A MXene‐Based Wearable Biosensor System for High‐Performance In Vitro Perspiration Analysis
Wearable electrochemical biosensors for sweat analysis present a promising means for noninvasive biomarker monitoring. However, sweat‐based sensing still poses several challenges, including easy degradation of enzymes and biomaterials with repeated testing, limited detection range and sensitivity of...
Gespeichert in:
| Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Jg. 15; H. 19; S. e1901190 - n/a |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
01.05.2019
|
| Schlagworte: | |
| ISSN: | 1613-6810, 1613-6829, 1613-6829 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Wearable electrochemical biosensors for sweat analysis present a promising means for noninvasive biomarker monitoring. However, sweat‐based sensing still poses several challenges, including easy degradation of enzymes and biomaterials with repeated testing, limited detection range and sensitivity of enzyme‐based biosensors caused by oxygen deficiency in sweat, and poor shelf life of sensors using all‐in‐one working electrodes patterned by traditional techniques (e.g., electrodeposition and screen printing). Herein, a stretchable, wearable, and modular multifunctional biosensor is developed, incorporating a novel MXene/Prussian blue (Ti3C2Tx/PB) composite designed for durable and sensitive detection of biomarkers (e.g., glucose and lactate) in sweat. A unique modular design enables a simple exchange of the specific sensing electrode to target the desired analytes. Furthermore, an implemented solid–liquid–air three‐phase interface design leads to superior sensor performance and stability. Typical electrochemical sensitivities of 35.3 µA mm−1 cm−2 for glucose and 11.4 µA mm−1 cm−2 for lactate are achieved using artificial sweat. During in vitro perspiration monitoring of human subjects, the physiochemistry signals (glucose and lactate level) can be measured simultaneously with high sensitivity and good repeatability. This approach represents an important step toward the realization of ultrasensitive enzymatic wearable biosensors for personalized health monitoring.
A stretchable, wearable, and modular multifunctional biosensor is developed, incorporating a novel MXene/Prussian blue (Ti3C2Tx/PB) composite designed for durable and sensitive detection of biomarkers in sweat. A unique modular design enables a simple exchange of the specific sensing electrode. This approach represents an important step toward the realization of ultrasensitive enzymatic wearable biosensors for personalized health monitoring. |
|---|---|
| AbstractList | Wearable electrochemical biosensors for sweat analysis present a promising means for noninvasive biomarker monitoring. However, sweat‐based sensing still poses several challenges, including easy degradation of enzymes and biomaterials with repeated testing, limited detection range and sensitivity of enzyme‐based biosensors caused by oxygen deficiency in sweat, and poor shelf life of sensors using all‐in‐one working electrodes patterned by traditional techniques (e.g., electrodeposition and screen printing). Herein, a stretchable, wearable, and modular multifunctional biosensor is developed, incorporating a novel MXene/Prussian blue (Ti3C2Tx/PB) composite designed for durable and sensitive detection of biomarkers (e.g., glucose and lactate) in sweat. A unique modular design enables a simple exchange of the specific sensing electrode to target the desired analytes. Furthermore, an implemented solid–liquid–air three‐phase interface design leads to superior sensor performance and stability. Typical electrochemical sensitivities of 35.3 µA mm−1 cm−2 for glucose and 11.4 µA mm−1 cm−2 for lactate are achieved using artificial sweat. During in vitro perspiration monitoring of human subjects, the physiochemistry signals (glucose and lactate level) can be measured simultaneously with high sensitivity and good repeatability. This approach represents an important step toward the realization of ultrasensitive enzymatic wearable biosensors for personalized health monitoring. Wearable electrochemical biosensors for sweat analysis present a promising means for noninvasive biomarker monitoring. However, sweat-based sensing still poses several challenges, including easy degradation of enzymes and biomaterials with repeated testing, limited detection range and sensitivity of enzyme-based biosensors caused by oxygen deficiency in sweat, and poor shelf life of sensors using all-in-one working electrodes patterned by traditional techniques (e.g., electrodeposition and screen printing). Herein, a stretchable, wearable, and modular multifunctional biosensor is developed, incorporating a novel MXene/Prussian blue (Ti C T /PB) composite designed for durable and sensitive detection of biomarkers (e.g., glucose and lactate) in sweat. A unique modular design enables a simple exchange of the specific sensing electrode to target the desired analytes. Furthermore, an implemented solid-liquid-air three-phase interface design leads to superior sensor performance and stability. Typical electrochemical sensitivities of 35.3 µA mm cm for glucose and 11.4 µA mm cm for lactate are achieved using artificial sweat. During in vitro perspiration monitoring of human subjects, the physiochemistry signals (glucose and lactate level) can be measured simultaneously with high sensitivity and good repeatability. This approach represents an important step toward the realization of ultrasensitive enzymatic wearable biosensors for personalized health monitoring. Wearable electrochemical biosensors for sweat analysis present a promising means for noninvasive biomarker monitoring. However, sweat‐based sensing still poses several challenges, including easy degradation of enzymes and biomaterials with repeated testing, limited detection range and sensitivity of enzyme‐based biosensors caused by oxygen deficiency in sweat, and poor shelf life of sensors using all‐in‐one working electrodes patterned by traditional techniques (e.g., electrodeposition and screen printing). Herein, a stretchable, wearable, and modular multifunctional biosensor is developed, incorporating a novel MXene/Prussian blue (Ti 3 C 2 T x /PB) composite designed for durable and sensitive detection of biomarkers (e.g., glucose and lactate) in sweat. A unique modular design enables a simple exchange of the specific sensing electrode to target the desired analytes. Furthermore, an implemented solid–liquid–air three‐phase interface design leads to superior sensor performance and stability. Typical electrochemical sensitivities of 35.3 µA m m −1 cm −2 for glucose and 11.4 µA m m −1 cm −2 for lactate are achieved using artificial sweat. During in vitro perspiration monitoring of human subjects, the physiochemistry signals (glucose and lactate level) can be measured simultaneously with high sensitivity and good repeatability. This approach represents an important step toward the realization of ultrasensitive enzymatic wearable biosensors for personalized health monitoring. Wearable electrochemical biosensors for sweat analysis present a promising means for noninvasive biomarker monitoring. However, sweat-based sensing still poses several challenges, including easy degradation of enzymes and biomaterials with repeated testing, limited detection range and sensitivity of enzyme-based biosensors caused by oxygen deficiency in sweat, and poor shelf life of sensors using all-in-one working electrodes patterned by traditional techniques (e.g., electrodeposition and screen printing). Herein, a stretchable, wearable, and modular multifunctional biosensor is developed, incorporating a novel MXene/Prussian blue (Ti3 C2 Tx /PB) composite designed for durable and sensitive detection of biomarkers (e.g., glucose and lactate) in sweat. A unique modular design enables a simple exchange of the specific sensing electrode to target the desired analytes. Furthermore, an implemented solid-liquid-air three-phase interface design leads to superior sensor performance and stability. Typical electrochemical sensitivities of 35.3 µA mm-1 cm-2 for glucose and 11.4 µA mm-1 cm-2 for lactate are achieved using artificial sweat. During in vitro perspiration monitoring of human subjects, the physiochemistry signals (glucose and lactate level) can be measured simultaneously with high sensitivity and good repeatability. This approach represents an important step toward the realization of ultrasensitive enzymatic wearable biosensors for personalized health monitoring.Wearable electrochemical biosensors for sweat analysis present a promising means for noninvasive biomarker monitoring. However, sweat-based sensing still poses several challenges, including easy degradation of enzymes and biomaterials with repeated testing, limited detection range and sensitivity of enzyme-based biosensors caused by oxygen deficiency in sweat, and poor shelf life of sensors using all-in-one working electrodes patterned by traditional techniques (e.g., electrodeposition and screen printing). Herein, a stretchable, wearable, and modular multifunctional biosensor is developed, incorporating a novel MXene/Prussian blue (Ti3 C2 Tx /PB) composite designed for durable and sensitive detection of biomarkers (e.g., glucose and lactate) in sweat. A unique modular design enables a simple exchange of the specific sensing electrode to target the desired analytes. Furthermore, an implemented solid-liquid-air three-phase interface design leads to superior sensor performance and stability. Typical electrochemical sensitivities of 35.3 µA mm-1 cm-2 for glucose and 11.4 µA mm-1 cm-2 for lactate are achieved using artificial sweat. During in vitro perspiration monitoring of human subjects, the physiochemistry signals (glucose and lactate level) can be measured simultaneously with high sensitivity and good repeatability. This approach represents an important step toward the realization of ultrasensitive enzymatic wearable biosensors for personalized health monitoring. Wearable electrochemical biosensors for sweat analysis present a promising means for noninvasive biomarker monitoring. However, sweat‐based sensing still poses several challenges, including easy degradation of enzymes and biomaterials with repeated testing, limited detection range and sensitivity of enzyme‐based biosensors caused by oxygen deficiency in sweat, and poor shelf life of sensors using all‐in‐one working electrodes patterned by traditional techniques (e.g., electrodeposition and screen printing). Herein, a stretchable, wearable, and modular multifunctional biosensor is developed, incorporating a novel MXene/Prussian blue (Ti3C2Tx/PB) composite designed for durable and sensitive detection of biomarkers (e.g., glucose and lactate) in sweat. A unique modular design enables a simple exchange of the specific sensing electrode to target the desired analytes. Furthermore, an implemented solid–liquid–air three‐phase interface design leads to superior sensor performance and stability. Typical electrochemical sensitivities of 35.3 µA mm−1 cm−2 for glucose and 11.4 µA mm−1 cm−2 for lactate are achieved using artificial sweat. During in vitro perspiration monitoring of human subjects, the physiochemistry signals (glucose and lactate level) can be measured simultaneously with high sensitivity and good repeatability. This approach represents an important step toward the realization of ultrasensitive enzymatic wearable biosensors for personalized health monitoring. A stretchable, wearable, and modular multifunctional biosensor is developed, incorporating a novel MXene/Prussian blue (Ti3C2Tx/PB) composite designed for durable and sensitive detection of biomarkers in sweat. A unique modular design enables a simple exchange of the specific sensing electrode. This approach represents an important step toward the realization of ultrasensitive enzymatic wearable biosensors for personalized health monitoring. |
| Author | Lei, Yongjiu Zhang, Yizhou He, Jr‐Hau Jiang, Qiu Baeumner, Antje J. Wolfbeis, Otto S. Zhao, Wenli Alshareef, Husam N. Salama, Khaled N. Wang, Zhong Lin |
| Author_xml | – sequence: 1 givenname: Yongjiu surname: Lei fullname: Lei, Yongjiu organization: King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: Wenli surname: Zhao fullname: Zhao, Wenli organization: King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Yizhou surname: Zhang fullname: Zhang, Yizhou organization: King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Qiu surname: Jiang fullname: Jiang, Qiu organization: King Abdullah University of Science and Technology (KAUST) – sequence: 5 givenname: Jr‐Hau surname: He fullname: He, Jr‐Hau organization: King Abdullah University of Science and Technology (KAUST) – sequence: 6 givenname: Antje J. orcidid: 0000-0001-7148-3423 surname: Baeumner fullname: Baeumner, Antje J. organization: University of Regensburg – sequence: 7 givenname: Otto S. orcidid: 0000-0002-6124-2842 surname: Wolfbeis fullname: Wolfbeis, Otto S. organization: University of Regensburg – sequence: 8 givenname: Zhong Lin surname: Wang fullname: Wang, Zhong Lin organization: Georgia Institute of Technology – sequence: 9 givenname: Khaled N. orcidid: 0000-0001-7742-1282 surname: Salama fullname: Salama, Khaled N. organization: King Abdullah University of Science and Technology (KAUST) – sequence: 10 givenname: Husam N. orcidid: 0000-0001-5029-2142 surname: Alshareef fullname: Alshareef, Husam N. email: husam.alshareef@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30957964$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctqGzEUhkVIya3ddlkE3XRjV7fRjJZOaJOAQwLpbSc0mjOtgkZypDHFuzxCn7FPEjlOHQiULISOxPcdifMfot0QAyD0lpIpJYR9zIP3U0aoIrSsHXRAJeUT2TC1u60p2UeHOd8QwikT9R7a50RVtZLiAOkZvvgBAf7e_Tk2GTr8HUwyrQd87GKGkGPC16s8woD7Up65n78KegWpnAYTLODzgL-5MUVcLvPCJTO6GPAsGL_KLr9Gr3rjM7x53I_Q18-fvpycTeaXp-cns_nECsXIxHZSEWlqVglouqa3VcOBKlO1fc1aaGnbsw5kRbsGiDLcCsoFs7RuVC-ktPwIfdj0XaR4u4Q86sFlC96bAHGZNWOkEqSWDS_o-2foTVym8t81xZjkgqimUO8eqWU7QKcXyQ0mrfS_0RVgugFsijkn6LcIJXqdjV5no7fZFEE8E6wbH6Y1JuP8_zW10X47D6sXHtHXF_P5k3sPJXuktQ |
| CitedBy_id | crossref_primary_10_1039_D2NR05447G crossref_primary_10_1039_D4NR03050H crossref_primary_10_1039_D1NR02529E crossref_primary_10_1016_j_mattod_2021_02_010 crossref_primary_10_3390_molecules28124617 crossref_primary_10_1016_j_carbon_2022_05_012 crossref_primary_10_1016_j_memsci_2022_120469 crossref_primary_10_1016_j_snb_2021_129447 crossref_primary_10_1002_smll_202409725 crossref_primary_10_1016_j_pmatsci_2022_101024 crossref_primary_10_1016_j_ccr_2020_213514 crossref_primary_10_1016_j_colsurfb_2020_111344 crossref_primary_10_1016_j_diamond_2023_110455 crossref_primary_10_1002_adfm_201907184 crossref_primary_10_1186_s12951_023_01809_2 crossref_primary_10_1002_nano_202000309 crossref_primary_10_1016_j_cis_2025_103474 crossref_primary_10_3390_s21217423 crossref_primary_10_1016_j_surfin_2024_105678 crossref_primary_10_1016_j_jiec_2025_02_020 crossref_primary_10_1002_aelm_201900531 crossref_primary_10_3390_bios12070467 crossref_primary_10_3390_diagnostics13040697 crossref_primary_10_1016_j_coelec_2021_100782 crossref_primary_10_1002_lpor_202100171 crossref_primary_10_1002_er_6899 crossref_primary_10_1002_adhm_202303923 crossref_primary_10_1016_j_nanoen_2020_105155 crossref_primary_10_1016_j_trac_2024_117542 crossref_primary_10_3389_fmats_2021_682025 crossref_primary_10_1039_C9ME00142E crossref_primary_10_1039_D2NR02799B crossref_primary_10_1088_1361_6463_ac14ef crossref_primary_10_3390_s21030879 crossref_primary_10_3390_bios12070454 crossref_primary_10_1002_smll_202205249 crossref_primary_10_1039_D3RA07092A crossref_primary_10_3390_s19204376 crossref_primary_10_1007_s44174_022_00010_7 crossref_primary_10_1002_advs_202406324 crossref_primary_10_1016_j_bios_2022_114847 crossref_primary_10_1007_s11581_024_05642_x crossref_primary_10_3390_ijms21239224 crossref_primary_10_1109_JSEN_2021_3074311 crossref_primary_10_1080_10408347_2020_1836470 crossref_primary_10_1016_j_microc_2024_111495 crossref_primary_10_1016_j_mtchem_2022_101235 crossref_primary_10_1002_solr_202100888 crossref_primary_10_3390_mi15010042 crossref_primary_10_1002_admi_201902170 crossref_primary_10_1002_admt_202300244 crossref_primary_10_1016_j_pmatsci_2025_101579 crossref_primary_10_3390_chemosensors11080459 crossref_primary_10_1002_admi_202102411 crossref_primary_10_1002_admt_202200151 crossref_primary_10_1088_2051_672X_abf1be crossref_primary_10_1016_j_jelechem_2021_115849 crossref_primary_10_1038_s41528_023_00261_4 crossref_primary_10_1016_j_bios_2020_112220 crossref_primary_10_1016_j_cclet_2020_02_046 crossref_primary_10_1016_j_nwnano_2025_100133 crossref_primary_10_1007_s10544_020_00527_y crossref_primary_10_1002_adma_202007973 crossref_primary_10_1016_j_bioelechem_2023_108540 crossref_primary_10_1016_j_mtphys_2024_101456 crossref_primary_10_1002_aelm_202400363 crossref_primary_10_1002_advs_202409178 crossref_primary_10_1016_j_microc_2022_108142 crossref_primary_10_1109_JSEN_2020_3032952 crossref_primary_10_1007_s41061_023_00420_1 crossref_primary_10_3390_nano12030334 crossref_primary_10_1016_j_cclet_2019_12_005 crossref_primary_10_3390_ijms26115368 crossref_primary_10_1002_chem_202501080 crossref_primary_10_1016_j_cattod_2020_10_003 crossref_primary_10_1016_j_microc_2023_109874 crossref_primary_10_1016_j_microc_2024_111791 crossref_primary_10_1186_s12951_021_01121_x crossref_primary_10_2116_analsci_19R007 crossref_primary_10_1007_s42114_024_01118_8 crossref_primary_10_1016_j_flatc_2023_100576 crossref_primary_10_3390_s20185434 crossref_primary_10_1002_celc_202200103 crossref_primary_10_3390_mi14101907 crossref_primary_10_3390_nano11102732 crossref_primary_10_1002_cben_202300029 crossref_primary_10_1016_j_addr_2022_114178 crossref_primary_10_3390_nano12111797 crossref_primary_10_1016_j_indcrop_2023_117609 crossref_primary_10_1039_D4RA07165D crossref_primary_10_1039_D3NR06604E crossref_primary_10_1002_adfm_202405651 crossref_primary_10_1021_acsami_5c04589 crossref_primary_10_1016_j_mtchem_2022_101205 crossref_primary_10_1016_j_snb_2023_134048 crossref_primary_10_1016_j_trac_2019_115643 crossref_primary_10_1002_adfm_202208894 crossref_primary_10_1016_j_cej_2020_128349 crossref_primary_10_1002_smll_202408331 crossref_primary_10_3389_fbioe_2021_761020 crossref_primary_10_1039_D4NR04853A crossref_primary_10_1016_j_est_2025_116507 crossref_primary_10_1016_j_bios_2021_113943 crossref_primary_10_3390_bios13080823 crossref_primary_10_1002_adfm_202200922 crossref_primary_10_1016_j_cej_2022_140473 crossref_primary_10_3390_bios14070356 crossref_primary_10_1016_j_jiec_2025_09_007 crossref_primary_10_1002_admt_202000325 crossref_primary_10_1007_s00216_020_03002_y crossref_primary_10_1186_s12576_021_00811_3 crossref_primary_10_1002_aisy_202000113 crossref_primary_10_1016_j_sna_2021_112858 crossref_primary_10_1186_s12951_023_02088_7 crossref_primary_10_1002_adhm_202500189 crossref_primary_10_3390_molecules27175709 crossref_primary_10_1007_s40964_023_00424_9 crossref_primary_10_1016_j_ijbiomac_2023_127577 crossref_primary_10_1007_s00604_023_05814_y crossref_primary_10_1002_admt_202202069 crossref_primary_10_1016_j_flatc_2022_100377 crossref_primary_10_1016_j_jelechem_2022_116183 crossref_primary_10_1016_j_bios_2020_112038 crossref_primary_10_1002_inf2_12299 crossref_primary_10_1016_j_snb_2022_133149 crossref_primary_10_1002_adfm_202200260 crossref_primary_10_1007_s10854_024_12532_5 crossref_primary_10_1088_1361_648X_ac8d40 crossref_primary_10_1007_s42765_023_00258_8 crossref_primary_10_1002_elsa_202200006 crossref_primary_10_1007_s10853_025_10728_6 crossref_primary_10_1016_j_trac_2025_118290 crossref_primary_10_1002_smll_202206147 crossref_primary_10_1007_s40820_021_00604_8 crossref_primary_10_1016_j_trac_2022_116729 crossref_primary_10_1021_acsami_4c22054 crossref_primary_10_1557_s43577_023_00480_0 crossref_primary_10_1088_2515_7639_ab8f78 crossref_primary_10_1002_anbr_202200123 crossref_primary_10_1016_j_flatc_2023_100524 crossref_primary_10_1002_adsr_202300025 crossref_primary_10_1109_LMWT_2023_3315714 crossref_primary_10_1039_D3RA03440B crossref_primary_10_3390_s21103369 crossref_primary_10_1016_j_nanoen_2020_105670 crossref_primary_10_1002_adma_202407856 crossref_primary_10_1016_j_compositesb_2021_108669 crossref_primary_10_1016_j_aca_2025_343857 crossref_primary_10_1016_j_talanta_2022_123892 crossref_primary_10_1007_s11468_025_02809_8 crossref_primary_10_1016_j_cej_2024_155174 crossref_primary_10_1039_D2NR06162G crossref_primary_10_1016_j_coco_2024_101953 crossref_primary_10_1016_j_microc_2023_108760 crossref_primary_10_1007_s12274_020_3222_x crossref_primary_10_3390_bios12100820 crossref_primary_10_1016_j_talanta_2024_127423 crossref_primary_10_1038_s41378_022_00443_6 crossref_primary_10_1007_s12221_024_00655_9 crossref_primary_10_1016_j_microc_2024_112064 crossref_primary_10_1039_D4TB02478H crossref_primary_10_1002_adfm_202203430 crossref_primary_10_1016_j_susmat_2022_e00439 crossref_primary_10_1016_j_bios_2023_115387 crossref_primary_10_1016_j_snb_2025_137814 crossref_primary_10_1016_j_mseb_2025_118647 crossref_primary_10_1016_j_aca_2022_340257 crossref_primary_10_1002_adma_202005846 crossref_primary_10_1109_JSEN_2023_3347423 crossref_primary_10_1007_s00604_020_04674_0 crossref_primary_10_1016_j_mattod_2020_10_025 crossref_primary_10_1039_D5RA04611D crossref_primary_10_1016_j_chemosphere_2023_138302 crossref_primary_10_1016_j_bios_2025_117373 crossref_primary_10_1016_j_cej_2023_142351 crossref_primary_10_1039_D2SC00614F crossref_primary_10_1016_j_aca_2022_339653 crossref_primary_10_1002_advs_201901437 crossref_primary_10_1016_j_ccr_2024_215746 crossref_primary_10_1016_j_mtphys_2021_100527 crossref_primary_10_1016_j_memsci_2024_122604 crossref_primary_10_1016_j_coelec_2021_100755 crossref_primary_10_1002_smll_202105383 crossref_primary_10_3390_nano12142456 crossref_primary_10_1002_inf2_12412 crossref_primary_10_1016_j_snb_2021_131326 crossref_primary_10_1002_adpr_202300224 crossref_primary_10_1016_j_microc_2022_108301 crossref_primary_10_1016_j_talanta_2024_126675 crossref_primary_10_1016_j_talanta_2023_125582 crossref_primary_10_1002_elt2_70015 crossref_primary_10_1007_s10570_022_04667_7 crossref_primary_10_3390_molecules26185469 crossref_primary_10_1016_j_inoche_2025_115078 crossref_primary_10_3390_bios10110185 crossref_primary_10_3390_molecules27010165 crossref_primary_10_1002_admt_202101684 crossref_primary_10_1002_smsc_202500025 crossref_primary_10_1109_JSEN_2023_3326850 crossref_primary_10_1016_j_cej_2024_151230 crossref_primary_10_1007_s00604_024_06606_8 crossref_primary_10_3390_bios12121164 crossref_primary_10_1016_j_talanta_2025_128101 crossref_primary_10_1146_annurev_anchem_100322_040914 crossref_primary_10_1002_tcr_202300369 crossref_primary_10_1016_j_jiec_2022_02_006 crossref_primary_10_1007_s40820_023_01029_1 crossref_primary_10_1016_j_cjac_2021_11_004 crossref_primary_10_1002_adsr_202200049 crossref_primary_10_1002_VIW_20220038 crossref_primary_10_1109_JSEN_2023_3285594 crossref_primary_10_3390_bios12080583 crossref_primary_10_1002_smll_202311380 crossref_primary_10_1016_j_asems_2023_100080 crossref_primary_10_1002_adfm_202005238 crossref_primary_10_1007_s00604_021_04913_y crossref_primary_10_1016_j_talo_2025_100486 crossref_primary_10_1088_2053_1583_ac8009 crossref_primary_10_1002_admt_202100020 crossref_primary_10_1016_j_bios_2023_115975 crossref_primary_10_1016_j_matlet_2021_130656 crossref_primary_10_1016_S1872_5805_22_60589_4 crossref_primary_10_1016_j_talanta_2021_122726 crossref_primary_10_1016_j_snb_2021_129943 crossref_primary_10_1016_j_bios_2020_112933 crossref_primary_10_1021_acssensors_5c00470 crossref_primary_10_1088_2515_7639_abb361 crossref_primary_10_1088_1361_6528_ac18d5 crossref_primary_10_1016_j_biosx_2025_100600 crossref_primary_10_1007_s40820_024_01597_w crossref_primary_10_3389_fsens_2022_1006749 crossref_primary_10_1007_s00604_023_06163_6 crossref_primary_10_1016_j_aca_2023_341688 crossref_primary_10_3390_chemosensors11100546 crossref_primary_10_1080_10408436_2022_2078789 crossref_primary_10_1016_j_bios_2022_114115 crossref_primary_10_1016_j_cej_2023_146008 crossref_primary_10_1016_j_jhazmat_2021_127974 crossref_primary_10_1007_s00216_020_02939_4 crossref_primary_10_1016_j_bios_2020_112828 crossref_primary_10_1016_j_ccr_2023_215450 crossref_primary_10_1002_adma_201908486 crossref_primary_10_1007_s00604_021_04859_1 crossref_primary_10_1016_j_progsolidstchem_2023_100392 crossref_primary_10_1016_j_bios_2021_113777 crossref_primary_10_1007_s41664_022_00246_8 crossref_primary_10_1039_D0RA00842G crossref_primary_10_3390_nano12020221 crossref_primary_10_1016_j_trac_2025_118276 crossref_primary_10_1016_j_carbpol_2021_117658 crossref_primary_10_1016_j_jddst_2023_104569 crossref_primary_10_1016_j_trac_2023_117145 |
| Cites_doi | 10.1002/adma.200600977 10.1016/j.bios.2018.02.021 10.1039/C7CS00838D 10.1038/ncomms11650 10.1039/C8NR01883A 10.1038/nmat1650 10.1038/natrevmats.2016.98 10.1039/C4CP05666C 10.1002/jrs.5366 10.1126/sciadv.1601314 10.1017/CBO9780511805134 10.1021/acsami.7b01141 10.1002/adma.201504366 10.1002/adma.201404378 10.1021/acs.chemrev.6b00558 10.1038/nature07719 10.1038/nature20102 10.1007/s00421-003-0968-2 10.1002/adma.201500768 10.1002/adma.201503520 10.1038/ncomms13907 10.1016/j.bios.2015.08.004 10.1021/cr068123a 10.1021/acssensors.7b00729 10.1021/ac504300n 10.1002/adma.201402625 10.1021/ac501699p 10.1111/j.1469-445X.2000.02058.x 10.1038/nenergy.2017.105 10.1038/s41467-017-01136-9 10.1021/ac1004426 10.1002/adma.201504657 10.1002/adfm.201701264 10.1021/acsnano.8b02379 10.1002/adma.201701473 10.1126/science.1241488 10.1021/ac401573r 10.1021/acssensors.6b00356 10.1021/acsnano.8b01459 10.1038/nnano.2014.38 10.1177/193229681300700313 10.1002/adfm.201002117 10.1038/nnano.2016.38 10.1021/acsnano.7b06909 10.1021/acsami.6b16228 10.1007/s12576-009-0073-3 10.1038/srep36422 10.1016/j.trac.2018.05.021 10.1038/nature16521 10.1089/dia.2011.0262 10.1126/sciadv.aat0098 10.1002/adma.201304138 10.1126/science.aag2421 |
| ContentType | Journal Article |
| Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| DOI | 10.1002/smll.201901190 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database PubMed CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1613-6829 |
| EndPage | n/a |
| ExternalDocumentID | 30957964 10_1002_smll_201901190 SMLL201901190 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: King Abdullah University of Science and Technology funderid: CRF‐2015‐SENSORS‐2709 |
| GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AAMMB AANHP AAYXX ACBWZ ACRPL ACYXJ ADNMO AEFGJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN BDRZF CITATION FEDTE GODZA HVGLF LH4 AAYOK NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| ID | FETCH-LOGICAL-c4920-cd6906a7254e8d8fc583e19a5bf72beb1bf2de651d8e09a3c41342c1789f466c3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 355 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472198100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1613-6810 1613-6829 |
| IngestDate | Sun Nov 09 09:21:43 EST 2025 Fri Jul 25 12:14:11 EDT 2025 Thu Apr 03 06:56:28 EDT 2025 Sat Nov 29 03:27:37 EST 2025 Tue Nov 18 22:04:13 EST 2025 Wed Jan 22 16:20:55 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Keywords | wearable device perspiration analysis biosensor MXene |
| Language | English |
| License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4920-cd6906a7254e8d8fc583e19a5bf72beb1bf2de651d8e09a3c41342c1789f466c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5029-2142 0000-0001-7148-3423 0000-0002-6124-2842 0000-0001-7742-1282 |
| PMID | 30957964 |
| PQID | 2222634098 |
| PQPubID | 1046358 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2205407683 proquest_journals_2222634098 pubmed_primary_30957964 crossref_primary_10_1002_smll_201901190 crossref_citationtrail_10_1002_smll_201901190 wiley_primary_10_1002_smll_201901190_SMLL201901190 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-01 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
| PublicationTitleAlternate | Small |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 8 2015; 17 2017; 2 2017; 3 2018; 105 2017; 27 2018; 107 2015; 74 2000; 85 2016; 529 2013; 85 2009 2014; 26 2008; 108 2006; 5 2006; 18 2013; 341 2013; 7 2012; 14 2004; 91 2017; 9 2018; 49 2009; 457 2018; 47 2017; 117 2016; 11 2010; 82 2014; 86 2010; 60 2016; 6 2016; 7 2015; 27 2016; 1 2018; 4 2016; 539 2015; 87 2016; 353 2011; 21 2018; 30 2014; 9 2018; 12 2016; 28 2018; 10 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
| References_xml | – volume: 539 start-page: 411 year: 2016 publication-title: Nature – year: 2009 – volume: 91 start-page: 1 year: 2004 publication-title: Eur. J. Appl. Physiol. – volume: 11 start-page: 566 year: 2016 publication-title: Nat. Nanotechnol. – volume: 27 start-page: 676 year: 2015 publication-title: Adv. Mater. – volume: 27 start-page: 1701264 year: 2017 publication-title: Adv. Funct. Mater. – volume: 82 start-page: 5568 year: 2010 publication-title: Anal. Chem. – volume: 2 start-page: 17105 year: 2017 publication-title: Nat. Energy – volume: 28 start-page: 3333 year: 2016 publication-title: Adv. Mater. – volume: 85 start-page: 869 year: 2000 publication-title: Exp. Physiol. – volume: 28 start-page: 1477 year: 2016 publication-title: Adv. Mater. – volume: 529 start-page: 509 year: 2016 publication-title: Nature – volume: 27 start-page: 3060 year: 2015 publication-title: Adv. Mater. – volume: 9 start-page: 9015 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 341 start-page: 1502 year: 2013 publication-title: Science – volume: 108 start-page: 814 year: 2008 publication-title: Chem. Rev. – volume: 12 start-page: 3928 year: 2018 publication-title: ACS Nano – volume: 27 start-page: 7493 year: 2015 publication-title: Adv. Mater. – volume: 26 start-page: 992 year: 2014 publication-title: Adv. Mater. – volume: 8 start-page: 1207 year: 2017 publication-title: Nat. Commun. – volume: 5 start-page: 457 year: 2006 publication-title: Nat. Mater. – volume: 21 start-page: 2264 year: 2011 publication-title: Adv. Funct. Mater. – volume: 47 start-page: 5109 year: 2018 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 16098 year: 2017 publication-title: Nat. Rev. Mater. – volume: 87 start-page: 394 year: 2015 publication-title: Anal. Chem. – volume: 7 start-page: 11650 year: 2016 publication-title: Nat. Commun. – volume: 9 start-page: 397 year: 2014 publication-title: Nat. Nanotechnol. – volume: 60 start-page: 103 year: 2010 publication-title: J. Physiol. Sci. – volume: 6 start-page: 36422 year: 2016 publication-title: Sci. Rep. – volume: 14 start-page: 398 year: 2012 publication-title: Diabetes Technol. Ther. – volume: 3 start-page: e1601314 year: 2017 publication-title: Sci. Adv. – volume: 117 start-page: 6225 year: 2017 publication-title: Chem. Rev. – volume: 105 start-page: 424 year: 2018 publication-title: Trends Anal. Chem. – volume: 2 start-page: 1860 year: 2017 publication-title: ACS Sens. – volume: 353 start-page: 1137 year: 2016 publication-title: Science – volume: 12 start-page: 3209 year: 2018 publication-title: ACS Nano – volume: 86 start-page: 9540 year: 2014 publication-title: Anal. Chem. – volume: 7 start-page: 678 year: 2013 publication-title: J. Diabetes Sci. Technol. – volume: 9 start-page: 12773 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 85 start-page: 6553 year: 2013 publication-title: Anal. Chem. – volume: 107 start-page: 69 year: 2018 publication-title: Biosens. Bioelectron. – volume: 12 start-page: 6109 year: 2018 publication-title: ACS Nano – volume: 10 start-page: 17030 year: 2018 publication-title: Nanoscale – volume: 74 start-page: 1022 year: 2015 publication-title: Biosens. Bioelectron. – volume: 8 start-page: 13907 year: 2017 publication-title: Nat. Commun. – volume: 457 start-page: 706 year: 2009 publication-title: Nature – volume: 18 start-page: 2837 year: 2006 publication-title: Adv. Mater. – volume: 30 start-page: 1701473 year: 2018 publication-title: Adv. Mater. – volume: 28 start-page: 4373 year: 2016 publication-title: Adv. Mater. – volume: 49 start-page: 1198 year: 2018 publication-title: J. Raman Spectrosc. – volume: 4 start-page: eaat0098 year: 2018 publication-title: Sci. Adv. – volume: 17 start-page: 9997 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 1 start-page: 1011 year: 2016 publication-title: ACS Sens. – ident: e_1_2_7_45_1 doi: 10.1002/adma.200600977 – ident: e_1_2_7_32_1 doi: 10.1016/j.bios.2018.02.021 – ident: e_1_2_7_17_1 doi: 10.1039/C7CS00838D – ident: e_1_2_7_5_1 doi: 10.1038/ncomms11650 – ident: e_1_2_7_33_1 doi: 10.1039/C8NR01883A – ident: e_1_2_7_44_1 doi: 10.1038/nmat1650 – ident: e_1_2_7_15_1 doi: 10.1038/natrevmats.2016.98 – ident: e_1_2_7_42_1 doi: 10.1039/C4CP05666C – ident: e_1_2_7_43_1 doi: 10.1002/jrs.5366 – ident: e_1_2_7_7_1 doi: 10.1126/sciadv.1601314 – ident: e_1_2_7_38_1 doi: 10.1017/CBO9780511805134 – ident: e_1_2_7_41_1 doi: 10.1021/acsami.7b01141 – ident: e_1_2_7_1_1 doi: 10.1002/adma.201504366 – ident: e_1_2_7_13_1 doi: 10.1002/adma.201404378 – ident: e_1_2_7_30_1 doi: 10.1021/acs.chemrev.6b00558 – ident: e_1_2_7_14_1 doi: 10.1038/nature07719 – ident: e_1_2_7_10_1 doi: 10.1038/nature20102 – ident: e_1_2_7_53_1 doi: 10.1007/s00421-003-0968-2 – ident: e_1_2_7_40_1 doi: 10.1002/adma.201500768 – ident: e_1_2_7_39_1 doi: 10.1002/adma.201503520 – ident: e_1_2_7_23_1 doi: 10.1038/ncomms13907 – ident: e_1_2_7_26_1 doi: 10.1016/j.bios.2015.08.004 – ident: e_1_2_7_35_1 doi: 10.1021/cr068123a – ident: e_1_2_7_52_1 doi: 10.1021/acssensors.7b00729 – ident: e_1_2_7_8_1 doi: 10.1021/ac504300n – ident: e_1_2_7_12_1 doi: 10.1002/adma.201402625 – ident: e_1_2_7_37_1 doi: 10.1021/ac501699p – ident: e_1_2_7_49_1 doi: 10.1111/j.1469-445X.2000.02058.x – ident: e_1_2_7_20_1 doi: 10.1038/nenergy.2017.105 – ident: e_1_2_7_24_1 doi: 10.1038/s41467-017-01136-9 – ident: e_1_2_7_34_1 doi: 10.1021/ac1004426 – ident: e_1_2_7_29_1 doi: 10.1002/adma.201504657 – ident: e_1_2_7_22_1 doi: 10.1002/adfm.201701264 – ident: e_1_2_7_27_1 doi: 10.1021/acsnano.8b02379 – ident: e_1_2_7_46_1 doi: 10.1002/adma.201701473 – ident: e_1_2_7_19_1 doi: 10.1126/science.1241488 – ident: e_1_2_7_9_1 doi: 10.1021/ac401573r – ident: e_1_2_7_36_1 doi: 10.1021/acssensors.6b00356 – ident: e_1_2_7_21_1 doi: 10.1021/acsnano.8b01459 – ident: e_1_2_7_3_1 doi: 10.1038/nnano.2014.38 – ident: e_1_2_7_47_1 doi: 10.1177/193229681300700313 – ident: e_1_2_7_11_1 doi: 10.1002/adfm.201002117 – ident: e_1_2_7_6_1 doi: 10.1038/nnano.2016.38 – ident: e_1_2_7_25_1 doi: 10.1021/acsnano.7b06909 – ident: e_1_2_7_50_1 doi: 10.1021/acsami.6b16228 – ident: e_1_2_7_51_1 doi: 10.1007/s12576-009-0073-3 – ident: e_1_2_7_28_1 doi: 10.1038/srep36422 – ident: e_1_2_7_31_1 doi: 10.1016/j.trac.2018.05.021 – ident: e_1_2_7_4_1 doi: 10.1038/nature16521 – ident: e_1_2_7_48_1 doi: 10.1089/dia.2011.0262 – ident: e_1_2_7_2_1 doi: 10.1126/sciadv.aat0098 – ident: e_1_2_7_16_1 doi: 10.1002/adma.201304138 – ident: e_1_2_7_18_1 doi: 10.1126/science.aag2421 |
| SSID | ssj0031247 |
| Score | 2.679531 |
| Snippet | Wearable electrochemical biosensors for sweat analysis present a promising means for noninvasive biomarker monitoring. However, sweat‐based sensing still poses... Wearable electrochemical biosensors for sweat analysis present a promising means for noninvasive biomarker monitoring. However, sweat-based sensing still poses... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e1901190 |
| SubjectTerms | Biomarkers Biomedical materials biosensor Biosensors Electrodes Glucose Interface stability Modular design MXene MXenes Nanotechnology Perspiration perspiration analysis Physiochemistry Pigments Screen printing Sensitivity Shelf life Sweat wearable device Wearable technology |
| Title | A MXene‐Based Wearable Biosensor System for High‐Performance In Vitro Perspiration Analysis |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201901190 https://www.ncbi.nlm.nih.gov/pubmed/30957964 https://www.proquest.com/docview/2222634098 https://www.proquest.com/docview/2205407683 |
| Volume | 15 |
| WOSCitedRecordID | wos000472198100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1613-6829 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031247 issn: 1613-6810 databaseCode: DRFUL dateStart: 20050101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VpQc4AC2vUEBGQuopYmM7sXOE0hWVFoRogb1F8SPSSpCgzcKZn8Bv5JcwzgtWqKpED5ESxUkse2a-mXjmM8C-ENYqhGHfWqF8bmToq9QEfqQsz2JOua2SaK6G4uxMjkbx-Zsq_pofovvh5jSjstdOwVNVHryShpa3N27pwAEaHnMwT1F4eQ_mjy8Gl8PWGjPEr2qDFYQt33FvtcSNfXow-4ZZYHrnbc46rxX6DJb_v98rsNR4nuSwFpUv8MnmX2HxDR_hKiSH5HSExu_58ekI0c2Qa9QDV1tFjsZFiQFvMSE1xTlBX5e4HBFsev5ae0B-5eRqPJ0UxGXWV2v4OO-kZT5Zg8vBzz8_TvxmBwZf8xjjSm0cj3EqMIq00shMh5LZIE5DlQmq0MyrjBobhYGRth-nTCMkcqoDIeOMR5Fm69DLi9xuAolFZlhoaF_qFEXASHQEg0hkAQuVZBn3wG-HP9ENPbnbJeMmqYmVaeIGLukGzoPvXfu7mpjjry2329lMGgUtE3SLaMQwuJUe7HW3UbXcekma2-LetXH-LMZjzIONWgq6T7F-XFXxekCryf5HH5Lfp8Nhd7X1kYe-wYI7r5Mtt6E3ndzbHfisH6bjcrILc2IkdxvhfwHsQgTl |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BFgk4lDekFDASEqeoG9uJnWNbWLUiu6qgLXuzEtuRVioJ2t1y5ifwG_klncmrrBBCQhxySOI8ZM_MN2PPfAZ4o5T3BcJw6L0qQul0HBa5i8Kk8LJMJZe-SaI5z9Rspufz9KTLJqRamJYfYphwI81o7DUpOE1I712zhq6-XNDaASEaHjdhS6IsxSPYevdxcpb15lgggDU7rCBuhUS-1TM3jvne5hs2kek3d3PTe23gZ3LvP_z4fdjufE-23wrLA7jhq4dw9xdGwkdg9tl0jubv5_cfB4hvjn1GTaDqKnawqFcY8tZL1pKcM_R2GWWJYNOT6-oDdlyx88V6WTPKrW9W8XHkWc998hjOJu9PD4_Cbg-G0MoUI0vriMk4VxhHeu10aWMtfJTmcVEqXqChL0rufBJHTvtxmguLoCi5jZROS5kkVjyBUVVX_hmwVJVOxI6Ptc1RCJxGVzBKVBmJuNCilAGEff8b2xGU0z4ZF6alVuaGOs4MHRfA26H915aa448td_vhNJ2Krgw6RjwRGN7qAF4Pt1G5aMUkr3x9SW3Io8WITATwtBWD4VNinDZ1vAHwZrT_8g_m0zTLhrOdf3noFdw-Op1mJjuefXgOd-h6m3q5C6P18tK_gFv223qxWr7sdOAKaBcH7Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5Bi1A5lHebUsBISJyibmwnto8tZUVFuloBLXuzEj-kldqk2t1y5ifwG_kljPMqK4SQEIcckkwSy_bMNxPPfAZ4LYRzJcJw7JwoY25lGpeFTeKsdNwrTrlrkmjOczGZyNlMTbtswlAL0_JDDD_cgmY09joouLuy_uCGNXR5eRHWDgKi4XEbNnmqMtTNzeOP47O8N8cMAazZYQVxKw7kWz1z44gerL9hHZl-czfXvdcGfsb3_0PDH8B253uSw3ayPIRbrnoE935hJHwM-pCcztD8_fj2_QjxzZIvqAmhuooczeslhrz1grQk5wS9XRKyRFB0elN9QE4qcj5fLWoScuubVXwcedJznzyBs_G7z2_fx90eDLHhCiNLYwOTcSEwjnTSSm9SyVyiirT0gpZo6EtPrcvSxEo3UgUzCIqcmkRI5XmWGfYUNqq6crtAlPCWpZaOpClwEliJrmCSCZ-wtJTM8wjivv-16QjKwz4ZF7qlVqY6dJweOi6CN4P8VUvN8UfJ_X44daeiS42OEc0YhrcyglfDbVSusGJSVK6-DjLBo8WIjEWw006D4VNspJo63ghoM9p_aYP-dJrnw9nevzz0Eu5Oj8c6P5l8eAZb4XKbebkPG6vFtXsOd8zX1Xy5eNGpwE_nCQdo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+MXene%E2%80%90Based+Wearable+Biosensor+System+for+High%E2%80%90Performance+In+Vitro+Perspiration+Analysis&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Lei%2C+Yongjiu&rft.au=Zhao%2C+Wenli&rft.au=Zhang%2C+Yizhou&rft.au=Jiang%2C+Qiu&rft.date=2019-05-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=15&rft.issue=19&rft_id=info:doi/10.1002%2Fsmll.201901190&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_201901190 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |