication-title: Nature
– year: 2009
– volume: 91
  start-page: 1
  year: 2004
  publication-title: Eur. J. Appl. Physiol.
– volume: 11
  start-page: 566
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 27
  start-page: 676
  year: 2015
  publication-title: Adv. Mater.
– volume: 27
  start-page: 1701264
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 82
  start-page: 5568
  year: 2010
  publication-title: Anal. Chem.
– volume: 2
  start-page: 17105
  year: 2017
  publication-title: Nat. Energy
– volume: 28
  start-page: 3333
  year: 2016
  publication-title: Adv. Mater.
– volume: 85
  start-page: 869
  year: 2000
  publication-title: Exp. Physiol.
– volume: 28
  start-page: 1477
  year: 2016
  publication-title: Adv. Mater.
– volume: 529
  start-page: 509
  year: 2016
  publication-title: Nature
– volume: 27
  start-page: 3060
  year: 2015
  publication-title: Adv. Mater.
– volume: 9
  start-page: 9015
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 341
  start-page: 1502
  year: 2013
  publication-title: Science
– volume: 108
  start-page: 814
  year: 2008
  publication-title: Chem. Rev.
– volume: 12
  start-page: 3928
  year: 2018
  publication-title: ACS Nano
– volume: 27
  start-page: 7493
  year: 2015
  publication-title: Adv. Mater.
– volume: 26
  start-page: 992
  year: 2014
  publication-title: Adv. Mater.
– volume: 8
  start-page: 1207
  year: 2017
  publication-title: Nat. Commun.
– volume: 5
  start-page: 457
  year: 2006
  publication-title: Nat. Mater.
– volume: 21
  start-page: 2264
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 47
  start-page: 5109
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 16098
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 87
  start-page: 394
  year: 2015
  publication-title: Anal. Chem.
– volume: 7
  start-page: 11650
  year: 2016
  publication-title: Nat. Commun.
– volume: 9
  start-page: 397
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 60
  start-page: 103
  year: 2010
  publication-title: J. Physiol. Sci.
– volume: 6
  start-page: 36422
  year: 2016
  publication-title: Sci. Rep.
– volume: 14
  start-page: 398
  year: 2012
  publication-title: Diabetes Technol. Ther.
– volume: 3
  start-page: e1601314
  year: 2017
  publication-title: Sci. Adv.
– volume: 117
  start-page: 6225
  year: 2017
  publication-title: Chem. Rev.
– volume: 105
  start-page: 424
  year: 2018
  publication-title: Trends Anal. Chem.
– volume: 2
  start-page: 1860
  year: 2017
  publication-title: ACS Sens.
– volume: 353
  start-page: 1137
  year: 2016
  publication-title: Science
– volume: 12
  start-page: 3209
  year: 2018
  publication-title: ACS Nano
– volume: 86
  start-page: 9540
  year: 2014
  publication-title: Anal. Chem.
– volume: 7
  start-page: 678
  year: 2013
  publication-title: J. Diabetes Sci. Technol.
– volume: 9
  start-page: 12773
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 85
  start-page: 6553
  year: 2013
  publication-title: Anal. Chem.
– volume: 107
  start-page: 69
  year: 2018
  publication-title: Biosens. Bioelectron.
– volume: 12
  start-page: 6109
  year: 2018
  publication-title: ACS Nano
– volume: 10
  start-page: 17030
  year: 2018
  publication-title: Nanoscale
– volume: 74
  start-page: 1022
  year: 2015
  publication-title: Biosens. Bioelectron.
– volume: 8
  start-page: 13907
  year: 2017
  publication-title: Nat. Commun.
– volume: 457
  start-page: 706
  year: 2009
  publication-title: Nature
– volume: 18
  start-page: 2837
  year: 2006
  publication-title: Adv. Mater.
– volume: 30
  start-page: 1701473
  year: 2018
  publication-title: Adv. Mater.
– volume: 28
  start-page: 4373
  year: 2016
  publication-title: Adv. Mater.
– volume: 49
  start-page: 1198
  year: 2018
  publication-title: J. Raman Spectrosc.
– volume: 4
  start-page: eaat0098
  year: 2018
  publication-title: Sci. Adv.
– volume: 17
  start-page: 9997
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 1
  start-page: 1011
  year: 2016
  publication-title: ACS Sens.
– ident: e_1_2_7_45_1
  doi: 10.1002/adma.200600977
– ident: e_1_2_7_32_1
  doi: 10.1016/j.bios.2018.02.021
– ident: e_1_2_7_17_1
  doi: 10.1039/C7CS00838D
– ident: e_1_2_7_5_1
  doi: 10.1038/ncomms11650
– ident: e_1_2_7_33_1
  doi: 10.1039/C8NR01883A
– ident: e_1_2_7_44_1
  doi: 10.1038/nmat1650
– ident: e_1_2_7_15_1
  doi: 10.1038/natrevmats.2016.98
– ident: e_1_2_7_42_1
  doi: 10.1039/C4CP05666C
– ident: e_1_2_7_43_1
  doi: 10.1002/jrs.5366
– ident: e_1_2_7_7_1
  doi: 10.1126/sciadv.1601314
– ident: e_1_2_7_38_1
  doi: 10.1017/CBO9780511805134
– ident: e_1_2_7_41_1
  doi: 10.1021/acsami.7b01141
– ident: e_1_2_7_1_1
  doi: 10.1002/adma.201504366
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.201404378
– ident: e_1_2_7_30_1
  doi: 10.1021/acs.chemrev.6b00558
– ident: e_1_2_7_14_1
  doi: 10.1038/nature07719
– ident: e_1_2_7_10_1
  doi: 10.1038/nature20102
– ident: e_1_2_7_53_1
  doi: 10.1007/s00421-003-0968-2
– ident: e_1_2_7_40_1
  doi: 10.1002/adma.201500768
– ident: e_1_2_7_39_1
  doi: 10.1002/adma.201503520
– ident: e_1_2_7_23_1
  doi: 10.1038/ncomms13907
– ident: e_1_2_7_26_1
  doi: 10.1016/j.bios.2015.08.004
– ident: e_1_2_7_35_1
  doi: 10.1021/cr068123a
– ident: e_1_2_7_52_1
  doi: 10.1021/acssensors.7b00729
– ident: e_1_2_7_8_1
  doi: 10.1021/ac504300n
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.201402625
– ident: e_1_2_7_37_1
  doi: 10.1021/ac501699p
– ident: e_1_2_7_49_1
  doi: 10.1111/j.1469-445X.2000.02058.x
– ident: e_1_2_7_20_1
  doi: 10.1038/nenergy.2017.105
– ident: e_1_2_7_24_1
  doi: 10.1038/s41467-017-01136-9
– ident: e_1_2_7_34_1
  doi: 10.1021/ac1004426
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.201504657
– ident: e_1_2_7_22_1
  doi: 10.1002/adfm.201701264
– ident: e_1_2_7_27_1
  doi: 10.1021/acsnano.8b02379
– ident: e_1_2_7_46_1
  doi: 10.1002/adma.201701473
– ident: e_1_2_7_19_1
  doi: 10.1126/science.1241488
– ident: e_1_2_7_9_1
  doi: 10.1021/ac401573r
– ident: e_1_2_7_36_1
  doi: 10.1021/acssensors.6b00356
– ident: e_1_2_7_21_1
  doi: 10.1021/acsnano.8b01459
– ident: e_1_2_7_3_1
  doi: 10.1038/nnano.2014.38
– ident: e_1_2_7_47_1
  doi: 10.1177/193229681300700313
– ident: e_1_2_7_11_1
  doi: 10.1002/adfm.201002117
– ident: e_1_2_7_6_1
  doi: 10.1038/nnano.2016.38
– ident: e_1_2_7_25_1
  doi: 10.1021/acsnano.7b06909
– ident: e_1_2_7_50_1
  doi: 10.1021/acsami.6b16228
– ident: e_1_2_7_51_1
  doi: 10.1007/s12576-009-0073-3
– ident: e_1_2_7_28_1
  doi: 10.1038/srep36422
– ident: e_1_2_7_31_1
  doi: 10.1016/j.trac.2018.05.021
– ident: e_1_2_7_4_1
  doi: 10.1038/nature16521
– ident: e_1_2_7_48_1
  doi: 10.1089/dia.2011.0262
– ident: e_1_2_7_2_1
  doi: 10.1126/sciadv.aat0098
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.201304138
– ident: e_1_2_7_18_1
  doi: 10.1126/science.aag2421
SSID ssj0031247
Score 2.6795735
Snippet Wearable electrochemical biosensors for sweat analysis present a promising means for noninvasive biomarker monitoring. However, sweat‐based sensing still poses...
Wearable electrochemical biosensors for sweat analysis present a promising means for noninvasive biomarker monitoring. However, sweat-based sensing still poses...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1901190
SubjectTerms Biomarkers
Biomedical materials
biosensor
Biosensors
Electrodes
Glucose
Interface stability
Modular design
MXene
MXenes
Nanotechnology
Perspiration
perspiration analysis
Physiochemistry
Pigments
Screen printing
Sensitivity
Shelf life
Sweat
wearable device
Wearable technology
Title A MXene‐Based Wearable Biosensor System for High‐Performance In Vitro Perspiration Analysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201901190
https://www.ncbi.nlm.nih.gov/pubmed/30957964
https://www.proquest.com/docview/2222634098
https://www.proquest.com/docview/2205407683
Volume 15
WOSCitedRecordID wos000472198100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1613-6829
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031247
  issn: 1613-6810
  databaseCode: DRFUL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6STQ7poUnzdPNAhUJOJrbklaxjXksKmxCa196MJMuwkNhlvcm5P6G_sb-kI7-SpYRAcjDYeGwLaWa-GUvzCeB7GKScWWX9LOMcExShfRkZ6VtqheKMpqKaLrgdiouLeDSSly-q-Gt-iO6Hm7OMyl87A1e6PHgmDS0f7t3UgQM0POZhgaLyRj1YOPk5uBm23pghflUbrCBs-Y57qyVuDOjB7Btmgem_aHM2eK3QZ7D88XavwOcm8iSHtap8gTmbr8KnF3yEa5AckvMROr-_v_8cIbql5A7twNVWkaNxUWLCW0xITXFOMNYlbo0Iil4-1x6QHzm5HU8nBXEr66s5fBx30jKfrMPN4PT6-MxvdmDwTSQxrzSp4zFWArNIG6dxZvoxs6FUfZ0JqtHN64ymlvfDNLaBVMwgJEbUhCKWWcS5YRvQy4vcbgFBIDRpHzVCahtpGmoM6zVXgVDCylBGHvht9yemoSd3u2TcJzWxMk1cxyVdx3mw38n_qok5XpXcaUczaQy0TDAsopxhcht78K27jabl5ktUbotHJ-PiWczHmAebtRZ0n2KBrKp4PaDVYL_RhuTqfDjsrr6-56FtWHLn9WLLHehNJ492FxbN03RcTvZgXozivUb5_wFZDQUM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BFgk4AOUZKNRISJyiJnZix8cWumpFdlVBW_ZmJY4jrVQStLvlzE_ob-wvYSavsqpQJdRDDkkmD9nz9Mx8BvgQBoUULnN-WUqJAYrKfR1Z7TvuVCYFL1STLjhN1XSazGb6qKsmpF6YFh9iWHAjyWj0NQk4LUjvXKGGLn-cUe6ALBoed2EjQl6KR7Dx-ev4JO3VsUAD1uywgnbLJ_CtHrkx4Dvrb1i3TNfczXXvtTE_48e38ONP4FHne7Ldllk24Y6rnsLDvxAJn4HZZZMZqr_L3xd7aN8K9h0lgbqr2N68XmLIWy9YC3LO0NtlVCWCpEdX3QfssGKn89WiZlRb32TxceZZj33yHE7G-8efDvxuDwbfRhojS1sQknGmMI50SZGUNk6EC3UW56XiOSr6vOSFk3FYJC7QmbBoFCNuQ5XoMpLSihcwqurKvQKGptAWMfKEzl2U8zBHxz6XWaAy5XSoIw_8fvyN7QDKaZ-MM9NCK3NDA2eGgfPg40D_s4Xm-CflVj-dphPRpUHHiEuB4W3iwfvhNgoXZUyyytXnREMeLUZkwoOXLRsMnxKBbvp4PeDNbN_wD-bbJE2Hs9f_89A23D84nqQmPZx-eQMP6HpberkFo9Xi3L2Fe_bXar5cvOtk4A_U-wgU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB6VhxA90NIHBCh1pUo9RSR2YsdHHl0VEVarttC9WYntSCtBgnaXnvsT-hv7SzrOC1aoqoQ45JDESSzbM99MZuYzwMcwMJzZzPpFwTk6KCL3ZaSlb6kVGWfUiDpccJmK4TAZj-WozSZ0tTANP0T_w81JRq2vnYDbG1Mc3LGGzq6vXOzAIRoeS7ASxZKjbK6cfB1cpJ06Zghg9Q4riFu-I9_qmBsDerD4hkVkemBuLlqvNfwMXjxBx1_CRmt7ksNmsWzCM1u-guf3GAlfgzok52NUf39-_T5CfDPkB0qCq64iR5Nqhi5vNSUNyTlBa5e4LBFsOrqrPiCnJbmczKcVcbn1dRQfZ5503Cdv4GLw-fvxF7_dg8HXkUTPUhvHZJwJ9CNtYpJCxwmzoczivBA0R0WfF9RYHocmsYHMmEZQjKgORSKLiHPN3sJyWZV2GwhCoTYxrgmZ2yinYY6Gfc6zQGTCylBGHvjd-CvdEpS7fTKuVEOtTJUbONUPnAef-vY3DTXHP1vuddOpWhGdKTSMKGfo3iYefOhvo3C5iElW2urWtXEWLXpkzIOtZhn0n2KBrOt4PaD1bP-nD-rbeZr2ZzuPeeg9rI1OBio9HZ7twrq73GRe7sHyfHpr38Gq_jmfzKb7rQj8BVPVB48
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+MXene-Based+Wearable+Biosensor+System+for+High-Performance+In+Vitro+Perspiration+Analysis&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Lei%2C+Yongjiu&rft.au=Zhao%2C+Wenli&rft.au=Zhang%2C+Yizhou&rft.au=Jiang%2C+Qiu&rft.date=2019-05-01&rft.eissn=1613-6829&rft.volume=15&rft.issue=19&rft.spage=e1901190&rft_id=info:doi/10.1002%2Fsmll.201901190&rft_id=info%3Apmid%2F30957964&rft.externalDocID=30957964
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon